首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huntington''s disease is caused by a polyglutamine (polyQ) expansion in the huntingtin protein which results in its abnormal aggregation in the nervous system. Huntingtin aggregates are linked to toxicity and neuronal dysfunction, but a comprehensive understanding of the aggregation mechanism in vivo remains elusive. Here, we examine the morphology of polyQ aggregates in Caenorhabditis elegans mechanosensory neurons as a function of age using confocal and fluorescence lifetime imaging microscopy. We find that aggregates in young worms are mostly spherical with homogenous intensity, but as the worm ages aggregates become substantially more heterogeneous. Most prominently, in older worms we observe an apparent core/shell morphology of polyQ assemblies with decreased intensity in the center. The fluorescence lifetime of polyQ is uniform across the aggregate indicating that the dimmed intensity in the assembly center is most likely not due to quenching or changes in local environment, but rather to displacement of fluorescent polyQ from the central region. This apparent core/shell architecture of polyQ aggregates in aging C. elegans neurons contributes to the diverse landscape of polyQ aggregation states implicated in Huntington''s disease.  相似文献   

2.
Polyglutamine (polyQ) expansion mutation causes conformational, neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. These diseases are characterized by the aggregation of misfolded proteins, such as amyloid fibrils, which are toxic to cells. Amyloid fibrils are formed by a nucleated growth polymerization reaction. Unexpectedly, the critical nucleus of polyQ aggregation was found to be a monomer, suggesting that the rate-limiting nucleation process of polyQ aggregation involves the folding of mutated protein monomers. The monoclonal antibody 1C2 selectively recognizes expanded pathogenic and aggregate-prone glutamine repeats in polyQ diseases, including Huntington's disease (HD), as well as binding to polyleucine. We have therefore assayed the in vitro and in vivo aggregation kinetics of these monomeric proteins. We found that the repeat-length-dependent differences in aggregation lag times of variable lengths of polyQ and polyleucine tracts were consistently related to the integration of the length-dependent intensity of anti-1C2 signal on soluble monomers of these proteins. Surprisingly, the correlation between the aggregation lag times of polyQ tracts and the intensity of anti-1C2 signal on soluble monomers of huntingtin precisely reflected the repeat-length dependent age-of-onset of HD patients. These data suggest that the alterations in protein surface structure due to polyQ expansion mutation in soluble monomers of the mutated proteins act as an amyloid-precursor epitope. This, in turn, leads to nucleation, a key process in protein aggregation, thereby determining HD onset. These findings provide new insight into the gain-of-function mechanisms of polyQ diseases, in which polyQ expansion leads to nucleation rather than having toxic effects on the cells.  相似文献   

3.
Huntingtin is a completely soluble 3,144 amino acid (aa) proteincharacterized by the presence of an amino-terminal polymorphicpolyglutamine (polyQ) tract, whose aberrant expansion causesthe progressively neurodegenerative Huntington's disease (HD).Biological evidence indicates that huntingtin (htt) is beneficialto cells (particularly to brain neurons) and that loss of itsneuronal function may contribute to HD. The exact protein domainsinvolved in its neuroprotective function are unknown. Evolutionaryanalyses of htt primary aa have so far been limited to a fewspecies, but its thorough assessment may help to clarify thefunctions emerging during evolution. We made an extensive comparativeanalysis of the available htt protein homologues from differentorganisms along the metazoan phylogenetic tree and defined thepresence of 3 different conservative blocks corresponding tohuman htt aa 1–386 (htt1), 683–1,586 (htt2), and2,437–3,078 (htt3), in which HEAT (Huntingtin, Elongatorfactor3, the regulatory A subunit of protein phosphatase 2A,and TOR1) repeats are well conserved. We also describe the cloningand sequencing of sea urchin htt mRNA, the oldest deuterostomehomologue so far available. Multiple alignment shows the firstappearance of a primitive polyQ in sea urchin, which predatesan ancestral polyQ sequence in a nonchordate environment anddefines the polyQ characteristic as being typical of the deuterostomebranch. The fact that glutamines have conserved positions indeuterostomes and the polyQ size increases during evolutionsuggests that the protein has a possibly Q-dependent role. Finally,we report an evident relaxing constraint of the N-terminal blockin Ciona and drosophilids that correlates with the absence ofpolyQ and which may indicate that the N-terminal portion ofhtt has evolved different functions in Ciona and protostomes.  相似文献   

