首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Volker D. Kern  Fred D. Sack 《Planta》1999,209(3):299-307
Apical cells of protonemata of the moss Ceratodon purpureus (Hedw.) Brid. are negatively gravitropic in the dark and positively phototropic in red light. Various fluence rates of unilateral red light were tested to determine whether both tropisms operate simultaneously. At irradiances ≥140 nmol m−2 s−1 no gravitropism could be detected and phototropism predominated, despite the presence of amyloplast sedimentation. Gravitropism occurred at irradiances lower than 140 nmol m−2 s−1 with most cells oriented above the horizontal but not upright. At these low fluence rates, phototropism was indistinct at 1 g but apparent in microgravity, indicating that gravitropism and phototropism compete at 1 g. The frequency of protonemata that were negatively phototropic varied with the fluence rate and the duration of illumination, as well as with the position of the apical cell before illumination. These data show that the fluence rate of red light regulates whether gravitropism is allowed or completely repressed, and that it influences the polarity of phototropism and the extent to which apical cells are aligned in the light path. Received: 19 January 1999 / Accepted: 19 March 1999  相似文献   

2.
The effect of light intensity (50–300 μmol photons m−2 s−1) and temperature (15–50°C) on chlorophyll a, carotenoid and phycobiliprotein content in Arthronema africanum biomass was studied. Maximum growth rate was measured at 300 μmol photons m−2 s−1 and 36°C after 96 h of cultivation. The chlorophyll a content increased along with the increase in light intensity and temperature and reached 2.4% of dry weight at 150 μmol photons m−2 s−1 and 36°C, but it decreased at higher temperatures. The level of carotenoids did not change significantly under temperature changes at illumination of 50 and 100 μmol photons m−2 s−1. Carotenoids were about 1% of the dry weight at higher light intensities: 150 and 300 μmol photons m−2 s−1. Arthronema africanum contained C-phycocyanin and allophycocyanin but no phycoerythrin. The total phycobiliprotein content was extremely high, more than 30% of the dry algal biomass, thus the cyanobacterium could be deemed an alternative producer of C-phycocyanin. A highest total of phycobiliproteins was reached at light intensity of 150 μmol photons m−2 s−1 and temperature of 36°C, C-phycocyanin and allophycocyanin amounting, respectively, to 23% and 12% of the dry algal biomass. Extremely low (<15°C) and high temperatures (>47°C) decreased phycobiliprotein content regardless of light intensity.  相似文献   

3.
Tobacco (Nicotiana tabacum L.) plants were cultured in vitro photoautotrophically at three levels of irradiance (PAR 400–700 nm): low (LI, 60 μmol m−2 s−1), middle (MI, 180 μmol m−2 s−1) and high (HI, 270 μmol m−2 s−1). Anatomy of the fourth leaf from bottom was followed during leaf development. In HI and MI plants, leaf area expansion started earlier as compared to LI plants, and both HI and MI plants developed some adaptations of sun species: leaves were thicker with higher proportion of palisade parenchyma to spongy parenchyma tissue. Furthermore, in HI and MI plants palisade and spongy parenchyma cells were larger and relative abundance of chloroplasts in parenchyma cells measured as chloroplasts cross-sectional area in the cell was lower than in LI plants. During leaf growth, chloroplasts crosssectional area in both palisade and spongy parenchyma cells in all treatments considerably decreased and finally it occupied only about 5 to 8 % of the cell cross-sectional area. Thus, leaf anatomy of photoautotrophically in vitro cultured plants showed a similar response to growth irradiance as in vivo grown plants, however, the formation of chloroplasts and therefore of photosynthetic apparatus was strongly impaired.  相似文献   

4.
The effects of light and nitrogen deficiency on biomass, fatty acid content and composition were studied in Parietochloris incisa, the unicellular freshwater chlorophyte accumulating very high amounts of arachidonic-acid-rich triacylglycerols. P. incisa cultures grown on complete nutrient medium and under high light (400 μmol photons m− 2 s−1) showed the highest rate of growth in comparison to medium (200 μmol photons m−2 s−1) and low (35 μmol photons m−2 s−1) light intensity. Cultures grown under high light (on complete BG-11 medium) attained higher volumetric contents of total fatty acids and arachidonic acid due to greater increase in biomass. Nitrogen starvation brought about a strong increase in the arachidonic acid proportion of total fatty acids. Thus, adjustments to cultivation conditions could serve as an efficient tool for manipulation of yield and relative content of arachidonic acid in P. incisa. The significance of the changes in lipid metabolism for adaptation of P. incisa to high-light stress and nitrogen deficiency is also discussed.  相似文献   

