首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyaluronan (HA) is a glycosaminoglycan that is synthesized by a family of enzymes called hyaluronan synthases (HASs), of which there are three isoforms (HAS1, 2 and 3) in mammals. The HASs have different tissue expression patterns and function, indicating that synthesis of HA and formation of the HA matrix may be regulated by various factors. The HA matrix has an important role in renal water handling and the production of a concentrated urine. We investigated the distribution of HA and the expression of HAS1, HAS2 and HAS3 mRNAs in the kidney of the Spinifex hopping mouse, Notomys alexis, a native Australian desert rodent that is reported to produce the most concentrated urine of any mammal. After periods of three, seven and fourteen days of water deprivation, the distribution of renal HA changed considerably, and there was a general down-regulation of HAS mRNA expression. It is proposed that the regulation of HA synthesis by the different HAS isoforms during water deprivation in N. alexis, could be influenced by the molecular mass of the HA chains produced by each isoform, followed by the rate at which the individual HAS produces HA.  相似文献   

2.
Australian hopping mice (Notomy alexis) were subjected to short or long photoperiods, different social environments and/or water deprivation. The age at which vaginal opening and first oestrus occurred was delayed by short photoperiods and by the absence of male proximity. Water deprivation prevented normal maturation. The normal 7 to 8 day oestrous cycle was prolonged by short photoperiods or water deprivation. Animals deprived of water had lighter body, ovarian and uterine weights, and follicular growth seemed to be impaired. No differences in organ weights were found between animals in the two photoperiods. The significance of the findings is discussed.  相似文献   

3.
The effect of water deprivation for 19 h on renal Na excretion of conscious adrenalectomized (ADX) sheep maintained on a constant intravenous infusion of aldosterone and cortisol (ADX-constant steroid sheep) was investigated. Both ADX and normal sheep showed large increases in renal Na excretion when they were deprived of water. ADX-constant steroid sheep also exhibited a normal postprandial natriuresis 3-6 h after feeding, whether or not water was available to drink. In another experiment, sheep deprived of water for 41 h were then allowed to drink water. Both normal and ADX-constant steroid sheep exhibited a large reduction of renal Na excretion in the 6 h after rehydration. Changes in plasma Na and K concentration and osmolality were similar in normal and ADX-constant steroid sheep during periods of dehydration and rehydration. These results show that change in aldosterone secretion is not a major factor in causing either dehydration-induced or postprandial natriuresis. Neither is it a major cause of rehydration-induced renal Na retention.  相似文献   

4.
Camels were deprived of water for 11 days. Before and during water deprivation and during rehydration changes in body weight, feed and water intake were measured. Using the liquid marker Cr-EDTA forestomach fluid volume, mean fluid retention and fluid dilution in the forestomach were estimated. At the eleventh day of water deprivation hay intake had decreased to only 9.6% of controls, dilution rates had decreased to 31%, mean retention time of fluid in the forestomach had increased to 189%. At the end of dehydration flow of saliva of 2 l/h mainly contributed to the still rather high dilution rates. Thereby buffering capacity and flow of fluid into the forestomach for microbial digestion as well as the outflow from the forestomach were maintained. At the beginning of rehydration camels drank 97 l within a few minutes, and animals thereby replaced all the water lost. Following this first huge water intake water is rapidly absorbed from the forestomach, and forestomach volume decreased again to dehydration values. At the third day of rehydration control values were reached again. Although feed intake decreased dramatically during water deprivation, functions of the forestomach can be maintained sufficiently mainly due to saliva inflow. This explains the mostly rapid recovery of camels when water is available again.  相似文献   

5.
Natriuretic peptides (NPs) are regulatory molecules that cause cGMP-mediated diuresis and natriuresis in mammals. Accordingly, it is interesting to consider their role in desert-adapted animals in which water is often limited. This study investigated the response of the natriuretic peptide (NP) system to varying periods of water deprivation (WD) in the Australian desert rodent species, Notomys alexis. It was hypothesised that the expression of the NP system will be down-regulated in water-deprived N. alexis compared to water-replete animals. The plasma levels of ANP were significantly reduced after 3 days of WD, but were unaffected by 7, 14 and 28 days of WD. Water deprivation for 3, 7, 14 days had a variable effect on the mRNA expression of ANP, CNP, NPR-A, NPR-B, and NPR-C, and a uniform down-regulation was not observed. However, after 28 days of WD, mRNA expression was similar to water-replete animals, except for NPR-A. Surprisingly, 7 and 14 days of WD caused an up-regulation in the ability of ANP to stimulate cGMP; this also occurred at 14 days for CNP. Taken together, the mRNA expression and peptide mediated guanylyl cyclase activity data after WD were in the opposite direction to what was predicted. Interestingly, after 28 days of WD, most parameters were similar to those of water-replete animals, which indicates that a down-regulation of the NP system is not part of the physiological response to an absence of free water in N. alexis.  相似文献   

