首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 20-month-old infant exhibiting psychomotor retardation, dysmorphisms and ambiguous external genitalia was found to have a 46-chromosome karyotype including a normal X chromosome and a marker Y with most of Yq being replaced by an extra Xp21-->pter segment. The paternal karyotype (G and C bands) was 46,XY. The marker Y composition was verified by means of FISH with a chromosome X painting, an alphoid repeat and a DMD probe. Thus, the final diagnosis was 46,X,der(Y)t(X;Y)(p21;q11)de novo.ish der(Y)(wcpX+,DYZ3+,DMD+). The patient's phenotype is consistent with the spectrum documented in 13 patients with similar Xp duplications in whom sex reversal with female or ambiguous genitalia has occurred in spite of an intact Yp or SRY gene. A review of t(X;Y) identifies five distinct exchanges described two or more times: t(X;Y)(p21;q11), t(X;Y)(p22;p11), t(X;Y)(p22;q11-12), t(X;Y) (q22;q12), and t(X;Y)(q28;q12). These translocations probably result from a recombination secondary to DNA homologies within misaligned sex chromosomes in the paternal germline with the derivatives segregating at anaphase I.  相似文献   

2.
We describe here a 3-month-old male infant with brachy-plagyocephaly, short neck, widely spaced nipples, mild hypertonia, and ambiguous external genitalia but with both testes in the scrotum and no Müllerian derivates. His karyotype was 45,X,der(Y;9)(q12;p24).ish der(Y;9)(DYZ3+,SRY+,9ptel-) de novo. This patient's impaired sex differentiation is consistent with gonadal dysgenesis and compares with the male-to-female sex reversal secondary to a partial 9p deletion in spite of an intact Yp or SRY locus documented in 24 patients including a sex-reversed girl with a (Y;9) dicentric derivative. As for the cytogenetic findings, this case represents the second instance of a de novo pseudodicentric (Y;9) chromosome with loss of both distal 9p and Yq12 regions, apparent intactness of SRY, and consistent or preferential inactivation of the Y centromere. In addition, the possible 9p23p-p22 duplication observed in this case evokes the concomitant 9p22-p21 duplication documented in the previous girl with a (Y;9) derivative. Hence, these striking similarities point to a nonrandom Y;9 rearrangement in patients with either sex reversal or gonadal dysgenesis. Even if the present pseudodicentric derivative had inactivated the Y centromere, the existence of some variant cells points to functional dicentricity as it has been documented in other Y;autosome dicentric derivatives.  相似文献   

3.
The most frequent Y-autosome translocations involve an acrocentric autosome and they are frequently familial with neither phenotypic nor reproductive repercussion. However, different Y-autosome translocations have been related to infertility, due to abnormal pairing of the X and Y chromosomes at meiosis and an abnormal XY-body formation or by the disruption of the AZFs (Azoospermic Factor). Rare forms of Y-autosome translocations are those resulting in an unbalanced 45-chromosome karyotype that includes a dicentric Y+autosome chromosome. We describe a new case of a familial pseudodicentric 22;Y that is carried by 19 male members of a large family without phenotypic repercussion. Cytogenetic analysis, fluorescence in situ hybridisation (FISH) and subtelomeric Multiplex Ligation-dependent Probe Amplification (MLPA) assay have been performed. All male members of the family showed the karyotype 45,X,psu dic(22;Y)(p11.2;qter).ish psu dic(22;Y) (SRY+,DYZ3+,D14/D22Z1+). In conclusion, the presence of the dicentric chromosome in the male members of the family reported does not seem to interfere with the correct progression of spermatogenesis.  相似文献   

4.
Summary A 45,X karyotype was found in a boy with dysmorphic features, hypoglycaemia and pancytopenia. DNA analysis showed the presence of the Y-chromosomal DNA sequences SRY, ZFY, DYZ4, DYZ3 and DYS1. Using fluorescent in situ hybridization, we located DYZ4 and DYZ3 on chromosome llqter and concluded that a de novo translocation (Y;11)(q11.2;q24) with a deletion of 11q24qter and a deletion of Yq11.2Yqter were present; Jacobsen syndrome and azoospermia are associated with these deletions. Signs of Jacobsen syndrome were observed in the patient.  相似文献   

