首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primitive erythroblasts in the circulating blood of the chick embryo continue to divide while synthesizing hemoglobin (Hb). Hb measurements on successive generations of erythroblasts show that there is a progressive increase in the Hb content of both interphase and metaphase cells. Furthermore, for any given embryo the Hb content of metaphase cells is always significantly greater than that of interphase cells. The distribution of Hb values for metaphase cells suggests that there are six Hb classes corresponding to the number of cell cycles in the proliferative phase. The location of erythroblasts in the cell cycle was determined by combining Feulgen cytophotometry with thymidine radioautography on the same cells. Measurements of the Hb content for erythroblasts in different compartments of the cell cycle (G1, S, G2, and M) show a progressive increase through the cycle. Thus, the amount of Hb per cell is a function of the number of cell divisions since the initiation of Hb synthesis and, to a lesser degree, the stage of the cell cycle. Earlier generations of erythroblasts synthesize Hb at a faster rate than the terminal generation. Several models have been proposed to explain these findings.  相似文献   

2.
Microspectrophotometric absorption measurements were used to determine the hemoglobin content of erythroid cells derived from the yolk sac during gestation of fetal C3H mice, from day 9 to day 15. Using the DNA content as a marker for the mitotic state between 2C and 4C phase, five successive cell generations and their mean hemoglobin contents were distinguished: 12 pg (pg, picogram = 10?12 gm). 22.2 pg, 37 pg, 50 pg and 56 pg. In the final state, nucleated erythrocytes contained 98 ± 22 pg hemoglobin. Erythroid cells derived from the liver were measured on day 15 of fetal gestation. The hemoglobin content of proerythroblasts was below 0.3 pg. The two cell generations in the basophilic state had 0.6 pg and 1.7 pg respectively. Polychromatic erythroblasts yielded a hemoglobin content of 5.1 pg in the first cell generation and 7.5 pg in the second one. Orthochromatic erythroblasts contained 8 pg, reticulocytes 12 pg and mature erythrocytes 28 ± 7 pg hemoglobin. Calculations based on these data suggest that the rate of total hemoglobin synthesis is similar in both yolk sac and liver erythropoiesis. The difference between the final hemoglobin content in nucleated erythrocytes of yolk sac origin and that in hepatic erythrocytes can be explained by the different cell generation times.  相似文献   

3.
Summary We have analyzed cell cycle parameters for theAedes albopictus C7-10 mosquito cell line, which has been systematically developed for somatic cell genetics, expression of transfected genes, and synthesis of hormone-inducible proteins. In rapidly cycling cells, we measured a generation time of 10–12 h. The duration of mitosis (M) was ≤1 h, and the DNA synthesis phase (S) required 6 h. UnlikeDrosophila melanogaster Kc cells, in which the G2 gap is substantially longer than G1, in C7-10 cells G1 and G2 each lasted approximately 2h. In these cells, the duration of both S and G2 was independent of the population doubling time, and the increase in population doubling time as cells approached confluency was due to prolongation of G1. When treated with the insect steroid hormone, 20-hydroxyecdysone, C7-10 mosquito cells complete the cycle in progress before undergoing a reversible arrest.  相似文献   