6.
This study investigated the effect of water deprivation on the expression of C-type natriuretic peptide (CNP) and natriuretic peptide receptor B (NPR-B) mRNA, and the ability of NPR-B to generate cGMP in the Spinifex Hopping mouse, Notomys alexis. This rodent is a native of central and western Australia that is well adapted to survive in arid environments. Initially, CNP and NPR-B cDNAs (partial for NPR-B) were cloned and sequenced, and were shown to have high homology with those of rat and mouse. RT-PCR analysis showed CNP mRNA expression in the kidney, proximal and distal colon and small intestine, whilst NPR-B mRNA expression was found in the kidney, proximal and distal colon and the atria. Using a semi-quantitative multiplex PCR technique, the expression of renal CNP and NPR-B mRNA was determined in 7- and 14-day water-deprived hopping mice, in parallel with control hopping mice (access to water). Water deprivation significantly decreased the relative levels of CNP and NPR-B mRNA expression in both the 7- and 14-day water-deprived hopping mice, when compared to control hopping mice. In contrast, the ability of CNP to stimulate cGMP production was significantly increased after 14 days of water deprivation. This study shows that alterations in the renal CNP/NPR-B system may be an important physiological adjustment when water is scarce.  相似文献   

7.
Paternal care is uncommon in mammals where males are more often involved in sexual competition than in providing care for their own offspring. However some species present some form of paternal care and, most of the time, this phenomenon is associated with a monogamous mating system. Mice of the genus Mus, such as the house mouse Mus musculus domesticus, are commonly considered to be polygamous-polygynous species. In Mus spicilegus, the mound-building mouse, previous results on female sexual preferences have suggested the existence of pair bonding more compatible with a monogamous mating system than with a polygamous one. We therefore tested the hypothesis that male M. spicilegus present a higher level of paternal care than males of the polygynous house mouse. Results showed that male M. spicilegus spent significantly more time covering the young during the first week after birth than male M. m. domesticus, particularly when the female was exploring, and retrieved stray pups significantly more frequently and more rapidly than male M. m. domesticus. There were practically no differences between the females of these two species. M. spicilegus parents also more significantly alternated their protection of the pups than M. m. domesticus parents. We discuss the evolution of paternal care in M. spicilegus in relation to monogamy.  相似文献   

8.
Mechanisms inducing drinking after water deprivation, and mechanisms terminating drinking after rehydration, were investigated in the quail, Coturnix coturnix japonica. 1. Water intake was induced after 4 h of water deprivation, and the amount of water drunk increased in proportion to the period of water deprivation. Drinking occurred immediately after deprivation. Drinking occurred immediately after deprived birds were given access to water, and continued for periods proportional to the period of water deprivation. 2. Plasma angiotensin II concentration increased, as did plasma osmolality and Na+ concentration, and blood volume decreased after water deprivation. The increase in plasma angiotensin II concentration and decrease in blood volume occurred soon after the start of water deprivation, whereas plasma osmolality and Na+ concentration did not increase until at least 4 h after the start of water deprivation. 3. These results indicate that extracellular dehydration and angiotensin II are responsible for the significant drinking that follows 4 h of water deprivation, and that cellular dehydration is also involved in the stimulation of drinking that occurs after longer periods of water deprivation. 4. Plasma osmolality and Na+ concentration in birds deprived of water for 48 h quickly returned to normal levels after the birds were allowed access to water. Plasma angiotensin II levels and blood volume also approached the values measured prior to water deprivation. However, the rate and degree of restoration of normal values were reduced, and normal values were not restored even after 1.5 h or rehydration when drinking terminated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Summary Phyllomedusa sauvagei, a xeric adapted treefrog, excretes large amounts of nitrogen as urate when fed insects, even when deprived of additional water. Most terrestrial anurans produce urea which they do not excrete when they are deprived of water. We investigated the differences in renal function underlying the unusual excretory capacities ofP. sauvagei. Glomerular filtration rates (GFR) were measured inP. sauvagei in water and when deprived of water, except that in food, for up to 27 days. For comparison a toad (Bufo boreas) was studied in water and during water deprivation. In water both species produced 30–40 ml urine kg–1 h–1 and resorbed only ca. 50% of the filtrate. With water deprivation, GFR rapidly approached zero inB. boreas, but remained high (20–40 ml kg–1 h–1) inP. sauvagei despite reductions in urine production of up to 100-fold. During water deprivation inP. sauvagei, urate excretion was between 250–300 moles kg–1 h–1 and 90% of this reflects net tubular secretion. Urate clearances were similar to those of para-amino hippurate, indicating effective removal of urate from the peritubular circulation. Urea, sodium and chloride showed net fractional resorptions of 98–99%, and 85% of the potassium was resorbed. At low rates of urine production, urine to plasma (U/P) ratios for inulin in bladder urine were 20–100 whereas those for ureteral urine were ca. 10. The urinary bladder also functions as a water reserve during dehydration.  相似文献   