4.
In this study, we identified a region in the human parvovirus structural protein which involves the neutralization of the virus by a monoclonal antibody and site-specific synthetic peptides. A newly established monoclonal antibody reacted with both viral capsid proteins VP1 and VP2. The epitope was found in six strains of independently isolated human parvovirus B19. The monoclonal antibody could protect colony-forming unit erythroid in human bone marrow cell culture from injury by the virus. The monoclonal antibody reacted with only 1 of 12 peptides that were synthesized according to a predicted amino acid sequence based on nucleotide sequences of the coding region for the structural protein of B19 virus. The sequence recognized by the antibody was a site corresponding to amino acids 328 to 344 from the amino-terminal portion of VP2. This evidence suggests that the epitope of the viral capsid protein is located on the surface of the virus and may be recognized by virus-neutralizing antibodies.  相似文献   

5.
Polyglutamine (polyQ) diseases, including Huntington’s disease, result from the aggregation of an abnormally expanded polyQ repeat in the affected protein. The length of the polyQ repeat is essential for the disease’s onset; however, the molecular mechanism of polyQ aggregation is still poorly understood. Controlled conditions and initiation of the aggregation process are prerequisites for the detection of transient intermediate states. We present an attenuated total reflection Fourier-transform infrared spectroscopic approach combined with protein immobilization to study polyQ aggregation dependent on the polyQ length. PolyQ proteins were engineered mimicking the mammalian N-terminus fragment of the Huntingtin protein and containing a polyQ sequence with the number of glutamines below (Q11), close to (Q38), and above (Q56) the disease threshold. A monolayer of the polyQ construct was chemically immobilized on the internal reflection element of the attenuated total reflection cell, and the aggregation was initiated via enzymatic cleavage. Structural changes of the polyQ sequence were monitored by time-resolved infrared difference spectroscopy. We observed faster aggregation kinetics for the longer sequences, and furthermore, we could distinguish β-structured intermediates for the different constructs, allowing us to propose aggregation mechanisms dependent on the repeat length. Q11 forms a β-structured aggregate by intermolecular interaction of stretched monomers, whereas Q38 and Q56 undergo conformational changes to various β-structured intermediates, including intramolecular β-sheets.  相似文献   

6.
Polyglutamine (polyQ)-expansion proteins cause protein aggregation in the cytosol and nucleus of neuronal cells, leading to neurodegenerative diseases. For example, expansion of the polyQ tract (>40 repeats) in huntingtin (htt) proteins leads to Huntington disease, while polyQ-expanded ataxins cause several types of ataxias. PolyQ-rich inclusions are found in neuronal cells of patients, suggesting that polyQ disease is caused by protein misfolding. However, the mechanisms by which polyQ-expansion proteins exert neuronal toxicity are largely unknown. Here, we review experimental procedures to analyze the roles of molecular chaperones in preventing polyQ aggregation and toxicity as well as to measure the characteristics and dynamics of polyQ aggregation, particularly focusing on cellular models and dynamic imaging of fluorescently-labeled polyQ-expansion proteins and their modulation by chaperones.  相似文献   