4.
Cell replication is a fundamental attribute of growth and repair in multicellular organisms. Pancreatic beta-cells in adults rarely enter cell cycle, hindering the capacity for regeneration in diabetes. Efforts to drive beta-cells into cell cycle have so far largely focused on regulatory molecules such as cyclins and cyclin-dependent kinases (CDKs). Investigations in cancer biology have uncovered that adaptive changes in metabolism, the mitochondrial network, and cellular Ca2+ are critical for permitting cells to progress through the cell cycle. Here, we investigated these parameters in the replication-competent beta-cell line INS 832/13. Cell cycle synchronization of this line permitted evaluation of cell metabolism, mitochondrial network, and cellular Ca2+ compartmentalization at key cell cycle stages. The mitochondrial network is interconnected and filamentous at G1/S but fragments during the S and G2/M phases, presumably to permit sorting to daughter cells. Pyruvate anaplerosis peaks at G1/S, consistent with generation of biomass for daughter cells, whereas mitochondrial Ca2+ and respiration increase during S and G2/M, consistent with increased energy requirements for DNA and lipid synthesis. This synchronization approach may be of value to investigators performing live cell imaging of Ca2+ or mitochondrial dynamics commonly undertaken in INS cell lines because without synchrony widely disparate data from cell to cell would be expected depending on position within cell cycle. Our findings also offer insight into why replicating beta-cells are relatively nonfunctional secreting insulin in response to glucose. They also provide guidance on metabolic requirements of beta-cells for the transition through the cell cycle that may complement the efforts currently restricted to manipulating cell cycle to drive beta-cells through cell cycle.  相似文献   

5.
SYNOPSIS. Using continuous flow cultures based on the chemostat principle, we varied the cell generation times of the ciliate Tetrahymena pyriformis strain GL, from 4.9 to 22.2 hr and studied various parameters of the cell cycle at 28 C. These included: the duration of the periods required for oral morphogenesis, macronuclear division, cell division, G1 S, and G2. The size of individual cells was also measured. Independent of the growth rate, the period of oral morphogenesis occurred during the last 90 min of the cell cycle. In all cases macronuclear and cell divisions took place during the last part of these 90 min, and the final macronuclear separation occurred just before final cell separation. The S-period increased slightly, while the G1 and G2 both increased in roughly the same relative proportion to the increasing generation times. Slowly growing cells (generation time 20.5 hr) were shorter but broader and somewhat larger in volume than quickly growing cells (generation time 4.9 hr).  相似文献   

6.
Although Schyzosaccharomyces pombe is one of the principal model organisms for studying the cell cycle, surprisingly few methods have characterized S. pombe growth on the single cell level, and no methods exist capable of analyzing thousands of cells and tens of thousands of cell division events. We developed an automated microfluidic platform permitting S. pombe to be grown on-chip for several days under defined and changeable conditions. We developed an image processing pipeline to extract and quantitate several physiological parameters including cell length, time to division, and elongation rate without requiring synchronization of the culture. Over a period of 50 hours our platform analyzed over 100000 cell division events and reconstructed single cell lineages up to 10 generations in length. We characterized cell lengths and division times in a temperature shift experiment in which cells were initially grown at 30°C and transitioned to 25°C. Although cell length was identical at both temperatures at steady-state, we observed transient changes in cell length if the temperature shift took place during a critical phase of the cell cycle. We further show that cells born with normal length do divide over a wide range of cell lengths and that cell length appears to be controlled in the second generation, were large newly born cells have a tendency to divide more rapidly and thus at a normalized cell size. The platform is thus applicable to measure fine-details in cell cycle dynamics, should be a useful tool to decipher the molecular mechanism underlying size homeostasis, and will be generally applicable to study processes on the single cell level that require large numbers of precision measurements and single cell lineages.  相似文献   

7.
Cell size, cell cycle and transition probability in mouse fibroblasts   总被引:10,自引:0,他引:10  
This paper describes the relationship between cell size and cell division in two situations. In the first, quiescent cells were sorted on the basis of cell size using a fluorescence-activated cell sorter and returned to culture. The results of this type of experiment are compatible with the idea that once cells have completed a size-dependent lag, the rate of entry of cells into S phase is controlled by a rate-limiting random event (or transition).The second kind of experiment follows the kinetics of complete cell cycles in rapidly proliferating cells whose mothers had been sorted on the basis of cell size. The cells born of small mother cells have longer cycle times than cells derived from large mothers. The difference in the cycle time of these two classes was due to differences in the B phase of the cell cycle [containing S, G2, M and part of G1 (G1B)], transition probability being the same in both size classes. Our results show that S, G2 and M are unaffected by size, thus confining the effect of size to G1B. It seems probable that the variability of B phase in cloned cell populations is partly due to variations of cell size at division, and correlations between the cycle times of sister cells result because sibling cells are more similar in size than unrelated cells. The major factor controlling cell division in mouse fibroblasts is shown, however, to be the transition probability; size has a more minor role.  相似文献   