10.
This study investigated the mRNA expression of the atrial natriuretic peptide (ANP) system (peptide and receptors) during water deprivation in the spinifex hopping mouse, Notomys alexis, a native of central and western Australia that is well adapted to survive in arid environments. Initially, ANP, NPR-A and NPR-C cDNAs (partial for receptors) were cloned and sequenced, and were shown to have high homology with those of rat and mouse. Using a semi-quantitative multiplex PCR technique, the expression of cardiac ANP mRNA and renal ANP, NPR-A, and NPR-C mRNA was determined in 7- and 14-day water-deprived hopping mice, in parallel with control mice (access to water). The levels of ANP mRNA expression in the heart remained unchanged, but in the kidney ANP mRNA levels were increased in the 7-day water-deprived mice, and were significantly decreased in the 14-day water-deprived mice. NPR-A mRNA levels were significantly higher in 7-day water-deprived mice while no change for NPR-A mRNA expression was observed in 14-day water-deprived mice. No variation in NPR-C mRNA levels was observed. This study shows that water deprivation differentially affects the expression of the ANP system, and that renal ANP expression is more important than cardiac ANP in the physiological adjustment to water deprivation.  相似文献   

11.
Like many desert animals, the spinifex hopping mouse, Notomys alexis, can maintain water balance without drinking water. The role of the kidney in producing a small volume of highly concentrated urine has been well-documented, but little is known about the physiological mechanisms underpinning the metabolic production of water to offset obligatory water loss. In Notomys, we found that water deprivation (WD) induced a sustained high food intake that exceeded the pre-deprivation level, which was driven by parallel changes in plasma leptin and ghrelin and the expression of orexigenic and anorectic neuropeptide genes in the hypothalamus; these changed in a direction that would stimulate appetite. As the period of WD was prolonged, body fat disappeared but body mass increased gradually, which was attributed to hepatic glycogen storage. Switching metabolic strategy from lipids to carbohydrates would enhance metabolic water production per oxygen molecule, thus providing a mechanism to minimize respiratory water loss. The changes observed in appetite control and metabolic strategy in Notomys were absent or less prominent in laboratory mice. This study reveals novel mechanisms for appetite regulation and energy metabolism that could be essential for desert rodents to survive in xeric environments.  相似文献   

12.
This study characterises the extent of the susceptibility to parasites (first demonstrated with helminths) of hybrids between Mus musculus domesticus and Mus musculus musculus. Experimental infections with Trypanosoma musculi of M. m. domesticus, M. m. musculus and their natural hybrids have been performed to compare their level of resistance/susceptibility. It appears that contrary to the results with helminths, hybrid mice present the same level of resistance/susceptibility to the trypanosome as M. m. musculus and M. m. domesticus individuals. This result is interpreted in the light of the modalities of host parasite interactions and leads us to hypothesise on the role of parasitism in the evolution of the house mouse hybrid zone.  相似文献   

13.
The white-tailed prairie dog is an obligate hibernator that enters a heterothermic phase when maintained in the cold with low intensity light and ad libitum food and water. The black-tailed prairie dog (a facultative hibernator) will not hibernate under similar conditions. It has been suggested that the black tailed prairie dog remains active during the winter because it can conserve water more effectively due to a more efficient kidney. The present study revealed no significant differences between the species in renal morphology: relative medullary thickness, nephron heterogeneity, renal vasculature, or fornix dimensions, all of which are structures associated with the urinary concentrating mechanism. In addition, there was no difference in number of nephrons between the two species. The black-tailed prairie dog does produce a more concentrated urine when food and water deprived. However, this difference was not observed when the animals were salt loaded. The water-deprivation and salt-loading experiments suggest that the higher urine osmolality produced by the back-tailed prairie dog during fasting is a result of a higher urea load due to a greater protein catabolism and not because of a differential capacity to concentrate urine.Abbreviations C cortex - GFR glomerular filtration rate - H height - IS inner stripe - IZ inner zone of medulla - L length - OS outer stripe - PE polythylene - RMT relative medullary thickness - T a ambient temperature - W width  相似文献   

