首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethanol stimulates formation of leukotriene C4 in rat gastric mucosa   总被引:9,自引:0,他引:9  
Ethanol-induced gastric mucosal damage is characterized by microcirculatory changes such as stasis and plasma leakage. Sluggish blood flow and stasis have also been observed after administration of exogenous leukotriene (LT) C4. The effect of ethanol on the release of LTC4 from rat gastric mucosa was therefore investigated. It was found that intragastric instillation of ethanol increases gastric mucosal release of LTC4 in a dose- and time-dependent manner parallel to the production of gastric lesions. The lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) and the anti-ulcer drug carbenoxolone (CX) inhibited mucosal release of LTC4 and simultaneously protected against gastric damage caused by ethanol. It is concluded that increased formation of LTC4 and/or other 5-lipoxygenase-derived products of arachidonate metabolism may be involved in ethanol-induced gastric damage. Furthermore, inhibition of the 5-lipoxygenase pathway may be an important mechanism of action of gastric protective drugs.  相似文献   

2.
Since leukotriene C4 (LTC4) may be locally synthesized by bone marrow-derived cells infiltrating the kidney in inflammatory renal diseases we examined the in vitro metabolism of exogenously added |3H| LTC4 by rat glomeruli and papilla using radiometric HPLC. Homogenized as well as intact glomeruli converted |3H| LTC4 mainly into |3h| LTE4 (83%) and, at a smaller extent, into |3H| LTD4 (4%). Intact |3H| LTC4 represented 13% of the sum of radioactive leukotrienes. Addition of L-cysteine resulted in accumulation of LTD4. In contrast, there was nearly no conversion of |3H| LTC4 (87% ntact) in the presence of homogenized papilla. The metabolism of |3H| LTC4 by the glomeruli was time- and temperature- dependent. The 10,000 g supernatant and pellet of homogenized glomeruli both retained the ability to metabolize |3H| LTC4. The papillary 10,000 g supernatant was inactive, as found for the total homogenate, whereas the papillary 10,000 g pellet separated from its supernatant could transform |3H| LTC4 into its metabolites, LTD4 and LTE4. Addition of increasing amounts of papillary 10,000 g supernatant to homogenized glomeruli progressively protected |3H| LTC4 from its bioconversion. These results demonstrate that both glomeruli and papilla possess the γ-glutamyl transpeptidase and dipeptidase necessary to process LTC4. However, the enzyme activity of the papilla is unmasked only when the inhibitor present in the 10,000 g supernatant is separated from the enzyme present in the pellet.  相似文献   

3.
Rat carrageenin-induced pleurisy was used as an acute exudative inflammatory model. The crude ethanol extract of the pleural fluid at 5 hr after carrageenin injection caused the very slow contraction of guinea-pig ileum, which was antagonized by FPL 55712 (1 μg/ml). The ethanol extract was cleaned by LH-20 and was rendered for separation of LTC4 and LTD4 by reversed-phase high-performance liquid chromatography (HPLC). Two peaks which showed the same retention time on HPLC as those of LTC4 and LTD4 had the contractile activity of guinea-pig ileum and the ratios of the contractile activity to the height on HPLC agreed with those of synthetic LTC4 and LTD4. Two peaks of Δ6-trans-LTB4, 5S,12R-(E,E,E,Z)-diHETE and 5S, 12S-(E,E,E,Z)-diHETE, were detected, but the appreciable amount of LTB4 was smaller than that of each Δ6-trans-LTB4 in the pleural fluid at 5 hr.  相似文献   

