首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A central question in protein folding is the relative importance of locally encoded structure and cooperative interactions among residues distant in sequence. We have been exploring this question in a predominantly β-sheet protein, since β-structure formation clearly relies on both local and global sequence information. We present evidence that a 24-residue peptide corresponding to two linked hairpins of cellular retinoic acid-binding protein I (CRABP I) adopts significant native structure in aqueous solution. Prior work from our laboratory showed that the two turns contained in this fragment (turns III and IV) had the highest tendency of any of the eight turns in this anti-parallel β-barrel to fold into native turns. In addition, the primary sequence of these two turns is well conserved throughout the structural family to which CRABP I belongs, and residues in the turns and their associated hairpins participate in a network of conserved long-range interactions. We propose that the strong local-sequence biases within the chain segment comprising turns III and IV favor longer-range interactions that are crucial to the folding and native-state stability of CRABP I, and may play a similar role in related intracellular lipid-binding proteins (iLBPs).  相似文献   

2.
The Photoactive Yellow Protein (PYP) is a structural prototype for the PAS superfamily of proteins, which includes hundreds of receptor and regulatory proteins from all three kingdoms of life. PYP itself is a small globular protein that undergoes a photocycle involving a series of conformational changes in response to light excitation of its p-coumaric acid chromophore, making it an excellent model system to study the molecular basis of signaling in the PAS super family. To enable novel chemical approaches to elucidating the structural changes that accompany signaling in PYP, we have chemically synthesized the 125 amino acid residue protein molecule using a combination of Boc chemistry solid phase peptide synthesis and native chemical ligation. Synthetic PYP exhibits the wildtype photocycle, as determined in photobleaching studies. Planned future studies include incorporation of site-specific isotopic labels into specific secondary structural elements to determine which structural elements are involved in signaling state formation using difference FTIR spectroscopy.  相似文献   

3.
Protein residues that are critical for structure and function are expected to be conserved throughout evolution. Here, we investigate the extent to which these conserved residues are clustered in three-dimensional protein structures. In 92% of the proteins in a data set of 79 proteins, the most conserved positions in multiple sequence alignments are significantly more clustered than randomly selected sets of positions. The comparison to random subsets is not necessarily appropriate, however, because the signal could be the result of differences in the amino acid composition of sets of conserved residues compared to random subsets (hydrophobic residues tend to be close together in the protein core), or differences in sequence separation of the residues in the different sets. In order to overcome these limits, we compare the degree of clustering of the conserved positions on the native structure and on alternative conformations generated by the de novo structure prediction method Rosetta. For 65% of the 79 proteins, the conserved residues are significantly more clustered in the native structure than in the alternative conformations, indicating that the clustering of conserved residues in protein structures goes beyond that expected purely from sequence locality and composition effects. The differences in the spatial distribution of conserved residues can be utilized in de novo protein structure prediction: We find that for 79% of the proteins, selection of the Rosetta generated conformations with the greatest clustering of the conserved residues significantly enriches the fraction of close-to-native structures.  相似文献   

4.
Hydrogen bond interactions were surveyed in a set of protein structures. Compared to surface positions, polar side-chains at core positions form a greater number of intra-molecular hydrogen bonds. Furthermore, the majority of polar side-chains at core positions form at least one hydrogen bond to main-chain atoms that are not involved in hydrogen bonds to other main-chain atoms. Based on this structural survey, hydrogen bond rules were generated for each polar amino acid for use in protein core design. In the context of protein core design, these prudent polar rules were used to eliminate from consideration polar amino acid rotamers that do not form a minimum number of hydrogen bonds. As an initial test, the core of Escherichia coli thioredoxin was selected as a design target. For this target, the prudent polar strategy resulted in a minor increase in computational complexity compared to a strategy that did not allow polar residues. Dead-end elimination was used to identify global minimum energy conformations for the prudent polar and no polar strategies. The prudent polar strategy identified a protein sequence that was thermodynamically stabilized by 2.5 kcal/mol relative to wild-type thioredoxin and 2.2 kcal/mol relative to a thioredoxin variant whose core was designed without polar residues.  相似文献   