14.
Hyaluronan (HA) is a glycosaminoglycan that is synthesized by a family of enzymes called hyaluronan synthases (HASs), of which there are three isoforms (HAS1, 2 and 3) in mammals. The HASs have different tissue expression patterns and function, indicating that synthesis of HA and formation of the HA matrix may be regulated by various factors. The HA matrix has an important role in renal water handling and the production of a concentrated urine. We investigated the distribution of HA and the expression of HAS1, HAS2 and HAS3 mRNAs in the kidney of the Spinifex hopping mouse, Notomys alexis, a native Australian desert rodent that is reported to produce the most concentrated urine of any mammal. After periods of three, seven and fourteen days of water deprivation, the distribution of renal HA changed considerably, and there was a general down-regulation of HAS mRNA expression. It is proposed that the regulation of HA synthesis by the different HAS isoforms during water deprivation in N. alexis, could be influenced by the molecular mass of the HA chains produced by each isoform, followed by the rate at which the individual HAS produces HA.  相似文献   

15.
Rats drank rapidly when 0.3 M NaCl was the only drinking fluid available after overnight water deprivation, consuming approximately 200 ml/24 h. Although such large intakes of this hypertonic solution initially elevated plasma osmolality, excretion of comparable volumes of urine more concentrated than 300 meq Na(+)/l ultimately appears to restore plasma osmolality to normal levels. Rats drank approximately 100 ml of 0.5 M NaCl after overnight water deprivation, but urine Na(+) concentration (U(Na)) did not increase sufficiently to achieve osmoregulation. When an injected salt load exacerbated the initial dehydration caused by water deprivation, rats increased U(Na) to void the injected load and did not significantly alter 24-h intake of 0.3 or 0.5 M NaCl. Rats with lesions of area postrema had much higher saline intakes and lower U(Na) than did intact control rats; nonetheless, they appeared to osmoregulate well while drinking 0.3 M NaCl but not while drinking 0.5 M NaCl. Detailed analyses of drinking behavior by intact rats suggest that individual bouts were terminated by some rapid postabsorptive consequence of the ingested NaCl load that inhibited further NaCl intake, not by a fixed intake volume or number of licks that temporarily satiated thirst.  相似文献   

16.
It was hypothesized that cyclooxygenase-2 (COX-2) activity promotes urine concentrating ability through stimulation of vasopressin (AVP) release after water deprivation (WD). COX-2-deficient (COX-2(-/-), C57BL/6) and wild-type (WT) mice were water deprived for 24 h, and water balance, central AVP mRNA and peptide level, AVP plasma concentration, and AVP-regulated renal transport protein abundances were measured. In male COX-2(-/-), basal urine output and water intake were elevated while urine osmolality was decreased compared with WT. Water deprivation resulted in lower urine osmolality, higher plasma osmolality in COX-2(-/-) mice irrespective of gender. Hypothalamic AVP mRNA level increased and was unchanged between COX-2(-/-) and WT after WD. AVP peptide content was higher in COX-2(-/-) compared with WT. At baseline, plasma AVP concentration was elevated in conscious chronically catheterized COX-2(-/-) mice, but after WD plasma AVP was unchanged between COX-2(-/-) and WT mice (43 ± 11 vs. 70 ± 16 pg/ml). Renal V2 receptor abundance was downregulated in COX-2(-/-) mice. Medullary interstitial osmolality increased and did not differ between COX-2(-/-) and WT after WD. Aquaporin-2 (AQP2; cortex-outer medulla), AQP3 (all regions), and UT-A1 (inner medulla) protein abundances were elevated in COX-2(-/-) at baseline and further increased after WD. COX-2(-/-) mice had elevated plasma urea and creatinine and accumulation of small subcapsular glomeruli. In conclusion, hypothalamic COX-2 activity is not necessary for enhanced AVP expression and secretion in response to water deprivation. Renal medullary COX-2 activity negatively regulates AQP2 and -3. The urine concentrating defect in COX-2(-/-) is likely caused by developmental glomerular injury and not dysregulation of AVP or collecting duct aquaporins.  相似文献   