4.
The effects of PGE2 and its stable analogue, 16, 16 dimethyl PGE2 (dmPGE2) were investigated on ethanol-induced gastric mucosal haemorrhagic lesions and leukotriene formation in the rat. Exposure of the rat gastric mucosa to ethanol , produced a concentration-related increase in the mucosal formation of leukotriene B4 (LTB4) which was correlated with macroscopically-apparent haemorrhagic damage to the mucosa. Challenge with absolute ethanol likewise enhanced the mucosal formation of LTC4 whereas the mucosal formation of 6-keto-PGF was unaffected. Challenge of the rat gastric mucosa with ethanol induced a concentration-dependent increase in the formation of LTB4 and LTC4, but not 6-keto PGF. Pretreatment with PGE2 (200–500μg/kg p.o.) prevented the haemorrhagic mucosal damage induced by oral administration of absolute ethanol but not the increased formation of leukotrienes by the mucosa. In contrast, pretreatment with a high dose of dmPGE2 (20μg/kg p.o.) prevented both the gastric mucosal lesions and the increase mucosal leukotriene formation. The differences in the effects of these prostaglandins may be related to the nature or degree of protection of the gastric mucosa. Thus, high doses of dmPGE2 but not PGE2 may protect the cells close the luminal surface of the mucosa and hence reduce the stimulation of leukotriene synthesis by these cells.  相似文献   

5.
To clarify the effects of leukotriene C4 (LTC4) on human ciliated epithelium, ciliary activity of the ethmoid sinus mucosa was measured photoelectrically in tissue culture. At concentrations ranging from 10−6M to 10−9M, LTC4 showed minimal effects on the ciliated epithelium during the initial 30 minutes of exposure; thereafter, ciliary inhibition was observed in a concentration- and time-dependent manner. Irrigation of the mucosa with culture medium 15 minutes after exposure prevented the LTC4-induced ciliary inhibition. However, irrigation 60 minutes after exposure failed to inhibit 10−8M LTC4-induced ciliary dysfunction and mucosal damage. The LTC4-induced ciliary inhibition was blocked in the presence of FPL-55712 and/or Ly-171883, both leukotriene receptor antagonists. L-serine and sodium tetraborate complex (SBC), a γ-glutamyl transpeptidase (γ-GTP) inhibitor, also inhibited the LTC4-induced ciliary inhibition. These findings indicate that LTC4 is converted to LTD4 by γ-GTP during 60 minutes of exposure, and LTC4 itself has minimal direct effects on the ciliated cells.  相似文献   

6.
An unstable epoxide, leukotriene A4 (5(S)-trans-5,6-oxido-7,9-trans-11,14-cis-eicosatetraenoic acid), was earlier proposed to be an intermediate in the conversion of arachidonic acid into the slow reacting substance (SRS), leukotriene C4. In the present work synthetic leukotriene A4 was incubated with human leukocytes or murine mastocytoma cells. A lipoxygenase inhibitor, BW755C, was added in order to prevent leukotriene formation from endogenous substrate. Leukotriene C4 and 11-trans-leukotriene C4 were the main products with SRS activity. It was not established whether the 11-trans-compound was formed by isomerization at the leukotriene A4 or C4 stage.  相似文献   

7.
8.
The role of leukotrienes (LTs) in the pathogenesis of platelet-activating factor (PAF)-induced death in mice was reinvestigated, since previously reported results are in conflict. A novel 5-lipoxygenase inhibitor, E6080, and a leukotriene antagonist, LY17883, protected mice from PAF-induced death in a dose-dependent manner, while the well-known 5-lipoxygenase inhibitor, AA861, was less effective than E6080. After the intravenous injection of PAF in mice, immunoreactive leukotriene C4 (i-LTC4), which was co-eluted with authentic LTC4 in HPLC, was significantly increased in bronchoalveolar lavage fluid (BALF). Oral administration of E6080 suppressed the increase in i-LTCM4. The results suggest that LTs may play an important role in PAF-induced lethality in mice.  相似文献   

9.
Immunological (ovalbumin) and non-immunological (calcium ionophore A23187) stimulation of guinea pig trachea induces a prolonged contraction that is enhanced by indomethacin (8.5 μM) and inhibited by nordihydroguaiaretic acid (50 μM) pretreatment of the tissue. The mediator released by the above stimuli was identified as leukotriene C4 by reverse-phase high performance liquid chromatography, and quantitated by bioassay. Indomethacin, and/or arachidonic acid (32.8 μM) did not enhance the release, whereas nordihydrolguaiaretic acid reduced the contraction and release of LTC4. The results demonstrate the hitherto unproved capability of the large airways to synthesize leukotrienes and emphasize the importance of examining their role in asthma.  相似文献   