8.
Meristematic cells from Allium cepa L roots can attain a steady-state of growth at both 15 and 25 °C in the presence of drugs, hydroxyurea and 5-amino-uracil, which reduce the rate of DNA synthesis. These drugs, at used concentrations, significantly lengthen the S period without altering the cell growth rate, as indicated by the maintenance of the generation time. It has been observed that steady-state populations respond to a gradual increase in S by a reduction of G2 until a minimum value; with larger lengthening of S, both G1 and G2 are reduced. Natural synchronous populations have been used to study cell cycle parameters during transition from the physiological steady-state to the new one created by the presence of the drug. G2 (but not G1) is reduced during transition even in the presence of maximum drug concentrations that do not alter the cell growth rate. Both the S period and the division time are lengthened during transition. These observations support the concept that certain fractions of G1 and G2 are expendable, because they have no role in the DNA-division sequence of cell cycle events. We conclude that cell size regulates the length of these fractions by means of a negative correlation.  相似文献   

9.
THE CELL GENERATION CYCLE OF THE ELEVEN-DAY MOUSE EMBRYO   总被引:1,自引:1,他引:0       下载免费PDF全文
The incorporation of tritiated thymidine into the DNA of erythroblasts, primitive ependymal cells, and mesenchymal cells of 11-day mouse embryos was studied by radioautography at different times between 25 minutes and 18 hours after injection intraperitoneally. There was no labeling of mitotic figures until 1 hour after injection. Following this, mitotic figures were labeled for about 5.5 hours in primitive ependymal cells and mesenchymal cells, and for a longer period in erythroblasts. The percentage of the labeled primitive ependymal cells at various times after injection indicate a periodic migration into and out of the mitotic zone. The cell generation cycle of primitive ependymal cells and mesenchymal cells is similar to some kinds of adult cells. The cycle of the erythroblasts is more like that of the cells of aging mice.  相似文献   

10.
Friend erythroleukemia cells, thermosensitive for growth, have been isolated by a novel selection procedure employing hypoxanthine, aminopterin and bromodeoxyuridine (HAB) with near-visible light. This reagent eliminates both wild-type cells replicating at the non-permissive temperature of 39 °C and cells lacking thymidine kinase activity unable to incorporate bromodeoxyuridine (BUdR), the lethal constituent of HAB. Clones growth arrested at the non-permissive temperature have a temperature-sensitive defect in progression through G1 of the cell cycle. At permissive temperatures these clones have a karyotype similar to that of wild-type cells and are inducible for synthesis of hemoglobin. Clones which have survived the selection by means of an extended generation time are almost tetraploid at permissive temperatures, are larger than wild-type cells and are inducible for hemoglobin synthesis. At 39 °C these cells are defective in accurate mitotic division. This results in a population of cells heterogeneous in size, having chromosome complements ranging from less than the mouse diploid number to approx. 150 chromosomes/ cell. In the latter giant cells, not all nuclei are in mitosis at any one time. Such cells may be defective in cytokinesis.The two distinct classes of ts variant obtained should be useful for
1. 1. the study of whether induction of hemoglobin synthesis is cell-cycle dependent;
2. 2. mapping the chromosomes important in controlling accurate mitotic division.
  相似文献   

11.
Strains of Schizosaccharomyces pombe carrying the wee 1 mutation divide at a reduced cell size compared with the wild-type. In this paper, we investigate the mechanism which determines the time of division and cell size at division in wee 1 strains, using three experimental approaches. The evidence suggests that the wild-type control (a cell size control over entry into nuclear division) is absent in wee 1 strains. Instead, a mechanism operates which comprises a cell size control over the initiation of S phase plus a minimum incompressible period in G2 (“timer”) from S phase to nuclear division. The elements of this second control mechanism exist in wild-type cells, though the control is not normally expressed. In particular, the G2 interval in wild-type cells is normally longer than that in wee 1 cells, but can be reduced to this minimum value by delaying S phase. Thus there are two independent controls over entry into nuclear division, one of which operates in wild-type, and the other in wee 1 cells.  相似文献   