7.
Nine neurodegenerative diseases, such as Huntington, are caused by a polyglutamine (poly(Q)) expansion in otherwise unrelated proteins. Although poly(Q) expansion causes aggregation of the affected proteins, the protein context might determine the selective neuronal vulnerability found in each disease. Here we have report that, although expression of Huntingtin derivatives with a pathological poly(Q) expansion are innocuous in yeast, deletion of the flanking proline-rich region alters the shape and number of poly(Q) inclusions and unmasks toxic properties. Strikingly, deletion of Hsp104 increases the size of inclusions formed by expanded poly(Q) lacking the proline-rich region and abolishes toxicity. Overexpression of the chaperones Hsp104 or Hsp70 rescues growth defects in affected cells without resolving inclusions. However, aggregates formed by nontoxic Huntingtin derivatives or by toxic derivatives cured by chaperones are physically distinct from aggregates formed by toxic proteins. This study identifies the proline-rich region in Huntingtin as a profound cis-acting modulator of expanded poly(Q) toxicity and distinguishes between aggregates of toxic or non-toxic proteins.  相似文献   

8.
The polyglutamine (polyQ) diseases are a class of inherited neurodegenerative diseases including Huntington's disease, caused by the expansion of a polyQ stretch within each disease protein. This expansion is thought to cause a conformational change in the protein leading to aggregation of the protein, resulting in cytotoxicity. To analyze whether disrupting the toxic conformation of the polyQ protein can alter its aggregation propensity and cytotoxicity, we examined the effect of interruption of the expanded polyQ stretch by proline insertion, since prolines cause great alterations in protein conformation. Here, we show that insertion of prolines into the expanded polyQ stretch indeed disrupts its ordered secondary structure, leading to suppression of polyQ protein aggregation both in vitro and in cell culture, and reduction of cytotoxicity in correlation with the number of proline interruptions. Furthermore, we found that a short polyQ stretch with a proline interruption is able to inhibit aggregation of the expanded polyQ protein in trans. These results show that a gain in toxic conformation of the expanded polyQ protein is essential for aggregation and cytotoxicity, providing insight into establishing therapies against the polyQ diseases.  相似文献   

9.
Huntington's disease is characterised by the death of cortical and striatal neurons, and is the result of an expanded polyglutamine tract in the Huntingtin protein [1]. Huntingtin is present on both endocytic and secretory membrane organelles but its function is unclear [2,3]. Rab GTPases regulate both of these transport pathways [4]. We have previously shown that Rab8 controls polarised membrane transport by modulating cell morphogenesis [5]. To understand Rab8-mediated processes, we searched for Rab8-interacting proteins by the yeast two-hybrid system. Here, we report that Huntingtin is linked to the Rab8 protein through FIP-2, a tumour necrosis factor-alpha (TNF-alpha)-inducible coiled-coil protein related to the NEMO protein [6,7]. The activated form of Rab8 interacted with the amino-terminal region of FIP-2, whereas dominant-negative Rab8 did not. Huntingtin bound to the carboxy-terminal region of FIP-2. Coexpressed FIP-2 and Huntingtin enhanced the recruitment of Huntingtin to Rab8-positive vesicular structures, and FIP-2 promoted cell polarisation in a similar way to Rab8. We propose a model in which Huntingtin, together with FIP-2 and Rab8, are part of a protein network that regulates membrane trafficking and cellular morphogenesis.  相似文献   