10.
Leukotriene C4 (LTC4) is synthesized by binding of glutathione to LTA4, an epoxide derived from arachidonic acid, and further metabolized to LTD4 and LTE4. We previously prepared a monoclonal antibody with a high affinity and specificity to LTC4. To explore the structure of the antigen-binding site of a monoclonal antibody against LTC4 (mAbLTC), we isolated full-length cDNAs for heavy and light chains of mAbLTC. The heavy and light chains consisted of 461 and 238 amino acids including a signal peptide with molecular weights of 51,089 and 26,340, respectively. An expression plasmid encoding a single-chain antibody comprising variable regions of mAbLTC heavy and light chains (scFvLTC) was constructed and expressed in COS-7 cells. The recombinant scFvLTC showed a high affinity with LTC4 comparable to mAbLTC. The scFvLTC also bound to LTD4 and LTE4 with 48% and 17% reactivities, respectively, as compared with LTC4 binding, whereas the antibody showed almost no affinity for LTB4.  相似文献   

11.
LTC4 was isolated and characterized from seminal fluid of seven human volunteers. A compound with a similar retention time of that of synthetic LTC4 was obtained using reverse-phase high performance liquid chromatography. The ultraviolet absorbance of the extracted substance was identical to synthetic LTC4. Furthermore this compound contracted the guinea pig ileum and lung parenchymal strip. Its effects were antagonized by the leukotriene antagonist FPL55712. It was concluded that LTC4 is present in human seminal fluid in very small amounts (about 100 ng/ejaculate). The possible physiological functions of LTC4 in the reproductive tract area discussed.  相似文献   

12.
Binding of [3H] leukotriene C4 and D4 to guinea-pig lung sections was charaterised and binding sites were localized by autoradiography. Both leukotrienes bound to guinea-pig lung sections and membranes with high affinity and with similar charateristics to binding in a membrane preparation. Autoradiography revealed that the distribution of LTC4 and D4 binding sites was markedly different. Smooth muscle and epithelium of central and peripheral airways were densely labelled with [3H]LTC4; vascular smooth muscle and alveolar walls were also labelled. With [3H]LTD4, however, there was no detectable labelling of airways or vessels but subtantial labelling of alveolar walls. This lends futher support that LTC4 and LTD4 binding sites differ and may not be identical with functional receptors.  相似文献   

13.
Lipoxygenase metabolites have proposed as potential chemical mediators of the bronchial hyperractivity which characterizes asthma (2,6). In addition to the possibility that leukotrienes (LTs) sensitize airways smooth muscle to the contractile actions of other mediators such as histamine (1–3), a number of studies have provided evidence for LT-induced enhancement of bronchoconstriction by a vagal dependent mechanism (4–6). In the present study the effects of exposure of the airway to LTC4 on subsequent responsiveness to histamine have been investigated in both and experiments. LTC4, in a concentration eliciting threshold contractile responses of the isolated trachea (1.7 nM), had no effect on either the EC50 or maximal contractile response to histamine. At a concentration eliciting an approximately EC50 contractile response, LTC4 (10 nM) shifted the histamine concentration-response curve rightwards altering the maximum response. In anaesthetized, mechanically ventilated guinea pigs LTC4 (0.1–0.4 nMole/kg, i.v.) injected 20 s beforehand, failed to alter histamine (9–36 nMole/kg, i.v.)-induced bronchoconstriction whereas, under the same conditions, LTD4 (0.05–0.2 nMole/kg, i.v.) dose-dependently enhanced histamine-induced bronchoconstriction. On the other hand, LTC4 or LTD4 (16 uM, 30 s) aerosols potentiated histamine (9.36 nMole/kg, i.v.) in a concentration-dependent manner (Table). Both LTC4 and LTD4 aerosols enahance airway reactivity to histamine whereas only LTD4 has this action when administered intravenously. Neither LTC4 nor LTD4 (6) enhances the contractile effects of histamine on isolated airways smooth muscle. It is concluded that the broncho-constriction enhancing action of these leukotrienes may be indirectly mediated.  相似文献   