5.
The leaf lamina ofLavatera cretica L. exhibits a diaphototropic response that discriminates between two opposite, constant vectorial excitations by white light beams whose fluence rates differ by as little as 10% (50 versus 45 μmol·m−2·S−1). The relationship between the response (angular velocity of laminar reorientation) and the fluence-rate ratio is linear. The lamina similarly discriminates between two such excitations by polarized light, one with the electrical vector transverse to the plane of the two beams (θ) and the opposite one with the vector parallel to that plane (⪙). When two such beams were of equal fluence rate, the lamina reoriented towards the ⪙ beam. When the fluence rate of the θ beam was maintained at 50 μmol·m−2·s−1 and that of the ⪙ beam was reduced, the response to the latter (angular velocity of laminar reorientation) was reduced progressively. Further reduction in the fluence rate of the ⪙ polarized beam eventually resulted in reorientation in the opposite direction (towards the θ beam) and the response to the latter increased progressively with the reduction in fluence rate. The equilibrium was at a ⪙/θ ratio of 0.62. Measurements of reflectance of oblique beams of ⪙ and θ polarized light from the upper laminar surface, and of transmittance of such light ghrough the lamina, eliminated the possibility that optical dichroism of the lamina contributed significantly to these results. The implications of this action dichroism to the postulated mechanism of perception of vectorial excitation by these leaves is discussed. Dedicated to the 60thbirth day of Professor Hans Mohr  相似文献   

6.
The effects of light intensity and temperature on Arthrospira platensis growth and production of extracellular polymeric substances (EPS) in batch culture were evaluated using a three-level, full-factorial design and response surface methodology. Three levels were tested for each parameter (temperature: 30, 35, 40°C; light intensity: 50, 115, 180 μmol photons m−2 s−1). Both growth and EPS production are influenced mainly by the temperature factor but the interaction term temperature*light intensity also had a significant effect. In addition, conditions optimising EPS production are different from those optimising growth. The highest growth rate (0.414 ± 0.003 day−1) was found at the lowest temperature (30°C) and highest light intensity (180 μmol photons m−2 s−1) tested, no optima were detectable within the given test range. Obviously, optima for growth must be at a temperature lower than 30°C and a light intensity higher than 180 μmol photons m−2 s−1. For EPS production, light intensity had a positive linear effect (optimum obviously higher than 180 μmol photons m−2 s−1), but for the temperature parameter a maximum effect was detectable at 35°C.  相似文献   

7.
Kadota A  Sato Y  Wada M 《Planta》2000,210(6):932-937
 The light-induced intracellular relocation of chloroplasts was examined in red-light-grown protonemal cells of the moss Physcomitrella patens. When irradiated with polarized red or blue light, chloroplast distribution in the cell depended upon the direction of the electrical vector (E-vector) in both light qualities. When the E-vector was parallel to the cross-wall (i.e. perpendicular to the protonemal axis), chloroplasts accumulated along the cross-wall; however, no accumulation along the cross-wall was observed when the E-vector was perpendicular to it (i.e. parallel to the protonemal axis). When a part of the cell was irradiated with a microbeam of red or blue light, chloroplasts accumulated at or avoided the illumination point depending on the fluence rate used. Red light of 0.1–18 W m−2 and blue light of 0.01–85.5 W m−2 induced an accumulation response (low-fluence-rate response; LFR), while an avoidance response (high-fluence-rate response; HFR) was induced by red light of 60 W m−2 or higher and by blue light of 285 W m−2. The red-light-induced LFR and HFR were nullified by a simultaneous background irradiation of far-red light, whereas the blue-light-induced LFR and HFR were not affected at all by this treatment. These results show, for the first time, that dichroic phytochrome, as well as the dichroic blue-light receptor, is involved in the chloroplast relocation movement in these bryophyte cells. Further, the phytochrome-mediated responses but not the blue-light responses were revealed to be lost when red-light-grown cells were cultured under white light for 2 d. Received: 7 September 1999 / Accepted: 15 October 1999  相似文献   