5.
Many protein pairs that share the same fold do not have any detectable sequence similarity, providing a valuable source of information for studying sequence-structure relationship. In this study, we use a stringent data set of structurally similar, sequence-dissimilar protein pairs to characterize residues that may play a role in the determination of protein structure and/or function. For each protein in the database, we identify amino-acid positions that show residue conservation within both close and distant family members. These positions are termed "persistently conserved". We then proceed to determine the "mutually" persistently conserved (MPC) positions: those structurally aligned positions in a protein pair that are persistently conserved in both pair mates. Because of their intra- and interfamily conservation, these positions are good candidates for determining protein fold and function. We find that 45% of the persistently conserved positions are mutually conserved. A significant fraction of them are located in critical positions for secondary structure determination, they are mostly buried, and many of them form spatial clusters within their protein structures. A substitution matrix based on the subset of MPC positions shows two distinct characteristics: (i) it is different from other available matrices, even those that are derived from structural alignments; (ii) its relative entropy is high, emphasizing the special residue restrictions imposed on these positions. Such a substitution matrix should be valuable for protein design experiments.  相似文献   

6.
The amino-acid sequence of chymopapain is presented. It was isolated from the latex of the fruits from the tropical species Carica papaya L. and is, besides papain and papaya proteinase omega, the third thiol proteinase from this source. The primary structure contains 218 amino-acid residues. It was deduced from sequence analysis of the native enzyme and of peptides obtained by tryptic, chymotryptic, peptic, thermolysinolytic and mild acidic hydrolysis. Out of a total of eight cysteine residues, six are involved in the formation of three disulfide bonds, the location of which has been established with the help of peptic and thermolysinolytic peptides and fragments, obtained by mild acidic hydrolysis. Chymopapain shares 126 identical amino-acid residues (58%) with papain and 141 (65%) with papaya proteinase omega, including the three disulfide bridges and the free cysteine in position 25, required for activity. Except some amino-acid residues in the substrate-binding site, all residues involved in the catalytic mechanism are conserved. The homology between papaya proteinases is discussed.  相似文献   

7.
Sequence alignment is a common method for finding protein structurally conserved/similar regions. However, sequence alignment is often not accurate if sequence identities between to-be-aligned sequences are less than 30%. This is because that for these sequences, different residues may play similar structural roles and they are incorrectly aligned during the sequence alignment using substitution matrix consisting of 20 types of residues. Based on the similarity of physicochemical features, residues can be clustered into a few groups. Using such simplified alphabets, the complexity of protein sequences is reduced and at the same time the key information encoded in the sequences remains. As a result, the accuracy of sequence alignment might be improved if the residues are properly clustered. Here, by using a database of aligned protein structures (DAPS), a new clustering method based on the substitution scores is proposed for the grouping of residues, and substitution matrices of residues at different levels of simplification are constructed. The validity of the reduced alphabets is confirmed by relative entropy analysis. The reduced alphabets are applied to recognition of protein structurally conserved/similar regions by sequence alignment. The results indicate that the accuracy or efficiency of sequence alignment can be improved with the optimal reduced alphabet with N around 9.  相似文献   

8.
Photoactive yellow protein (PYP) is a small bacterial photoreceptor that undergoes a light-activated reaction cycle. PYP is also the prototypical Per-Arnt-Sim (PAS) domain. PAS domains, found in diverse multi-domain proteins from bacteria to humans, mediate protein-protein interactions and function as sensors and signal transducers. Here, we investigate conformational and dynamic changes in solution in wild-type PYP upon formation of the long-lived putative signaling intermediate I2 with enhanced hydrogen/deuterium exchange mass spectrometry (DXMS). The DXMS results showed that the central beta-sheet remains stable but specific external protein segments become strongly deprotected. Light-induced disruption of the dark-state hydrogen bonding network in I2 produces increased flexibility and opening of PAS core helices alpha3 and alpha4, releases the beta4-beta5 hairpin, and propagates conformational changes to the central beta-sheet. Surprisingly, the first approximately 10 N-terminal residues, which are essential for fast dark-state recovery from I2, become more protected. By combining the DXMS results with our crystallographic structures, which reveal detailed changes near the chromophore but limited protein conformational change, we propose a mechanism for I2 state formation. This mechanism integrates the results from diverse biophysical studies of PYP, and links an allosteric T to R-state conformational transition to three pathways for signal propagation within the PYP fold. On the basis of the observed changes in PYP plus commonalities shared among PAS domain proteins, we further propose that PAS domains share this conformational mechanism, which explains the versatile signal transduction properties of the structurally conserved PYP/PAS module by framework-encoded allostery.  相似文献   