5.
We report the identification and characterization of the first supernumerary ring chromosome 10 containing a considerable proportion of 10q euchromatin by microdissection and reverse painting in a female patient presenting with short stature. Fluorescence in situ hybridization studies showed that the marker chromosome originates from chromosome 10 and includes the euchromatic bands p11.2 and q11.2. The supernumerary marker chromosome 10 was found in 14% of the peripheral blood lymphocytes analyzed. This constitutional mosaic could be confirmed in oral mucosa cells as a second cell system (16%) by interphase FISH using an alphoid centromeric probe for chromosome 10. Parental karyotypes were normal, uniparental disomy for the normal chromosomes 10 could be excluded by microsatellite analysis. The karyotype of the patient detected in peripheral blood cells can be described as mos 47,XX,+mar.rev ish r(10)(p11.2q11.2)(wcp10+,cep10+)/46,XX.  相似文献   

6.
Sex reversal is characterized by discordance between genetic and phenotypic sex. Most XX males result from an unequal interchange between X and Y chromosomes during paternal meiosis, therefore transferring SRY to the X chromosome, which explains the male development in the presence of an otherwise normal female karyotype. We present here the case of sex reversed SRY+ male twins with several cell lines. They consulted for infertility. The presence of SRY on an X chromosome was demonstrated by FISH. Their respective karyotypes were: 46,X,der(X)t(X;Y)(p22.3;p11.2)[249]/45,X [12]/45,der(X)t(X;Y)(p22.3;p11.2)[11]/47,XX,der(X)t(X;Y) (p22.3;p11.2)[1]/47,X,der(X)t(X;Y)(p22.3;p11.2)x2[1]/50, XX,der(X)t(X;Y)(p22.3;p11.2)x4[1]/46,XX[1] for the first twin (SH-1) and 46,X,der(X)t(X;Y)(p22.3;p11.2)[108]/45,X [3]/47,XX,der(X)t(X;Y)(p22.3;p11.2)[2]/45,der(X)t(X;Y) (p22.3;p11.2)[1]/47,X,der(X)t(X;Y)(p22.3;p11.2)x2[1] for the second twin (SH-2). There are three different types of XX males: 1) with normal genitalia, 2) with genital ambiguity, and 3) XX true hermaphrodites. The phenotype of the twins presented in this report is consistent with what is generally seen in XX SRY+ males: they have normal genitalia.  相似文献   

7.
Because ring Y chromosomes are unstable during cell division most reported patients are mosaics, usually including a 45,X cell line. The phenotype varies from normal males or females with streak gonads to sexual ambiguities. We present here the case of a 23-year-old man who was referred at 11 years for growth delay. The GTG-banded karyotypes of lymphocytes revealed two cell lines: 46,X,dic r(Y) seen in 76% of the metaphases analyzed and 45,X (24%). Karyotypes and FISH were performed eight years later with the following probes: DYZ3 (Y centromere), SRY (sex-region of the Y), DYZ1 (Yq heterochromatin), CEPX/Y (X centromere and Yq heterochromatin), TelVysion Xp/Yp, Xq/Yq (X and Y subtelomeres), pan-telomeric, cosmid clones LLycos130G04 and LLycos37C09 (PARII), and BAC clone RP11-5C5 (Yq11.223). The results showed an increase in the 45,X cell line (60%) and a reduction in the 46,X,dic r(Y) cell line (36.4%). The use of Yq probes showed that the ring Y chromosome was dicentric. In addition, other ring Y structures were observed. The breakpoints occurred in proximal Yp11.32 or in Yp11.31 distal to SRY and in Yq12 distal to the PARII region. Therefore, most of the Y remained intact and all genes, with the exception of those in PARI, are present in double dosage in the dic r(Y). The level of mosaicism was important in defining the phenotype.  相似文献   