8.
Srivastava A  Zeiger E 《Plant physiology》1992,100(3):1562-1566
Chlorophyll a fluorescence transients from isolated Vicia faba guard cell chloroplasts were used to probe the response of these organelles to light quality. Guard cell chloroplasts were isolated from protoplasts by passing them through a 10-μm nylon net. Intact chloroplasts were purified on a Percoll gradient. Chlorophyll a fluorescence transients induced by actinic red or blue light were measured with a fluorometer equipped with a measuring beam. Actinic red light induced a monophasic quenching, and transients induced by blue light showed biphasic kinetics having a slow and a fast component. The difference between the red and blue light-induced transients could be observed over a range of fluence rates tested (200-800 μmol m−2 s−1). The threshold fluence rate of blue light for the induction of the fast component of quenching was 200 μmol m−2 s−1, but in the presence of saturating red light, fluence rates as low as 25 μmol m−2 s−1 induced the fast quenching. These results indicate that guard cell chloroplasts have a specific response to blue light.  相似文献   

9.
The effects of UVB on the kinetics of stem elongation of wild type (WT) and photomorphogenic mutants of tomato were studied by using linear voltage transducers connected to a computer. Twenty-one or twenty-six-day-old plants, grown in 12 h white light (150 μmol m−2 s−1 PAR)/12 h dark cycles, were first transferred to 200 μmol m−2 s−1 monochromatic yellow light for 12 h, then irradiated with 0.1 or 4.5 μmol m−2 s−1 UVB for 12 h and finally kept in darkness for another 24 h. The measurements of the kinetics of stem elongation started after 4 h under yellow light. Significant differences in stem growth during the irradiation with yellow light, as well as during the dark period, were found between the genotypes. In darkness, the magnitude of stem growth followed the order: tri > AC = fri > MMau > hp1. Two factors determined the large differences of growth in darkness: 1) the different stem elongation rate (SER) and 2) the different duration of the growing phase among the genotypes. In darkness the stem growth of au and hp1 mutants lasted for about 18 h, whereas it continued for the whole experimental period (36 h) in the other genotypes. UVB irradiation substantially reduced elongation growth of all genotypes (4.5 μmol m−2 s−1 being more effective than 0.1 μmol m−2 s−1). Both fluence rates of UVB induced a detectable reduction of SER already after 15 min of irradiation. Red light inhibited, while far red light promoted stem growth of all the genotypes tested. fri (phyA null), tri (phyB1 null), hp1 (exhibiting exaggerated phytochrome responses) mutants and WT tomato showed similar levels of UVB–induced inhibition of growth, while the aurea mutant showed the largest growth inhibition during the 12 h of irradiation. These results indicate that phytochrome is not directly involved in UVB control of stem elongation. The results of dichromatic irradiations UVB + red or UVB + far red indicate the presence of distinct and additive action of UVB photoreceptor and of the phytochrome system in the photoregulation of stem growth. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Morphology and culture studies on germlings of Sargassum thunbergii (Mertens et Roth) Kuntze were carried out under controlled laboratory conditions. Growth characteristics of these germlings grown under different temperatures (from 10 to 25°C), irradiances (from 9 to 88 μmol photons m−2 s−1), and under blue and white light conditions are described. The development of embryonic germlings follows the classic “8 nuclei 1 egg” type described for Sargassaceae. Fertilized eggs spent 5–6 h developing into multicellular germlings with abundant rhizoids after fertilization. Under conditions of 20°C, 44 μmol photons m−2 s−1 and photoperiod of 12 h, young germlings with one or two leaflets reached 2–3 mm in length after 8 weeks. Temperature variations (10, 15, 20, 25°C) under 88 μmol photons m−2 s−1 significantly influenced the growth rate within the first week, although this effect became less obvious after 8 weeks, especially at 15 and 20°C. Variation in germling growth was highly significant under different irradiances (9, 18, 44, 88 μmol photons m−2 s−1) at 25°C. Low temperature (10°C) reduced germling growth. Growth of germlings cultured under blue light was lower than in white light. Optimal growth of these germlings occurred at 25°C and 44 μmol photons m−2 s−1.  相似文献   