17.
Collecting duct (CD) adenylyl cyclase VI (AC6) has been implicated in arginine vasopressin (AVP)-stimulated renal water reabsorption. To evaluate the role of CD-derived AC6 in regulating water homeostasis, mice were generated with CD-specific knockout (KO) of AC6 using the Cre/loxP system. CD AC6 KO and controls were studied under normal water intake, chronically water loaded, or water deprived; all of these conditions were repeated in the presence of continuous administration of 1-desamino-8-d-arginine vasopressin (DDAVP). During normal water intake or after water deprivation, urine osmolality (U(osm)) was reduced in CD AC6 KO animals vs. controls. Similarly, U(osm) was decreased in CD AC6 KO mice vs. controls after water deprivation+DDAVP administration. Pair-fed (with controls) CD AC6 KO mice also had lower urine osmolality vs. controls. There were no detectable differences between KO and control animals in fluid intake or urine volume under any conditions. CD AC6 KO mice did not have altered plasma AVP levels vs. controls. AVP-stimulated cAMP accumulation was reduced in acutely isolated inner medullary CD (IMCD) from CD A6 KO vs. controls. Medullary aquaporin-2 (AQP2) protein expression was lower in CD AC6 KO mice vs. controls. There were no differences in urinary urea excretion or IMCD UT-A1 expression; however, IMCD UT-A3 expression was reduced in CD AC6 KO mice vs. controls. In summary, AC6 in the CD regulates renal water excretion, most likely through control of AVP-stimulated cAMP accumulation and AQP2.  相似文献   

18.
Water permeability of the basolateral membrane was estimated in isolated fragments of OMCD or IMCD in the Wistar rats. Apical surface of the fragments was blocked with oil injected into the lumen. Apparent water permeability coefficient (Pf) was measured by the rate of epithelium swelling following transition from hypertonic to isotonic medium (600 mOsm to 300 mOsm). Water deprivation caused significant increase in the Pf value in OMCD and IMCD fragments. Desmopressin (10(-8) M) increased water permeability in hydrated rats both in OMCD and IMCD. Mercury chloride decreased the Pf and abolished the effect of desmopressin in reversible manner. Estimation of aquaporins 2, 3, 4 mRNA content in the renal medulla was performed by semi-quantitative RT-PCR. Content of AQP4 and AQP2 mRNA in dehydrated animals was significantly higher than in hydrated ones both in outer medulla and inner medulla. Expression of AQP3 increased during dehydration only in the inner medulla. The findings reveal that water permeability of OMCD and IMCD can be increased by physiological stimuli, e.g. water deprivation. The activation of gene expression of the key elements of vasopressin signal system seems to contribute to this reaction.  相似文献   

19.
F G Biddle  Y Nishioka 《Génome》1988,30(6):870-878
The Y chromosome of Mus musculus poschiavinus interacts with the autosomal recessive gene tda-1b of the C57BL/6J laboratory strain of the house mouse to cause complete or partial sex reversal. Ovaries or ovotestes develop in a substantial proportion of the XY fetuses. Several different Y-specific DNA probes distinguish two major types of Y chromosome in the house mouse and they are represented by M. m. domesticus and M. m. musculus. The poschiavinus Y chromosome appears identical to the domesticus Y. The developmental distribution of the gonad types was examined in the first backcross or N2 generation of fetuses in C57BL/6J with six different domesticus-type Y chromosomes and, as controls, three different musculus-type Y chromosomes. Gonadal hermaphrodites were found with three of the six domesticus-type Y chromosomes. Both overall frequency and phenotypic distribution of types of gonadal hermaphrodites identify three classes of domesticus-type Y chromosome by their differential interaction with the C57BL/6J genetic background.  相似文献   

20.
Glycerylphosphorylcholine (GPC) concentration was reported to be elevated in renal medulla of experimental animals deprived of water. The activities of GPC phosphodiesterases were similar in homogenates and membrane subfractions of renal cortex prepared from control, diuresis and antidiuresis rats. There were no differences in these preparations' ability to hydrolyze phosphorylcholine. In contrast, there was a nearly 50% reduction of non-specific phosphomonoesterase activity, using p-nitrophenylphosphate as substrate and membrane subfractions prepared from the antidiuresis animals. It is suggested that as a consequence, a pathway for the formation from L-alpha-glycerylphosphate is activated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号