8.
We report on the second prenatal diagnosis of familial paracentric inversion of the long arm of Y chromosome [46, X, inv(Y)(q11.2q12)]. The anomaly was detected through an amniocentesis performed because of advanced maternal age. The inversion has been detected by standard GTG banding methods and better characterized by FISH with painting probe and specific satellite probes DYZ1 and DYZ3. The inversion derived from phenotypically normal father. Pregnancy was uneventful and an healthy child was born. We discuss the issue concerning genetic prenatal counselling of this rare condition and we report the clinical follow up of the child.  相似文献   

9.
Summary Stable dicentric chromosomes behave as monocentrics because one of the centromeres is inactive. The cause of centromere inactivation is unknown; changes in centromere chromatin conformation and loss of centromeric DNA elements have been proposed as possible mechanisms. We studied the phenomenon of inactivation in two Y centromeres, having as a control genetically identical active Y centromeres. The two cases have the following karyotypes: 45,X/46,X,i(Y)(q12) and 46,XY/ 47,XY,+t(X;Y)(p22.3;p11.3). The analysis of the behaviour of the active and inactive Y chromosome centromeres after Da-Dapi staining, CREST immunofluorescence, and in situ hybridization with centromeric probes leads us to conclude that, in the case of the isochromosome, a true deletion of centromeric chromatin is responsible for its stability, whereas in the second case, stability of the dicentric (X;Y) is the result of centromere chromatin modification.  相似文献   

10.
An infant with ambiguous genitalia was found to have a karyotype 45,X/46,X,r(Y)(p11.2;q11.23)/47,X,idic(Y)(p11.2),idic(Y)(p11.2) using G-banding, C-banding and FISH. Examination of the genitalia revealed a phallus measuring 1.5 cm in length and 0.5 cm wide with perineal orifice. Subtle phenotypic features consistent with Turner syndrome were not present. Genital ultrasonography revealed the presence of an infantile uterus. Endoscopy of the vagina, uterus and cervix appeared normal.  相似文献   

11.
Isodicentric chromosomes are considered the most common structural abnormality of the human Y chromosome. Because of their instability during cell division, loss of an isodicentric Y seems mainly to lie at the origin of mosaicism in previously reported patients with a 45,X cell line. Here, we report on a similar case, which, however, turned out to be an example of dynamic mosaicism involving isodicentric chromosome Y and isochromosome Y after FISH with a set of chromosome Y-specific probes and multicolor banding. Cytogenetic analyses (GTG-, C-, and Q-banding) have shown three different cell lines: 45,X/46, X,idic(Y)(q12)/46,X,+mar. The application of molecular cytogenetic techniques established the presence of four cell lines: 45,X (48%), 46,X,idic(Y)(q11.23) (42%), 46,X,i(Y)(p10) (6%) and 47,X,idic(Y)(q11.23),+idic(Y)(q11.23) (4%). According to the available literature, this is the first case of dynamic mosaicism with up to four different cell lines involving loss, gain, and rearrangement of an idic(Y)(q11.23). The present report indicates that cases of mosaicism involving isodicentric and isochromosome Ys can be more dynamic in terms of somatic intercellular variability that probably has an underappreciated effect on the phenotype.  相似文献   

12.
In this study, we report an accurate method to determine the parental origin of sex chromosome aneuploidies or polyploidies and to detect low percentage mosaicisms. We have amplified by polymerase chain reaction (PCR) five polymorphic markers along the X chromosome (DXS1283E, DYS II, DMD49, AR and DXS52) and three markers along the Y chromosome (SRY, DYZ3 and DYZ1). False-negative results were discarded by the simultaneous amplification of Y markers and of internal controls. We have applied this protocol to a series of 14 Turner syndrome patients with a 45,X karyotype. We have detected sex chromosome mosaicisms in two patients. The parental origin of the syndrome has been determined in the other 12 patients.  相似文献   