11.
Non-destructive assessment of chlorophyll content has recently been widely done by chlorophyll meters based on measurement of leaf transmittance (e.g. the SPAD-502 chlorophyll meter measures the leaf transmittance at 650 and 940 nm). However, the leaf transmittance depends not only on the content of chlorophylls but also on their distribution in leaves. The chlorophyll distribution within leaves is co-determined by chloroplast arrangement in cells that depends on light conditions. When tobacco leaves were exposed to a strong blue light (about 340 μmol of photons m−2 s−1), a very pronounced increase in the leaf transmittance was observed as chloroplasts migrated from face position (along cell walls perpendicular to the incident light) to side position (along cell walls parallel to the incoming light) and the SPAD reading decreased markedly. This effect was more pronounced in the leaves of young tobacco plants compared with old ones; the difference between SPAD values in face and side position reached even about 35%. It is shown how the chloroplast movement changes a relationship between the SPAD readings and real chlorophyll content. For an elimination of the chloroplast movement effect, it can be recommended to measure the SPAD values in leaves with a defined chloroplasts arrangement.  相似文献   

12.
The interaction effects between irradiance and temperature on growth rates ofNannochloropsis oceanicawere determined in both laboratory cultures and large-scale tubular photobioreactors. Growth responses were investigated in 48 batch cultures subjected to crossing light/temperature gradients ranging from 34–80μmol photons m−2s−1and 14.5–35.7C respectively. Comparisons were made to growth responses observed in production systems (200L biofences) operated in climate-regulated greenhouses with controlled temperature and artificial light gradients. Cellular responses showed increasing specific growth rates as a function of temperature, with a peak at 25–29C, after which the growth became increasingly unstable. The optimum temperature for growth increased with higher light intensities up to approximately 28C at 80μmol photons m−2s−1. At low light intensities the specific growth rate was less affected by temperature. The maximum daily production measured in the biofence systems increased proportionally with irradiation and reached approximately 0.7gL−1d−1at 1030μmol photons m−2s−1average daily radiation for a culture temperature of 24C. This corresponds to a daily yield of 140g per day in a 200L biofence system. When specific growth rates for the biofence cultures were measured at different densities and plotted against temperature, results showed a peak with the 24C temperature treatment. This peak became less pronounced as the density increased in the cultures. This is consistent with the laboratory results; increasing cell density in the biofence cultures resulted in less average light cell−1, which produced the same temperature dependent response as seen by reducing the external irradiance exposure for the dilute laboratory cultures.  相似文献   

13.
In caulonemal filaments of the moss, Physcomitrella patens, which had been incubated in darkness, 3 s irradiation with blue light (λmax 450 nm) at fluence rates of 100 μmol m−2 s−1 and above caused a transient␣increase in cytosolic calcium ion concentration, [Ca2+]cyt, which was both intensity- and time-dependent. Measurements of [Ca2+]cyt were made using moss transformed with the cDNA for apoaequorin and reconstituting the Ca2+-dependent photoprotein aequorin in the cytosol by incubation in coelenterazine.␣In response to blue light at fluence rates of 100–1000 μmol photons m−2 s−1, [Ca2+]cyt increased transiently from a basal level of approximately 50 nM to between 200 and 700 nM. Irradiation with red light did not evoke any measurable change in [Ca2+]cyt. The presence of calcium in the incubating medium was not required for the increase in [Ca2+]cyt to occur. A mutant strain, gad-139, was identified which required an irradiance of only 1 s to evoke a response. The kinetics showed a delay of approximately 6 s from the beginning of illumination before the beginning of the increase in [Ca2+]cyt. The data suggest that the activation of a photoreceptor rather than the direct opening of calcium channels is involved in this blue-light response. Received: 4 December 1997 / Accepted: 4 May 1998  相似文献   

14.
Uenaka H  Wada M  Kadota A 《Planta》2005,222(4):623-631
Side branch formation in the moss, Physcomitrella patens, has been shown to be light dependent with cryptochrome 1a and 1b (Ppcry1a and Ppcry1b), being the blue light receptors for this response (Imaizumi et al. in Plant Cell 14:373, 2002). In this study, detailed photobiological analyses were performed, which revealed that this response involves multiple photoreceptors including cryptochromes. For light induction of branches, blue light of a fluence rate higher than 6 μmol m−2 s−1 for period longer than 3 h is required. The number of branches increased with the increase in fluence rate and in the irradiation period. The number of branches also increased when red light was applied together with the blue light, although red light alone had a very few effect. By partially irradiating a cell, both receptive sites for blue and red light were found to be located around the nucleus. Further, both red and blue light determine the positions of branches being dependent upon the vibration plane of polarized light. Red light control of branch position was nullified by simultaneous far-red light irradiation. A blue light effect on branch position was not found in lines with disrupted phototropin genes. Thus, dichroic phytochrome and phototropin, possibly on the plasma membrane, regulate branch position. These results indicate that at least four distinct photoreceptor systems, namely, cryptochromes and red light receptor around or in the nucleus, dichroic phytochrome and phototropin around the cell periphery, are involved in the light induction of side branches in the moss Physcomitrella patens.  相似文献   