12.
Phytoplankton samples were collected from the West Pacific Sector of the Southern Ocean to measure the growth rate from November 30 to December 1, 1995.Prorocentrum scuttellum was selected for growth rate measurement using the method of cell cycle analysis. During the 24 hr sampling cycle, cells ofP. scuttellum changed from 2,500 to 5,000 cells/L. The highest abundance was observed at 8:40 AM, December 1, and lowest at 11:40 PM, November 30. Cellular division seemed to occur sometime between 11:40 PM, November 30 and 2:40 AM, December 1. After cell division, DNA fluorescence shifted slowly towards the right, representing the S phase, and the majority of the cells were in S+G2 phases at 8:40 AM, December 1. Between the next six hours, a sharp drop in DNA fluorescence occurred, representing mitosis, and the majority of the cells returned to the G1 phase by 2:40 PM, December 1. We can not determine the duration time of the terminal event from this result However, the growth rate ofP. scuttellum was calculated as 0.43 d-1 with the help of curve fitting methods. This unexpected result seems to have resulted due to background noise, unsynchronous cell division, unequal sampling, water column unstability, and migrating behavior ofP. scuttellum.  相似文献   

13.
Continuously proliferating cells have to precisely double their size during each cycle to maintain constant volumes. Time and again, this fact raised questions on the existence of an active cell size control mechanism in eukaryotic cells, which would prevent delayed or premature cell division at inadequate mass. We addressed this open issue by recapitulating in animal cells several long-standing experiments which had identified such a mechanism in yeast. As a model, mainly chicken erythroblasts were used, whose proliferation can be driven either by a constitutively active oncogene (v-ErbB) or the physiological cytokines stem cell factor + erythropoietin. V-ErbB-driven cells proliferated faster than Epo/SCF-driven cells (doubling time 13 vs. 22 hours) and exhibited a 1.4-fold increased cell volume, due to a two-fold higher rate of global protein synthesis. Rapid and complete phenotypic reversion was achieved by exchanging the respective factors. To analyze the switch from one proliferation mode to the other in detail, we followed cell cycle progression of cells re-cultivated after synchronization by centrifugal elutriation. The results indicated that altered protein synthesis rates exclusively influenced G1 phase duration. Additional experiments with chicken erythroblasts and mammalian fibroblasts treated with low doses of aphidicolin (artificially prolonging S-phase) also pointed to the existence of a general size sensing mechanism in G1, ensuring cell size maintenance over many divisions, probably similar to the situation in yeast but certainly regulated at additional levels in higher eukaryotes.  相似文献   

14.
To understand the cell cycle, we must understand not only mitotic division but also organelle division cycles. Plant and animal cells contain many organelles which divide randomly; therefore, it has been difficult to elucidate these organelle division cycles. We used the primitive red alga Cyanidioschyzon merolae, as it contains a single mitochondrion and plastid per cell, and organelle division can be highly synchronized by a light/dark cycle. We demonstrated that mitochondria and plastids multiplied by independent division cycles (organelle G1, S, G2 and M phases) and organelle division occurred before cell–nuclear division. Additionally, organelle division was found to be dependent on microtubules as well as cell–nuclear division. We have observed five stages of microtubule dynamics: (1) the microtubule disappears during the G1 phase; (2) α-tubulin is dispersed within the cytoplasm without forming microtubules during the S phase; (3) α-tubulin is assembled into spindle poles during the G2 phase; (4) polar microtubules are organized along the mitochondrion during prophase; and (5) mitotic spindles in cell nuclei are organized during the M phase. Microfluorometry demonstrated that the intensity peak of localization of α-tubulin changed in the order to spindle poles, mitochondria, spindle poles, and central spindle area, but total fluorescent intensity did not change remarkably throughout mitotic phases suggesting that division and separation of the cell nucleus and mitochondrion is mediated by spindle pole bodies. Inhibition of microtubule organization induced cell–nuclear division, mitochondria separation, and division of a single membrane-bound microbody, suggesting that similar to cell–nuclear division, mitochondrion separation and microbody division are dependent on microtubules.  相似文献   