9.
We report the crystal structure of MalE-B133, a recombinant form of the maltodextrin-binding protein (MBP) of Escherichia coli carrying an inserted amino-acid sequence of a B-cell epitope from the preS2 region of the hepatitis B virus (HBV). The structure was determined by molecular replacement methods and refined to 2.7 Å resolution. MalE-B133 is an insertion/deletion mutant of MBP in which residues from positions 134 to 142, an external α helix in the wild-type structure, are replaced by a foreign peptide segment of 19 amino acids. The inserted residues correspond to the preS2 sequence from positions 132 to 145 and five flanking residues that arise from the creation of restriction sites. The conformation of the recombinant protein, excluding the inserted segment, closely resembles that of wild-type MBP in the closed maltose-bound form. MalE-B133 was shown by previous studies to display certain immunogenic and antigenic properties of the hepatitis B surface antigen (HBsAg), which contains the preS2 region. The crystal structure reveals the conformation of the first nine epitope residues (preS2 positions 132 to 140) exposed on the surface of the molecule. The remaining five epitope residues (preS2 positions 141 to 145) are not visible in electron density maps. The path of the polypeptide chain in the visible portion of the insert differs from that of the deleted segment in the structure of wild-type MBP, displaying a helical conformation at positions 134 to 140 (preS2 sequence numbering). A tripeptide (Asp-Pro-Arg) at the N terminus of the helix forms a stable structural motif that may be implicated in the cross-reactivity of anti-HBsAg antibodies with the hybrid protein. Proteins 27:1–8 © 1997 Wiley-Liss, Inc.  相似文献   

10.
11.
To examine how a short secondary structural element derived from a native protein folds when in a different protein environment, we inserted an 11-residue beta-sheet segment (cassette) from human immunoglobulin fold, Fab new, into an alpha-helical coiled-coil host protein (cassette holder). This de novo design protein model, the structural cassette mutagenesis (SCM) model, allows us to study protein folding principles involving both short- and long-range interactions that affect secondary structure stability and conformation. In this study, we address whether the insertion of this beta-sheet cassette into the alpha-helical coiled-coil protein would result in conformational change nucleated by the long-range tertiary stabilization of the coiled-coil, therefore overriding the local propensity of the cassette to form beta-sheet, observed in its native immunoglobulin fold. The results showed that not only did the nucleating helices of the coiled-coil on either end of the cassette fail to nucleate the beta-sheet cassette to fold with an alpha-helical conformation, but also the entire chimeric protein became a random coil. We identified two determinants in this cassette that prevented coiled-coil formation: (1) a tandem dipeptide NN motif at the N-terminal of the beta-sheet cassette, and (2) the hydrophilic Ser residue, which would be buried in the hydrophobic core if the coiled-coil structure were to fold. By amino acid substitution of these helix disruptive residues, that is, either the replacement of the NN motif with high helical propensity Ala residues or the substitution of Ser with Leu to enhance hydrophobicity, we were able to convert the random coil chimeric protein into a fully folded alpha-helical coiled-coil. We hypothesized that this NN motif is a "secondary structural specificity determinant" which is very selective for one type of secondary structure and may prevent neighboring residues from adopting an alternate protein fold. These sequences with secondary structural specificity determinants have very strong local propensity to fold into a specific secondary structure and may affect overall protein folding by acting as a folding initiation site.  相似文献   

12.
An experimental approach named μ-analysis has been developed in order to elucidate the sequence of the loss of ordered structure by elements of a protein during the denaturation of the molecule. This approach is applicable for the analysis of proteins that fold (unfold) in a multistep process that involve the formation (destruction) of a range of intermediate states. The concept of the approach consists in systematic analysis of mutagenized forms of the protein with point substitutions of hydrophobic amino-acid residues and additional cysteine bridges. Importantly, the substitutions of the amino-acid residues must be localized to the same structural elements of the protein. Point substitutions of hydrophobic amino-acid residues mainly provide information on the structural elements of the protein that are disrupted at the final stages of protein denaturation. The addition of cysteine bridges to the surface of the protein molecule allows investigation of structural elements of the protein that are the first to unfold upon protein denaturation. Calorimetric studies of non-equilibrium melting of bovine carbonic anhydrase B yielded information on the rate constants of the unfolding of ten mutant forms of the protein. The analysis of the effects of mutations on the rates of different stages of protein unfolding allowed for elucidation of the order of disruption of structural elements of carbonic anhydrase B upon thermal denaturation.  相似文献   