15.
Petunia × hybrida was grown under high (H), medium (M) and low (L) light intensity [photoperiod; 16 h d−1, photosynthetic photon flux density (PPFD); 360, 120 and 40 μmol m−2 s−1, respectively] as well as under end-of-day (EOD) red (R) and far-red (FR) light quality treatments [photoperiod; 14.5 h d−1, PPFD; 30 μmol m−2 s−1 EOD; 15 min, Control (C) light; without EOD light treatment]. Shoot growth, leaf anatomical and photosynthetic responses as well as the responses of peroxidase (POD) isoforms and their specific activities following transition to flowering (1–6 weeks) were evaluated. Flower bud formation of Petunia × hybrida was achieved at the end of the 4th week for H light treatment and on the end of the 6th week for FR light treatment. No flower bud formation was noticed in the C and R light treatments. H and M light treatments induced lower chlorophyll (Chla, Chlb, Chla+b) concentrations in comparison to L light. On the other hand R and FR light chlorophyll content were similar to C light. Photosynthetic parameters [CO2 assimilation rate (A), transpiration rate (E) and stomatal conductance (g s) values] were higher in the H light treated plants in comparison to M and L light treated plants. A, E and g s values of R and FR light were similar to C light plants. Leaf anatomy revealed that total leaf thickness, thickness of the contained tissues (epidermis, palisade and spongy parenchyma) and relative volume percentages of the leaf histological components were differently affected within the light intensity and the light quality treatments. POD specific activities increased from the 1st to the 6th week during transition to flowering. Native-PAGE analysis revealed the appearance of four anionic POD (A1–A4) isoforms in all light treatments. On the basis of the leaf anatomical, photosynthetic and plant morphological responses, the production of high quality Petunia × hybrida plants with optimal flowering times could be achieved through the control of both light intensity and light quality. The appearance of A1 and A2 anionic POD isoforms could be also used for successful scheduling under light treatments.  相似文献   

16.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

17.
Photosynthetic characteristics of Dunaliella salina with high (red form) and low β-carotene (green form) concentrations were studied. D. salina growing in brine saltworks exhibited a high level of β-carotene (15 pg cell−1). The rate of oxygen evolution as a function of irradiance was higher in the red than in the green form (on chlorophyll basis). Photosynthetic inhibition of the green form was observed above 500 μmol m−2 s−1. The red form appeared more resistant to high irradiance and no inhibition in O2 evolution was observed up 2000 μmol m−2 s−1. However, when these results are expressed on a cell number basis the rate of oxygen evolution was significantly higher in the green form. Carbonic anhydrase (CA) activity (total, soluble, membrane bound) was found in red and green forms. CA was higher in the red form on a chlorophyll basis, but lower if expressed on a protein basis. The light dependent rate of oxygen evolution and photoinhibition depends on the concentration of β-carotene in D. salina cells.  相似文献   

18.
In the present study, two abundant epiphytic diatom taxa were isolated from the assimilation hairs of the brown macroalga Chordaria flagelliformis collected in the Arctic Kongsfjorden (Spitsbergen, Norway), established as unialgal cultures and their growth rates determined under controlled photon fluence rate and temperature conditions. Using morphological (light and scanning electron microscopy) and SSU rRNA gene data both isolates (ROS D99 and ROS D125) were identified as members of a Fragilaria–Synedropsis clade. The molecular data of ROS D99 and ROS D125 were not identical to any other published sequence. While ROS D99 has been identified as Fragilaria barbararum mainly due to the SEM characteristics, ROS D125 could not be definitely identified although morphological data speak for Fragilaria striatula. Both diatom species showed similar growth rates at all temperatures and photon fluence rates tested. They grew well between 0 and 15°C with optimum temperatures of 12–14°C, but did not survive 20°C. Therefore, compared to Antarctic diatoms both taxa from Kongsfjorden can be characterised as eurythermal organisms. Increasing photon fluence rates between 2 and 15 μmol m−2 s−1 were accompanied with an almost twofold increase in growth rates, but photon fluence rates >15 μmol m−2 s−1 did not further enhance growth pointing to low light requirements. From these data optimum, minimum and maximum photon fluence rates and temperatures for growth can be assessed indicating that both diatoms are well acclimated to the fluctuating environmental conditions in the Arctic habitat.  相似文献   