14.
The activity of synthetic LTC4 was tested in guinea-pig ileum and was 200 times more potent than histamine in contraction of the ileum (3 × 10?11 M- 3 × 10?9 M). The activities of LTC4 and LTD4 in increased vascular permeability in guinea pigs, rats and rabbits were compared with those histamine, bradykinin and prostaglandin (PG) E2. LTC4 was approximately equipotent to bradykinin on a molar basis in guinea pigs and rats and 5–100 times more potent than histamin. LTD4 was about 10 times more potent than LTC4 in guinea pigs and as equipotent to LTC4 in rats. On the contrary, in rabbits, neither LTC4 (upto 30 nmole/site) nor LTD4 (1 nmole/site) induced the dye exduation. These results show that species difference is present in activity of LTC4 and LTD4 in vascular permeability. Furthermore, in guinea pigs, the vascular permeability increased by LTC4 was not affected after pretreatment with pyrilamine (2.5 mg/kg, i.v.), and LTC4 and LTD4 did not potenciate the activity of bradykinin in vascular permeability.  相似文献   

15.

Background

Cysteinyl leukotrienes (LTs) are key mediators in inflammation. To explore the structure of the antigen-recognition site of a monoclonal antibody against LTC4 (mAbLTC), we previously isolated full-length cDNAs for heavy and light chains of the antibody and prepared a single-chain antibody comprising variable regions of these two chains (scFvLTC).

Methods

We examined whether mAbLTC and scFvLTC neutralized the biological activities of LTC4 and LTD4 by competing their binding to their receptors.

Results

mAbLTC and scFvLTC inhibited their binding of LTC4 or LTD4 to CysLT1 receptor (CysLT1R) and CysLT2 receptor (CysLT2R) overexpressed in Chinese hamster ovary cells. The induction by LTD4 of monocyte chemoattractant protein-1 and interleukin-8 mRNAs in human monocytic leukemia THP-1 cells expressing CysLT1R was dose-dependently suppressed not only by mAbLTC but also by scFvLTC. LTC4- and LTD4-induced aggregation of mouse platelets expressing CysLT2R was dose-dependently suppressed by either mAbLTC or scFvLTC. Administration of mAbLTC reduced pulmonary eosinophil infiltration and goblet cell hyperplasia observed in a murine model of asthma. Furthermore, mAbLTC bound to CysLT2R antagonists but not to CysLT1R antagonists.

Conclusions

These results indicate that mAbLTC and scFvLTC neutralize the biological activities of LTs by competing their binding to CysLT1R and CysLT2R. Furthermore, the binding of cysteinyl LT receptor antagonists to mAbLTC suggests the structural resemblance of the LT-recognition site of the antibody to that of these receptors.

General significance

mAbLTC can be used in the treatment of inflammatory diseases such as asthma.  相似文献   

16.
By the use of close arterial injection of leukotrienes into the circulation supplying the upper cervical canine trachea, it has been possible to assess the secretogogue effects of leukotriene C4, and D4 on mucus secretion. Both LTC4 and LTD4 increased mucus secretion over baseline levels by a statistically significant level (p = < 0.05). LTD4 was more potent than C4 with relative potencies of 2500, 320, 630, and 500 based on hillock formation (a measure of secretion) at 1, 2, 3, and 4 minutes after injection. The overall difference in potency in this animal model of mucus production was LTD4 > C4 by 1000-fold.  相似文献   