13.
A thermostable aspartase gene (aspB) from Bacillus sp. YM55-1 was cloned and the gene sequenced. The aspB gene (1407 bp ORF) encodes a protein with a molecular mass of 51 627 Da, consisting of 468 amino-acid residues. An amino-acid sequence comparison revealed that Bacillus YM55-1 aspartase shared 71% homology with Bacillus subtilis aspartase and 49% with Escherichia coli and Pseudomonas fluorescens aspartases. The E. coli TK237/pUCASPB strain, which was obtained by transforming E. coli TK237 (aspartase-null strain) with a vector plasmid (pUCASPB) containing the cloned aspB gene, produced a large amount of the enzyme corresponding to > 10% of the total soluble protein. The over-expressed recombinant enzyme (native molecular mass: 200 kDa) was purified effectively and rapidly using heat treatment and affinity chromatography. In order to probe the catalytic residues of this enzyme, two conserved amino-acid residues, Lys183 and His134, were individually mutated to alanine. Although the tertiary structure of each mutant was estimated to be the same as that of wild-type aspartase in CD and fluorescence measurements, the Lys183Ala mutant lost its activity completely, whereas His134Ala retained full activity. This finding suggests that Lys183 may be involved in the catalytic activity of this thermostable Bacillus YM55-1 aspartase.  相似文献   

14.
It is widely accepted that PYP undergoes global structural changes during the formation of the biologically active intermediate PYP(M). High-angle solution x-ray scattering experiments were performed using PYP variants that lacked the N-terminal 6-, 15-, or 23-amino-acid residues (T6, T15, and T23, respectively) to clarify these structural changes. The scattering profile of the dark state of intact PYP exhibited two broad peaks in the high-angle region (0.3 A(-1) < Q < 0.8 A(-1)). The intensities and positions of the peaks were systematically changed as a result of the N-terminal truncations. These observations and the agreement between the observed scattering profiles and the calculated profiles based on the crystal structure confirm that the high-angle scattering profiles were caused by intramolecular interference and that the structure of the chromophore-binding domain was not affected by the N-terminal truncations. The profiles of the PYP(M) intermediates of the N-terminally truncated PYP variants were significantly different from the profiles of the dark states of these proteins, indicating that substantial conformational rearrangements occur within the chromophore-binding domain during the formation of PYP(M). By use of molecular fluctuation analysis, structural models of the chromophore-binding region of PYP(M) were constructed to reproduce the observed profile of T23. The structure obtained by averaging 51 potential models revealed the displacement of the loop connecting beta4 and beta5, and the deformation of the alpha4 helix. High-angle x-ray scattering with molecular fluctuation simulation allows us to derive the structural properties of the transient state of a protein in solution.  相似文献   

15.
The three-dimensional structure of a protein is formed and maintained by the noncovalent interactions among the amino-acid residues of the polypeptide chain. These interactions can be represented collectively in the form of a network. So far, such networks have been investigated by considering the connections based on distances between the amino-acid residues. Here we present a method of constructing the structure network based on interaction energies among the amino-acid residues in the protein. We have investigated the properties of such protein energy-based networks (PENs) and have shown correlations to protein structural features such as the clusters of residues involved in stability, formation of secondary and super-secondary structural units. Further we demonstrate that the analysis of PENs in terms of parameters such as hubs and shortest paths can provide a variety of biologically important information, such as the residues crucial for stabilizing the folded units and the paths of communication between distal residues in the protein. Finally, the energy regimes for different levels of stabilization in the protein structure have clearly emerged from the PEN analysis.  相似文献   

16.
Sequence alignment is a common method for finding protein structurally conserved/similar regions. However, sequence alignment is often not accurate if sequence identities between to-be-aligned sequences are less than 30%. This is because that for these sequences, different residues may play similar structural roles and they are incorrectly aligned during the sequence alignment using substitution matrix consisting of 20 types of residues. Based on the similarity of physicochemical features, residues can be clustered into a few groups. Using such simplified alphabets, the complexity of protein sequences is reduced and at the same time the key information encoded in the sequences remains. As a result, the accuracy of sequence alignment might be improved if the residues are properly clustered. Here, by using a database of aligned protein structures (DAPS), a new clustering method based on the substitution scores is proposed for the grouping of residues, and substitution matrices of residues at different levels of simplification are constructed. The validity of the reduced alphabets is confirmed by relative entropy analysis. The reduced alphabets are applied to recognition of protein structurally conserved/similar regions by sequence alignment. The results indicate that the accuracy or efficiency of sequence alignment can be improved with the optimal reduced alphabet with N around 9. Supported by the National Natural Science Foundation of China (Grant Nos. 90403120, 10474041 and 10021001) and the Nonlinear Project (973) of the NSM  相似文献   