19.
Recent studies have shown that guard cell and coleoptile chloroplasts appear to be involved in blue light photoreception during blue light-dependent stomatal opening and phototropic bending. The guard cell chloroplast has been studied in detail but the coleoptile chloroplast is poorly understood. The present study was aimed at the characterization of the corn coleoptile chloroplast, and its comparison with mesophyll and guard cell chloroplasts. Coleoptile chloroplasts operated the xanthophyll cycle, and their zeaxanthin content tracked incident rates of solar radiation throughout the day. Zeaxanthin formation was very sensitive to low incident fluence rates, and saturated at around 800–1000 mol m–2 s–1. Zeaxanthin formation in corn mesophyll chloroplasts was insensitive to low fluence rates and saturated at around 1800 mol m–2 s–1. Quenching rates of chlorophyll a fluorescence transients from coleoptile chloroplasts induced by saturating fluence rates of actinic red light increased as a function of zeaxanthin content. This implies that zeaxanthin plays a photoprotective role in the coleoptile chloroplast. Addition of low fluence rates of blue light to saturating red light also increased quenching rates in a zeaxanthin-dependent fashion. This blue light response of the coleoptile chloroplast is analogous to that of the guard cell chloroplast, and implicates these organelles in the sensory transduction of blue light. On a chlorophyll basis, coleoptile chloroplasts had high rates of photosynthetic oxygen evolution and low rates of photosynthetic carbon fixation, as compared with mesophyll chloroplasts. In contrast with the uniform chloroplast distribution in the leaf, coleoptile chloroplasts were predominately found in the outer cell layers of the coleoptile cortex, and had large starch grains and a moderate amount of stacked grana and stroma lamellae. Several key properties of the coleoptile chloroplast were different from those of mesophyll chloroplasts and resembled those of guard cell chloroplasts. We propose that the common properties of guard cell and coleoptile chloroplasts define a functional pattern characteristic of chloroplasts specialized in photosensory transduction.Abbreviations Ant or A antheraxanthin - dv/dt fluorescence quenching rate - Fm maximum yield of fluorescence with all PS II reaction centers closed - Fo yield of instantaneous fluorescence with all PS II reaction centers open - Vio or V violaxanthin - Zea or Z zeaxanthin  相似文献   

20.
Low light availability under a forest canopy often limits plant growth; however, sudden increase in light intensity may induce photoinhibition of photosynthesis. The aim of this study was to evaluate the ecophysiological changes that occur in potted plants of Minquartia guianensis and Swietenia macrophylla during the acclimation process to full sunlight. We used six full-sun independent acclimation periods (30, 60, 90, 120, 150, and 180 days) and a control kept in the shade. Shading was obtained by placing plants under the canopy of a small forest. The Fv/Fm ratio, net photosynthetic rate (P N), the maximum carboxylation velocity of Rubisco (V cmax), maximum electron transport rate (J max), specific leaf area (SLA), and growth were assessed at the end of each of the six acclimation periods. Plant exposure to full sunlight caused a sudden decrease in the Fv/Fm ratio (photoinhibition) particularly in Minquartia. Photooxidation (necrotic patches) of the leaf tissue was observed in upper leaves of Minquartia. The higher P N values were observed in Swietenia under full sun, about 12 μmol(CO2) m−2 s−1. V cmax25 values were higher after 90 days of acclimation, about 14 μmol(CO2) m−2 s−1 for Minquartia, and 35 μmol(CO2) m−2 s−1 for Swietenia. At the end of a 180-d acclimation period J max25 was 35 μmol(electron) m−2 s−1 for Minquartia and 60 μmol(electron) m−2 s−1 for Swietenia. SLA was higher in Swietenia than in Minquartia. In Minquartia, monthly rate of leaf production per plant (MRLP) was positive (0.22 leaf month−1) after four months in the open. Whereas, in Swietenia MRLP was positive (0.56 leaf month−1) after an acclimation period of two months. After six months in the open, height growth rates were 3.5 and 28 mm month−1 for Minquartia and Swietenia, respectively. The greater acclimation capacity of Swietenia was associated to an enhanced photosynthetic plasticity under full sun. In Minquartia, transition to full-sun conditions and lack of physiological adjustment resulted in severe photoinhibition and loss of leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号