10.
Expansion of polyglutamine stretches leads to the formation of polyglutamine-containing neuronal aggregates and neuronal death in nine diseases for which there currently are no treatments or cures. This is largely due to a lack in understanding of the mechanisms by which expanded polyglutamine regions contribute to aggregation and disease. To complicate matters further, several of the polyglutamine-disease related proteins, including ataxin-3, have a multistage aggregation mechanism in which flanking domain self-assembly precedes polyglutamine aggregation yet is influenced by polyglutamine expansion. How polyglutamine expansion influences flanking domain aggregation is poorly understood. Here, we use a combination of mass spectrometry and biophysical approaches to investigate this issue for ataxin-3. We show that the conformational dynamics of the flanking Josephin domain in ataxin-3 with an expanded polyglutamine tract are altered in comparison to those exhibited by its nonexpanded counterpart, specifically within the aggregation-prone region of the Josephin domain (amino acid residues 73–96). Expansion thus exposes this region more frequently in ataxin-3 containing an expanded polyglutamine tract, providing a molecular explanation of why aggregation is accelerated upon polyglutamine expansion. Here, harnessing the power of ion mobility spectrometry-mass spectrometry, oligomeric species formed during aggregation are characterized and a model for oligomer growth proposed. The results suggest that a conformational change occurs at the dimer level that initiates self-assembly. New insights into ataxin-3 fibril architecture are also described, revealing the region of the Josephin domain involved in protofibril formation and demonstrating that polyglutamine aggregation proceeds as a distinct second step after protofibril formation without requiring structural rearrangement of the protofibril core. Overall, the results enable the effect of polyglutamine expansion on every stage of ataxin-3 self-assembly, from monomer through to fibril, to be described and a rationale for expedited aggregation upon polyglutamine expansion to be provided.Polyglutamine (polyQ)1 diseases comprise a group of hereditary neurodegenerative disorders in which expansion of polyQ stretches within their causative proteins induces protein aggregation and the formation of polyQ-containing neuronal aggregates (1). The mechanisms by which expanded polyQ regions contribute to aggregation and disease are not well understood. In all cases, polyQ length is negatively correlated with the age of onset of the disease (2), but the various polyQ disorders are associated with different neurodegenerative symptoms and affect different regions of the brain (3). Several of the polyQ proteins, including ataxin-3 (atx-3) (4) and huntingtin (5), have been shown to aggregate in vitro through a complex multidomain misfolding pathway (6) in which flanking domain aggregation precedes polyQ aggregation. Increasing evidence also suggests a key role for misfolding of flanking regions in the process of polyQ aggregation in vivo (7 10). Thus, as the proteins have no sequence similarity other than in their polyQ regions, flanking domain content may be significant in determining the disease state and neuronal-specific selectivity. Given that there is growing support to suggest that the toxic entities in polyQ diseases are the soluble oligomers and assembly intermediates, rather than the fibrillar aggregates (11), effective therapeutics may be generated by targeting flanking domain interactions (12) rather than targeting the polyQ region itself. An enhanced understanding of the molecular mechanisms of assembly of polyQ proteins is required, as is a greater comprehension of the effects of polyQ length on the structure, dynamics, aggregation propensity, and oligomerisation pathway of the flanking domains. Here, we set out to determine the influence of an expanded polyQ tract on each stage of atx-3 aggregation by harnessing the power of mass-spectrometry-based approaches to identify and characterize assembly mechanisms (13, 14).Atx-3 consists of a structured N-terminal Josephin domain (JD), which has ubiquitin protease activity (15) and an intrinsically disordered C-terminal region, the latter containing several ubiquitin-interacting motifs (UIMs) followed by the polyQ tract and a variable region (16) (Fig. 2A). In vivo, expansion of the polyQ stretch beyond ca. 55 glutamine residues results in Machado–Joseph disease (17). Consistent with this, atx-3 with a polyQ tract beyond ca. 55 glutamine residues aggregates into amyloid-like fibrils rapidly in vitro (18). Aggregation proceeds by means of a two-stage pathway (4): the first stage resulting in the production of SDS-sensitive, short, curvilinear, protofibrils, and the second producing long-straight and SDS-resistant mature fibrils. The first stage involves self-association of the JD (19) and occurs in all atx-3 variants whether or not they contain a polyQ region of nonpathological length (nonexpanded, 12–40 glutamine residues (17)), an expanded polyQ region of disease length (polyQ-expanded, 55–84 glutamine residues (17)), or are devoid of a polyQ region (20). The second stage occurs only in polyQ-expanded atx-3 and involves hydrogen bonding between side-chains in the polyQ region (21), which renders aggregation irreversible.Open in a separate windowFig. 2.Limited proteolysis of protofibrils and mature fibrils. (A) Schematic illustrations of atx-3(14Q) (left) and atx-3(78Q) (right) with amino acid residue numbers for each domain shown. Mass spectra obtained following limited proteolysis with trypsin of (B) atx-3(14Q) protofibrils (C) atx-3(78Q) protofibrils and (D) atx-3(78Q) mature fibrils. Mass spectra of (left) the depolymerized fibrillar material are contrasted with those obtained from analysis of (right) the soluble products of proteolysis. Asterisks represent species observed in the pellet fraction that were also observed in supernatant samples ((-16)-454+ and (-16)-474+, respectively). Peaks identified as containing the polyQ tract are highlighted in pink, while those representing QBP-1 are highlighted in orange.Despite the fact that the first stage of atx-3 aggregation does not require the polyQ tract, aggregation of polyQ-expanded atx-3 occurs more rapidly (with a shorter lag time) than aggregation of nonexpanded atx-3 (4, 20). The precise molecular mechanism for this observation has yet to be elucidated. An initial hypothesis was that polyQ expansion destabilizes atx-3, allowing the JD to adopt misfolded, aggregation-prone conformations more readily (15, 18). However, a study comparing atx-3 constructs with polyQ regions of different lengths showed that polyQ expansion does not affect the folding/unfolding kinetics or thermodynamic stability of the JD (22). Consequently, it has been postulated that the expanded polyQ tract may perturb the structure of the JD without affecting its stability (20).We set out to address why aggregation occurs more rapidly in atx-3 with an expanded polyQ tract by studying monomeric, oligomeric, and fibril structures for atx-3 with a pathological length polyQ tract of 77 glutamines with a single, naturally occurring, lysine residue in the fourth position (named atx-3(78Q)); atx-3 with a nonpathological length polyQ tract of 13 glutamines (also with a single lysine residue in the fourth position) (atx-3(14Q)); and the isolated JD. Results from a combination of electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS), limited proteolysis, fluorescence spectroscopy, and transmission electron microscopy (TEM) analyses confirm that protofibrils of these three atx-3 constructs are formed through equivalent processes and reveal that the resulting protofibril cores are similar, if not identical. Limited proteolysis experiments combined with MS analyses provide evidence that an expanded polyQ tract alters the conformational dynamics of the JD, exposing its aggregation-prone region more frequently than in its nonexpanded counterparts, rationalizing the enhanced aggregation potential of the polyQ-expanded protein. Finally, oligomers populated en route to fibrils are examined by ESI-IMS-MS and a model for oligomer growth is provided. Together these results reveal how polyQ length affects each stage of atx-3 aggregation and demonstrate how different MS-based techniques can provide information about each stage of the aggregation mechanism.  相似文献   