17.
A detailed knowledge of a protein's functional site is an absolute prerequisite for understanding its mode of action at the molecular level. However, the rapid pace at which sequence and structural information is being accumulated for proteins greatly exceeds our ability to determine their biochemical roles experimentally. As a result, computational methods are required which allow for the efficient processing of the evolutionary information contained in this wealth of data, in particular that related to the nature and location of functionally important sites and residues. The method presented here, referred to as conserved functional group (CFG) analysis, relies on a simplified representation of the chemical groups found in amino acid side-chains to identify functional sites from a single protein structure and a number of its sequence homologues. We show that CFG analysis can fully or partially predict the location of functional sites in approximately 96% of the 470 cases tested and that, unlike other methods available, it is able to tolerate wide variations in sequence identity. In addition, we discuss its potential in a structural genomics context, where automation, scalability and efficiency are critical, and an increasing number of protein structures are determined with no prior knowledge of function. This is exemplified by our analysis of the hypothetical protein Ydde_Ecoli, whose structure was recently solved by members of the North East Structural Genomics consortium. Although the proposed active site for this protein needs to be validated experimentally, this example illustrates the scope of CFG analysis as a general tool for the identification of residues likely to play an important role in a protein's biochemical function. Thus, our method offers a convenient solution to rapidly and automatically process the vast amounts of data that are beginning to emerge from structural genomics projects.  相似文献   

18.
The complete amino-acid sequence of Cu-Zn superoxide dismutase from white cabbage (Brassica oleracea) is reported. The polypeptide chain consists of 151 amino acids and has a molecular mass of 15,604 Da. The primary structure of the reduced and S-carboxymethylated protein was determined by automated solid phase sequence analysis of tryptic fragments and peptides obtained by digestion with Staphylococcus aureus proteinase V8. The protein shows a free amino terminus as was found for all non-mammalian Cu-Zn enzymes so far sequenced. Comparison of the amino-acid sequence from the plant Cu-Zn enzyme with those from nine eukaryotic enzymes reveals a high degree of homology (50-64%) among these enzymes. As already described for all the eukaryotic Cu-Zn superoxide dismutases also the plant enzyme shows a low homology (about 28%) with the bacteriocuprein of Photobacterium leiognathi. However, the amino-acid residues involved in metal binding, the half-cystine residues forming the intermolecular disulfide bridge, one of the arginine and some glycine and proline residues are conserved in all eleven Cu-Zn superoxide dismutases. Although the precise role of the 23 completely conserved residues is not yet completely understood, they appear to almost define the minimum structural requirements for optimizing the superoxide dismutation at the catalytic site, since functional differences between the eleven enzymes are not detectable.  相似文献   

19.
Protein O-fucosylation is a post-translational modification found on serine/threonine residues of thrombospondin type 1 repeats (TSR). The fucose transfer is catalysed by the enzyme protein O-fucosyltransferase 2 (POFUT2) and 440 human proteins contain the TSR consensus sequence for POFUT2-dependent fucosylation. To better understand O-fucosylation on TSR, we carried out a structural and functional analysis of human POFUT2 and its TSR substrate. Crystal structures of POFUT2 reveal a variation of the classical GT-B fold and identify sugar donor and TSR acceptor binding sites. Structural findings are correlated with steady-state kinetic measurements of wild-type and mutant POFUT2 and TSR and give insight into the catalytic mechanism and substrate specificity. By using an artificial mini-TSR substrate, we show that specificity is not primarily encoded in the TSR protein sequence but rather in the unusual 3D structure of a small part of the TSR. Our findings uncover that recognition of distinct conserved 3D fold motifs can be used as a mechanism to achieve substrate specificity by enzymes modifying completely folded proteins of very wide sequence diversity and biological function.  相似文献   

20.
Hernández G  LeMaster DM 《Proteins》2005,60(4):723-731
Given any operational criterion for pairwise interatomic interactions, for a pair of structurally homologous proteins there exists for both proteins a unique equivalent partitioning of the nonconserved residue positions into mutually non-interacting clusters. In the formation of a chimeric protein derived from these two parental sequences, if nonnative-like interactions are to be avoided in its tertiary structure, then all of the nonconserved residues of each cluster must necessarily be either maintained or interchanged simultaneously. This hybrid native partitioning criterion is applied to known gene shuffling results. When the degree of estimated disruption is modest, the HybNat algorithm provides an efficient predictor of structural integrity. This supports the expectation that a substantial fraction of sequences that conform to the hybrid native partitioning criterion will yield tertiary structures that largely preserve the native-like interactions of the parental proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号