15.
In cultures of murine neoplastic mast cells, the duration of different phases of the division cycle (G1, S, G2, and mitosis [M]) was determined under optimal and several well-defined suboptimal growth conditions. Two methods of evaluation were applied to the same culture system: first, the relative number of G1, S, G2, and M cells was determined by pulse labeling of samples with thymidine-3H and subsequent radioautography in conjunction with a microfluorometric technique permitting rapid measurements of cellular DNA content; second, after pulse labeling with thymidine-3H, the variations with time of the mitotic labeling index were analyzed. Suboptimal culture conditions were obtained by reducing the concentration of single essential medium components (leucine, glucose, or serum) or by the addition of specific metabolic inhibitors (actinomycin D, amethopterin). Growth-limiting culture conditions resulted in increased generation times. Even under control conditions, the cell number doubling time exceeded the generation time, and this difference was more pronounced in suboptimal media. Under most of the suboptimal conditions tested, the increase in generation time was attributable primarily to an extended duration of the G1 phase. Under certain growth-limiting conditions, however, other phases were also prolonged. In addition, the variabilities of the generation time and of certain cell cycle phases were increased under suboptimal culture conditions. Results obtained by the two methods of evaluation were, in general, in good agreement with each other. Some differences were, however, observed and interpreted in terms of cell death and/or asymmetric frequency distributions of cell cycle parameters.  相似文献   

16.
The regulation of cell proliferation is central to tissue morphogenesis during the development of multicellular organisms. Furthermore, loss of control of cell proliferation underlies the pathology of diseases like cancer. As such there is great need to be able to investigate cell proliferation and quantitate the proportion of cells in each phase of the cell cycle. It is also of vital importance to indistinguishably identify cells that are replicating their DNA within a larger population. Since a cell′s decision to proliferate is made in the G1 phase immediately before initiating DNA synthesis and progressing through the rest of the cell cycle, detection of DNA synthesis at this stage allows for an unambiguous determination of the status of growth regulation in cell culture experiments.DNA content in cells can be readily quantitated by flow cytometry of cells stained with propidium iodide, a fluorescent DNA intercalating dye. Similarly, active DNA synthesis can be quantitated by culturing cells in the presence of radioactive thymidine, harvesting the cells, and measuring the incorporation of radioactivity into an acid insoluble fraction. We have considerable expertise with cell cycle analysis and recommend a different approach. We Investigate cell proliferation using bromodeoxyuridine/fluorodeoxyuridine (abbreviated simply as BrdU) staining that detects the incorporation of these thymine analogs into recently synthesized DNA. Labeling and staining cells with BrdU, combined with total DNA staining by propidium iodide and analysis by flow cytometry1 offers the most accurate measure of cells in the various stages of the cell cycle. It is our preferred method because it combines the detection of active DNA synthesis, through antibody based staining of BrdU, with total DNA content from propidium iodide. This allows for the clear separation of cells in G1 from early S phase, or late S phase from G2/M. Furthermore, this approach can be utilized to investigate the effects of many different cell stimuli and pharmacologic agents on the regulation of progression through these different cell cycle phases.In this report we describe methods for labeling and staining cultured cells, as well as their analysis by flow cytometry. We also include experimental examples of how this method can be used to measure the effects of growth inhibiting signals from cytokines such as TGF-β1, and proliferative inhibitors such as the cyclin dependent kinase inhibitor, p27KIP1. We also include an alternate protocol that allows for the analysis of cell cycle position in a sub-population of cells within a larger culture5. In this case, we demonstrate how to detect a cell cycle arrest in cells transfected with the retinoblastoma gene even when greatly outnumbered by untransfected cells in the same culture. These examples illustrate the many ways that DNA staining and flow cytometry can be utilized and adapted to investigate fundamental questions of mammalian cell cycle control.  相似文献   