11.
Adiponectin is an abundant adipose-specific protein, which acts as an anti-diabetic, anti-atherogenic, and anti-inflammatory adipokine. Although recent advances in the field of adiponectin have been made by the identification of adiponectin receptors and by the understanding about relationship between its multimerization and functions, detailed molecular background remains unclear. Our established anti-human adiponectin antibodies, ANOC 9103 and ANOC 9104, blocked some adiponectin functions such as the growth inhibition of B-lymphocytes on stromal cells and the inhibition of acetylated LDL uptake in macrophages, suggesting that they may recognize important functional regions of adiponectin. As a result of epitope mapping based on the ability to bind to the deleted adiponectin mutants, we identified that these antibodies recognize amino-terminal region of adiponectin before the beginning of the collagen-like domain. Notably, a peptide fragment (DQETTTQGPGVLLPLPKGACTGWMA) corresponding to amino acid residues 17-41 of human adiponectin could bind to restricted types of cells and block adiponectin-induced cyclooxygenase-2 gene expression and prostaglandin E2 production in MS-5 stromal cells. Moreover, the deletion of its amino-terminal region reduced the abilities to inhibit not only collagen-induced platelet aggregation but also diet-induced hepatic steatosis. These data indicate that amino-terminal region of adiponectin is a physiologically functional domain and that a novel receptor, which recognizes amino-terminal region of adiponectin, may exist on some types of cells. Further investigations will contribute to the understanding of molecular mechanisms about adiponectin functions as well as to the designing of novel strategies for the treatment of patients with insulin-resistance, vascular dysfunction, and chronic inflammation.  相似文献   