13.
De novo satellited non-acrocentric chromosomes are very rare findings in prenatal diagnosis. Here we report the first case of a de novo 18ps, associated with del(18p), detected at prenatal diagnosis. A 37 years old woman underwent Chorionic Villus Sampling (CVS) for advanced maternal age. Cytogenetic analysis on direct CVS preparation (CVSc) revealed a male karyotype with a nonfamilial satellited 18ps and a reciprocal translocation t(17;19)(P11.1;q11) of maternal origin. The mesenchimal CVS culture (CVSm) showed a mosaic of cell lines with various involvement of chromosome 18: 18ps [36/70]/ r(18) [25/70]/ del(18p) [3/70]/ -18 [6/70]. Amniotic fluid cells (AFC) confirmed the homogeneous karyotype found at CVSc. The molecular cytogenetic characterization, performed on AFC, allowed the following diagnosis: 46,XY, +15, dic(15;18)(p11.1;p11.2), t(17;19)(p11.1;q11)mat. ish dic(15;18)(tel 18p-, D15Z1+, wcp18-, wcp 18+, D18Z1+, tel 18q+). The foetal autopsy disclosed subtle facial dysmorphisms and corpus callosum hypoplasia. In case of prenatal detection of de novo terminal ectopic NORs an accurate cytogenetic and molecular analysis should be performed in order to rule out subtle unbalancements.  相似文献   

14.
Summary The syndrome of 46,XX true hermaphroditism is a clinical condition in which both ovarian and testicular tissue are found in one individual. Both Mullerian and Wolffian structures are usually present, and external genitalia are often ambiguous. Two alternative mechanisms have been proposed to explain the development of testicular tissue in these subjects: (1) translocation of chromosomal material encoding the testicular determination factor (TDF) from the Y to the X chromosome or to an autosome, or (2) an autosomal dominant mutation that permits testicular determination in the absence of TDF. We have investigated five subjects with 46,XX true hermaphroditism. Four individuals had a normal 46,XX karyotype; one subject (307) had an apparent terminal deletion of the short arm of one X chromosome. Genomic DNA was isolated from these individuals and subjected to Southern blot analysis. Only subject 307 had Y chromosomal sequences that included the pseudoautosomal boundary, SRY (sex-determining region of Y), ZFY (Y gene encoding a zinc finger protein), and DXYS5 (an anonymous locus on the distal short arm of Y) but lacked sequences for DYZ5 (proximal short arm of Y) and for the long arm probes DYZ1 and DYZ2. The genomic DNA of the other four subjects lacked detectable Y chromosomal sequences when assayed either by Southern blotting or after polymerase chain reaction amplification. Our data demonstrate that 46,XX true hermaphroditism is a genetically heterogeneous condition, some subjects having TDF sequences but most not. The 46,XX subjects without SRY may have a mutation of an autosomal gene that permits testicular determination in the absence of TDF.  相似文献   

15.
A boy with Down syndrome due to a free trisomy 21 also had a metacentric Y chromosome with an arm euchromatic and the other heterochromatic inherited from his phenotypically normal father. This chromosome was mitotically stable and hybridized with the DYZ3 probe precisely at its primary constriction; in addition, a subtelomeric Xp/Yp probe gave the expected signal near the end of the euchromatic arm. So, the proband's karyotype was 47,X,inv(Y)(p11q11.2),+21. Given the high frequency of both chromosome anomalies, we regard its concurrence as a mere coincidence. This observation, along with previous reports, allows us to classify the apparent pericentric inversions of the Y chromosome into two types: "true" inversions characterized by an alphoid single centromere and mitotic stability, and "false" inversions in which a nonalphoid centromere has taken over the usual alphoid centromere; indeed, these chromosomes are dicentric and mitotically unstable. Finally, the inv(Y) polymorphism in man compares with that documented in other mammal species, in which the rearranged Y chromosome neither impairs the fertility nor has other phenotypical consequences.  相似文献   