17.
Prostaglandin E2 (PGE2) and leukotriene C4 (LTC4) are the metabolites of arachidonic acid (AA) that increase in forebrain following global ischemia and reperfusion. These mediators are highly potent vasoconstrictors of cerebral arteries leading to enhanced vascular permeability that induces the formation of vasogenic edema. In this study, after developing and experimental animal model simulating the concept of ischemic penumbra in the rat, the levels of PGE2 and LTC4 produced in the forebrain were measured and the effects of these mediators in short duration and prolonged reperfusion were investigated and then correlated with nueropathological findings. We found statistically significant reduction both in PGE2 and LTC4-like activities after just 10 min ischemia (p<0.05, p<0.05). PGE2-like activity significantly increased in the 4th and 60th min of reperfusion (p<0.05, p<0.05). In the 15th min of reperfusion, PGE2 was found to be significantly reduced (p<0.005) that may be due to the formation of free oxygen radicals by activation of PG hydroperoxidase reaction that inhibits PGE2 production in the cylooxygenase pathway. LTs were not significantly increased in any reperfused group. Inhibition of the lipoxygenase pathway of AA metabolism may occur as a result of 15-HPETE (15-hydroperoxyeicosatetraenoic acid) production. Pathologically, edema and degeneration of brain tissue were seen beginning from the 4th min of reperfusion that reached a peak in the 60th min of reperfusion which is in accordance with biochemical changes in the damaged tissue. It is concluded that by preventing the formation of AA metabolites in the early hours of ischemia and reperfusion, it could be possible to increase blood flow in the ischemic penumbra that should limit the infarct area.  相似文献   

18.
Specific high-affinity binding sites for [3H]-leukotriene B4 have been identified on membrane preparations from rat and human leukocytes. The rat and human leukocyte membrane preparations show linearity of binding with increasing protein concentration, saturable binding and rapid dissociation of binding by excess unlabelled leukotriene B4. Dissociation constants of 0.5 to 2.5 nM and maximum binding of 5000 fmoles/mg protein were obtained for [3H] leukotriene B4 binding to these preparations. Displacement of [3H]-leukotriene B4 by leukotriene B4 was compared with displacement by leukotriene B3 and leukotriene B5 which differ from leukotriene B4 only by the absence of a double bond at carbon 14 or the presence of an additional double bond at carbon 17, respectively. Leukotriene B3 was shown to be equipotent to leukotriene B4 in ability to displace [3H]-leukotriene B4 from both rat and human leukocyte membranes while leukotriene B5 was 20–50 fold less potent. The relative potencies for the displacement of [3]-leukotriene B4 by leukotrienes B3, B4 and B5 on rat and human leukocyte membranes were shown to correlate well with their potencies for the induction of the aggregation of rat leukocytes and the chemokinesis of human leukocytes.  相似文献   

19.
C3与C4植物的环境调控   总被引:9,自引:2,他引:9  
环境条件决定着不同光合类型植物的地理分布范围和区域 ,一般来说 ,C4 植物分布于高温、强光的环境而 C3植物分布于阴凉、湿润的环境 ,且 C4 比 C3植物光合速率高。但环境条件影响着不同光合类型植物的光合潜能的发挥 ,C4 植物在高温、强光、干旱条件下所表现出来的优势在其它环境条件下未必就显现出来。环境条件甚至可以引起 C3、C4 光合途径间的相互转化 ,这使得目前几种鉴别植物光合类型的方法出现不一致的结果。因此 ,在判断植物的光合类型时 ,要注意多种手段的综合利用 ,同时注意植物所处环境条件的影响。  相似文献   

20.
Specific leukotriene C4 (LTC4) binding sites were identified in membrane preparations from human fetal lung. Specific binding of [3H]-LTC4 represented 95 percent of total binding, reached steadystate within 10 minutes and was rapidly reversible upon addition of excess unlabeled LTC4. Binding assays were performed at 4°C under conditions which prevented metabolism of [3H]-LTC4 (80 mM serineborate, 10 mM cysteine, 10 mM glycine). Under these conditions, greater than 95 percent of the membrane bound radioactivity, as analyzed by high performance liquid chromatography, co-eluted with the LTC4 standard. Computer-assisted analyses of saturation binding data showed a single class of binding sites with a dissociation constant (Kd) of 26 + 6 nM and a density (Bmax) of 84 ± 18 pmol/mg protein. Pharmacological specificity was demonstrated by competition studies in which specific binding of [3H]-LTC4 was displaced by LTC4 and its structural analogs with inhibition constants (Kj) of 10 to 30 nM, whereas LTD4, diastereoisomers of LTD1, LTE4 and the end organ antagonist FPL 55712 were 150 to 700 fold less potent competitors than LTC4. These results provide evidence for specific, reversible, saturable, high affinity binding sites for [3H]-LTC4 in human fetal lung membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号