12.
Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with different genetic diseases such as Huntington's and several Ataxias. Protein aggregation, which is a key feature of most of these diseases, is thought to be triggered by these expanded polyQ sequences in disease-related proteins. However, polyQ tracts are a normal feature of many human proteins, suggesting that they have an important cellular function. To clarify the potential function of polyQ repeats in biological systems, we systematically analyzed available information stored in sequence and protein interaction databases. By integrating genomic, phylogenetic, protein interaction network and functional information, we obtained evidence that polyQ tracts in proteins stabilize protein interactions. This happens most likely through structural changes whereby the polyQ sequence extends a neighboring coiled-coil region to facilitate its interaction with a coiled-coil region in another protein. Alteration of this important biological function due to polyQ expansion results in gain of abnormal interactions, leading to pathological effects like protein aggregation. Our analyses suggest that research on polyQ proteins should shift focus from expanded polyQ proteins into the characterization of the influence of the wild-type polyQ on protein interactions.  相似文献   

13.
The accumulation of protein aggregates in neurons appears to be a basic feature of neurodegenerative disease. In huntington disease (HD), a progressive and ultimately fatal neurodegenerative disorder caused by an expansion of the polyglutamine repeat within the protein huntingtin (Htt), the immediate proximal cause of disease is well understood. However, the cellular mechanisms which modulate the rate at which fragments of Htt containing polyglutamine accumulate in neurons is a central issue in the development of approaches to modulate the rate and extent of neuronal loss in this disease. We have recently found that Htt is phosphorylated by the kinase IKK on serine (s) 13, activating its phosphorylation on S16 and its acetylation and poly-SUMOylation, modifications that modulate its clearance by the proteasome and lysosome in cells.1 In the discussion here I suggest that Htt may have a normal function in the lysosomal mechanism of selective macroautophagy involved in its own degradation which may share some similarity with the yeast cytoplasm to vacuole targeting (Cvt) pathway. Pharmacologic activation of this pathway may be useful early in disease progression to treat HD and other neurodegenerative diseases characterized by the accumulation of disease proteins.Key words: Huntington disease, Huntingtin, polyglutamine, autophagy, IKKAn age-related reduction in protein clearance mechanisms has been implicated in the pathogenesis of neurodegenerative diseases including the polyglutamine (polyQ) repeat diseases, Alzheimer disease (AD), Parkinson disease (PD) and Amyotrophic Lateral Sclerosis (ALS). These diseases are each associated with the accumulation of insoluble protein aggregates in diseased neurons. Huntington Disease (HD), caused by an expansion of the polyQ repeat in the protein Huntingtin (Htt), is one such disease of aging in which mutant Htt inclusions form in striatal and cortical neurons as disease progresses. Clarification of the mechanisms of Htt clearance is paramount to finding therapeutic targets to treat HD that may be broadly useful in the treatment of these currently incurable neurodegenerative diseases.  相似文献   

14.
多聚谷氨酰胺(PolyQ)疾病,是一类由编码蛋白质的基因中CAG三核苷酸重复序列的异常延伸所引发的神经退行性疾病.CAG三核苷酸重复序列导致所编码蛋白质的PolyQ序列的异常延伸,使蛋白质发生错误折叠和积聚,并在细胞内形成包涵体.包涵体的形成是神经退行性疾病的一个重要特征.PolyQ蛋白在积聚过程中,可以将细胞内与其特异相互作用的蛋白质或RNA募集到包涵体中.被募集的其他蛋白质或RNA不仅自身的可溶性组分减少,而且由于被"挟持"到包涵体中其在细胞内的有效组分也相应地减少,从而影响其正常的生物功能.根据特异相互作用的模式,我们将募集作用分为以下几种类型:蛋白质(含Poly Q蛋白)的共积聚;特定结构域或模体介导的募集作用(包括泛素等修饰介导的募集作用);RNA介导的募集作用;以及对分子伴侣蛋白的募集作用.PolyQ延伸蛋白的积聚和对其他组分的募集可能是引发细胞毒性和神经退行性病变的重要原因.  相似文献   