16.
A 13-month-old boy with normal development and growth failure of prenatal onset but no other physical stigmata had a 46,XY,r(4)(p1 6.3q35).ish (4psubtel-, WHS1+, 4qsubtel+, pantel-) de novo karyotype. The analysis of 50-106 metaphases from each of four lymphocyte cultures (three of 72 h including one without colchicine and one of 96 h) revealed a dynamic mosaicism in 22-36% of cells. We did not observe a normal cell line. Hypoploidies (excluding ring losses) were observed in 2-7% of metaphases from colchicine-arrested cultures whereas tetraploidies were observed in 2-12% of metaphases from all four lymphocyte cultures. Further FISH studies were carried out on interphase nuclei from uncultured buccal cells and lymphocytes using two alphoid (CEP 1 and 9), a dual CEP X/SRY, and (in the former only) a subtel 4p probes. We scored 70-131 nuclei per assay and found apparent heteroploidies in approximately 1-47% of cells for CEP 1, CEP 9, subtel 4p, and SRY but not for CEP X. The patient's phenotype was typical of the ring syndrome and comparable to 9/37 previous r(4) cases. Moreover, all 38 patients were alive at the time of reporting and none has developed cancer. The 2-7% rate of hypodiploid cells in colchicine-arrested cultures and the approximately 1-47% rate of apparent heteroploidies in nuclei of uncultured cells evoke the in vitro and in vivo findings in patients with mosaic variegated aneuploidy (MVA). We conclude that our observation highlights the clinical and cytogenetical overlapping between the ring syndrome and the MVA syndrome; the crucial difference is the high risk of cancer related to BUB1B mutations in the latter.  相似文献   

17.
In this study we describe a 3-generation family carrying a (X;Y)(p22.3;q11.2) translocation in seven individuals of both sexes. Molecular analysis of the aberrant (X;Y)(p22.3;q11.2) chromosome was performed by FISH using X and Y-specific painting probes and also PCR amplification of the Y-specific sequences. Using these approaches it was demonstrated that the translocation resulted in a deletion of both X and Y pseudoautosomal regions. Moreover, using RBG banding it was shown that in all females the X-derivative chromosome was inactive in over 90% of mitoses. From the preliminary results obtained in this study we assumed that in this particular family the observed phenotype of the patients was caused by a deletion of the cluster of pseudoaotosomal genes responsible for the stature. More proximal loci, like STS or MRX49, were probably not deleted, since neither ichtyosis nor mental retardation was observed in this family.  相似文献   

18.
We describe the clinical case of a nine-year-old boy with psychomotor retardation and a small supernumerary marker chromosome (sSMC) present in mosaic form. Fluorescence in situ hybridization (FISH) using centromere cross-hybridizing probes D1/5/19Z (pZ5.1), the whole chromosome paint probe 19, pool YACs19p (839B1, 872G3, 728C8), and pool YACs19q (767C4, 761C1, 786G6) demonstrated that the sSMC was derived from chromosome 19p. Based on GTG-banding and FISH analyses, the patient's karyotype was interpreted as: 47,XY,+mar.ish der(19) (:p13.3-->p11:)(839B1+, 872G3+,728C8+, D1/5/19Z+) de novo[52]/46,XY[48]. To our knowledge, only two other similar cases have been reported. This case helps to better delineate karyotype-phenotype correlations between sSMC 19p and associated clinical phenomena.  相似文献   

19.
We describe a case of Burkitt-type acute lymphoblastic leukemia (L3 according to the classification FAB) with a variant t(2;8)(p12;q24) and additional chromosomal abnormalities at diagnosis. The karyotype was 47,X,Xq+,t(2;8)(p12;q24),7q+,12p+,+mar. The literature on chromosome rearrangements associated with t(2;8) in L3 leukemias has been reviewed.  相似文献   

20.
We have studied a male patient with significant developmental delay, growth failure, hypotonia, girdle weakness, microcephaly, and multiple congenital anomalies including atrial (ASD) and ventricular (VSD) septal defects. Detailed cytogenetic and molecular analyses revealed three de novo X chromosome aberrations and a karyotype 46,Y,der(X)inv(X) (p11.4q11.2)inv(X)(q11.2q21.32 approximately q22.2)del(X)(q22.3q22.3) was determined. The three X chromosome aberrations in the patient include: a pericentric inversion (inv 1) that disrupted the Duchenne muscular dystrophy (DMD) gene, dystrophin, at Xp11.4; an Xq11.2q21.32 approximately q22.2 paracentric inversion (inv 2) putatively affecting no genes; and an interstitial deletion at Xq22.3 that results in functional nullisomy of several known genes, including a gene previously associated with X-linked nonsyndromic mental retardation, acyl-CoA synthetase long chain family member 4 (ACSL4). These findings suggest that the disruption of DMD and the absence of ACSL4 in the patient are responsible for neuromuscular disease and cognitive impairment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号