17.
The cell cycle is a sequence of biochemical events that are controlled by complex but robust molecular machinery. This enables cells to achieve accurate self-reproduction under a broad range of different conditions. Environmental changes are transmitted by molecular signalling networks, which coordinate their action with the cell cycle. The cell cycle process and its responses to environmental stresses arise from intertwined nonlinear interactions among large numbers of simpler components. Yet, understanding of how these pieces fit together into a coherent whole requires a systems biology approach. Here, we present a novel mathematical model that describes the influence of osmotic stress on the entire cell cycle of S. cerevisiae for the first time. Our model incorporates all recently known and several proposed interactions between the osmotic stress response pathway and the cell cycle. This model unveils the mechanisms that emerge as a consequence of the interaction between the cell cycle and stress response networks. Furthermore, it characterises the role of individual components. Moreover, it predicts different phenotypical responses for cells depending on the phase of cells at the onset of the stress. The key predictions of the model are: (i) exposure of cells to osmotic stress during the late S and the early G2/M phase can induce DNA re-replication before cell division occurs, (ii) cells stressed at the late G2/M phase display accelerated exit from mitosis and arrest in the next cell cycle, (iii) osmotic stress delays the G1-to-S and G2-to-M transitions in a dose dependent manner, whereas it accelerates the M-to-G1 transition independently of the stress dose and (iv) the Hog MAPK network compensates the role of the MEN network during cell division of MEN mutant cells. These model predictions are supported by independent experiments in S. cerevisiae and, moreover, have recently been observed in other eukaryotes.  相似文献   

18.
The cell cycles of the early cleavage stages of the mouse were analyzed by examining Feulgen-stained ova. The period from ovulation to the completion of second cleavage division was investigated. The ova donors were C57BL/6 × DBA/2 female mice, which were hormonally superovulated. To estimate the durations of DNA synthesis and mitotic phases of the cleavage divisions, the ova were pooled into culture medium, and as a function of time, aliquots were removed from the batch of pooled ova. The ova specimens were Feulgen-stained and classified as the ova nuclei in G1, S, G2 or mitosis by use of a cytophotometric technique and then the durations of these phases were determined by probit analysis.
The pronuclear stage had a generation time of 11 hr, with a G1 phase of 6 hr and a short S phase of 1.7 hr. In contrast the two-cell stage had a generation time of 18 hr, with a G1 phase of 2 hr and an S phase of 3 hr. The duration of cleavage division also changed; the first cleavage division spanned 3 hr while the second spanned 1 hr.  相似文献   

19.
Cell volume distributions obtained with an electronic particle analyzer were used to study the changes in volume of individual cells in the absence of cell division. Cultures of murine lymphoma (strain L5178-Y) cells in suspension were used in these studies. During a division delay following ionizing radiation, individual cells increased exponentially in volume with equal rate constants; these rate constants were indistinguishable from that describing the increase in cell number of an unirradiated population. When an originally log phase population of cells was prevented from increasing in number by inhibitors of DNA synthesis, individual cells increased exponentially in volume for about one generation time with the same rate constant as observed after exposure to ionizing radiation; thereafter, only the cells defining the upper half of the volume distribution continued to increase in volume, and they apparently did so with a first order rate constant proportional to their amount of DNA exceeding that present in one diploid complement of chromosomes in G(1). Cells arrested in mitosis with colchicine increased in volume for approximately 4 hr after which they remained constant in volume for almost one generation time; eventually these cells again increased in size. Inhibitors of protein and RNA synthesis inhibited the cell volume growth of irradiated cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号