15.
A variety of neurological diseases including Huntington's disease (HD), Alzheimer's disease and Parkinson's disease share common neuropathology, primarily featuring the presence of abnormal protein inclusions containing specific misfolded proteins. Mutations leading to expansion of a poly-glutamine track in Huntingtin cause HD, and trigger its misfolding and aggregation. Recent evidence indicates that alterations in the secretory pathway, in particular the endoplasmic reticulum (ER), are emerging features of HD. Although it is not clear how cytoplasmic/nuclear located mutant Huntingtin alters the function of the ER, several reports indicate that mutant Huntingtin affects many essential processes related to the secretory pathway, including inhibition of ER-associated degradation, altered ER/Golgi vesicular trafficking and axonal transport, disrupted autophagy and abnormal ER calcium homeostasis. All these alterations are predicted to have a common pathological outcome associated to disturbance of protein folding and maturation pathways at the ER, generating chronic ER stress and neuronal dysfunction. Here, we review recent evidence involving ER stress in HD pathogenesis and discuss possible therapeutic strategies to target organelle function in the context of disease.  相似文献   

16.
Huntington disease (HD), a neurodegenerative disorder, is caused by an expansion of more than 35-40 polyglutamine (polyQ) repeats located near the N-terminus of the huntingtin (htt) protein. The expansion of the polyQ domain results in the ordered assembly of htt fragments into fibrillar aggregates that are the main constituents of inclusion bodies, which are a hallmark of the disease. This paper describes protocols for studying the aggregation of mutant htt fragments and synthetic polyQ peptides with atomic force microscopy (AFM). Ex situ AFM is used to characterize aggregate formation in protein incubation as a function of time. Methods to quickly and unambiguously distinguish specific aggregate species from complex, heterogeneous aggregation reactions based on simple morphological features are presented. Finally, the application of time lapse atomic force microscopy in solution is presented for studying synthetic model polyQ peptides, which allows for tracking the formation and fate of individual aggregates on surfaces over time. This ability allows for dynamic studies of the aggregation process and direct observation of the interplay between different types of aggregates.  相似文献   

17.
ABSTRACT: BACKGROUND: Despite enormous progress in elucidating the biophysics of aggregation, no cause-and-effect relationship between protein aggregation and neurodegenerative disease has been unequivocally established. Here, we derived several risk-based stochastic kinetic models that assess genotype/phenotype correlations in patients with Huntington's disease (HD) caused by the expansion of a CAG repeat. Fascinating disease-specific aspects of HD include the polyglutamine (polyQ)-length dependence of both age at symptoms onset and the propensity of the expanded polyQ protein to aggregate. In vitro, aggregation of polyQ peptides follows a simple nucleated growth polymerization pathway. Our models that reflect polyQ aggregation kinetics in a nucleated growth polymerization divided aggregate process into the lengthdependent nucleation and the nucleation-dependent elongation. In contrast to the repeatlength dependent variability of age at onset, recent studies have shown that the extent of expansion has only a subtle effect on the rate of disease progression, suggesting possible differences in the mechanisms underlying the neurodegenerative process. RESULTS: Using polyQ-length as an index, these procedures enabled us for the first time to establish a quantitative connection between aggregation kinetics and disease process, including onset and the rate of progression. Although the complexity of disease process in HD, the time course of striatal neurodegeneration can be precisely predicted by the mathematical model in which neurodegeneration occurs by different mechanisms for the initiation and progression of disease processes. Nucleation is sufficient to initiate neuronal loss as a series of random events in time. The stochastic appearance of nucleation in a cell population acts as the constant risk of neuronal cell damage over time, while elongation reduces the risk by nucleation in proportion to the increased extent of the aggregates during disease progression. CONCLUSIONS: Our findings suggest that nucleation is a critical step in gaining toxic effects to the cell, and provide a new insight into the relationship between polyQ aggregation and neurodegenerative process in HD.  相似文献   

18.
Polyglutamine (polyQ) expansion leads to protein aggregation and neurodegeneration in Huntington's disease and eight other inherited neurological conditions. Expansion of the polyQ tract beyond a threshold of 37 glutamines leads to the formation of toxic nuclear aggregates. This suggests that polyQ expansion causes a conformational change within the protein, the nature of which is unclear. There is a trend in the disease proteins that the polyQ tract is located external to but not within a structured domain. We have created a model polyQ protein in which the repeat location mimics the flexible environment of the polyQ tract in the disease proteins. Our model protein recapitulates the aggregation features observed with the clinical proteins and allows structural characterization. With the use of NMR spectroscopy and a range of biophysical techniques, we demonstrate that polyQ expansion into the pathological range has no effect on the structure, dynamics, and stability of a domain adjacent to the polyQ tract. To explore the clinical significance of repeat location, we engineered a variant of the model protein with a polyQ tract within the domain, a location that does not mimic physiological context, demonstrating significant destabilization and structural perturbation. These different effects highlight the importance of repeat location. We conclude that protein misfolding within the polyQ tract itself is the driving force behind the key characteristics of polyQ disease, and that structural perturbation of flanking domains is not required.  相似文献   

19.
Abnormal polyglutamine (polyQ) tracts are the only common feature in nine proteins that each cause a dominant neurodegenerative disorder. In Huntington's disease, tracts longer than 36 glutamines in the protein huntingtin (htt) cause degeneration. In situ, monoclonal antibody 3B5H10 binds to different htt fragments in neurons in proportion to their toxicity. Here, we determined the structure of 3B5H10 Fab to 1.9?? resolution by X-ray crystallography. Modeling demonstrates that the paratope forms a groove suitable for binding two β-rich polyQ strands. Using small-angle X-ray scattering, we confirmed that the polyQ epitope recognized by 3B5H10 is a compact two-stranded hairpin within monomeric htt and is abundant in htt fragments unbound to antibody. Thus, disease-associated polyQ stretches preferentially adopt compact conformations. Since 3B5H10 binding predicts degeneration, this compact polyQ structure may be neurotoxic.  相似文献   

20.
Huntington disease (HD) is an autosomal-dominant neurodegenerative disorder that primarily affects medium spiny striatal neurons (MSN). HD is caused by polyglutamine (polyQ) expansion (exp) in the amino-terminal region of a protein huntingtin (Htt). The connection between polyQ expansion in Httexp and MSN neurodegeneration remains elusive. Here we discuss recent data that link polyQ expansion in Httexp and deranged Ca2+ signaling in MSN neurons. Experimental evidence indicates that (1) Ca2+ homeostasis is abnormal in mitochondria isolated from lymphoblasts of HD patients and from brains of the YAC72 HD mouse model; (2) Httexp leads to potentiation of NR1/NR2B NMDA receptor activity in heterologous expression systems and in MSN from YAC72 HD mouse model; and (3) Httexp binds to the type 1 inositol 1,4,5-trisphosphate receptor (InsP3R1) carboxy-terminus and causes sensitization of InsP3R1 to activation by InsP3 in planar lipid bilayers and in MSN. Based on these results we propose that Httexp-induced cytosolic and mitochondrial Ca2+ overload of MSN plays an important role in the pathogenesis of HD and that Ca2+ signaling blockers may play a beneficial role in treatment of HD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号