共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
TOR (Target Of Rapamycin) is a highly conserved protein kinase that is important in both fundamental and clinical biology. In fundamental biology, TOR is a nutrient-sensitive, central controller of cell growth and aging. In clinical biology, TOR is implicated in many diseases and is the target of the drug rapamycin used in three different therapeutic areas. The yeast Saccharomyces cerevisiae has played a prominent role in both the discovery of TOR and the elucidation of its function. Here we review the TOR signaling network in S. cerevisiae. 相似文献
4.
Fission yeast has two TOR kinases, Tor1 and Tor2. Recent studies have indicated that this microbe has a TSC/Rheb/TOR pathway like higher eukaryotes. Two TOR complexes, namely TORC1 and TORC2, have been identified in this yeast, as in budding yeast and mammals. Fission yeast TORC1, which contains Tor2, and TORC2, which contains Tor1, apparently have opposite functions with regard to the promotion of G1 arrest and sexual development. Rapamycin does not inhibit growth of wild-type fission yeast cells, unlike other eukaryotic cells, but precise analyses have revealed that rapamycin affects certain cellular functions involving TOR in this yeast. It appears that fission yeast has a potential to be an ideal model system to investigate the TOR signaling pathways. 相似文献
5.
Florian John Stefan Roffler Thomas Wicker Christoph Ringli 《Plant signaling & behavior》2011,6(11):1700-1705
Cell growth is a process that needs to be tightly regulated. Cells must be able to sense environmental factors like nutrient abundance, the energy level or stress signals and coordinate growth accordingly. The Target Of Rapamycin (TOR) pathway is a major controller of growth-related processes in all eukaryotes. If environmental conditions are favorable, the TOR pathway promotes cell and organ growth and restrains catabolic processes like autophagy. Rapamycin is a specific inhibitor of the TOR kinase and acts as a potent inhibitor of TOR signaling. As a consequence, interfering with TOR signaling has a strong impact on plant development. This review summarizes the progress in the understanding of the biological significance and the functional analysis of the TOR pathway in plants. 相似文献
6.
7.
Coordinating cell growth with nutrient availability is critical for cell survival. The evolutionarily conserved TOR (target of rapamycin) controls cell growth in response to nutrients, in particular amino acids. As a central controller of cell growth, mTOR (mammalian TOR) is implicated in several disorders, including cancer, obesity, and diabetes. Here, we review how nutrient availability is sensed and transduced to TOR in budding yeast and mammals. A better understanding of how nutrient availability is transduced to TOR may allow novel strategies in the treatment for mTOR‐related diseases. 相似文献
8.
《Cell cycle (Georgetown, Tex.)》2013,12(7):1014-1018
Amino acids are key nutrients for protein synthesis and many metabolic processes. There is compelling evidence that amino acids themselves regulate protein synthesis, degradation, and cell growth. Mammalian target of rapamycin complex 1 (mTORC1) plays a central role in cellular growth regulation. Amino acids potently activate mTORC1, however, the mechanism of amino acid signaling is largely unknown. Recent studies have identified Rag small GTPases as key components mediating amino acid signals to mTORC1 activation. 相似文献
9.
The functional diversity and structural heterogeneity of microtubules are largely determined by microtubule-associated proteins (MAPs) [1] [2]. Bik1p (bilateral karyogamy defect protein) is one of the MAPs required for microtubule assembly, stability and function in cell processes such as karyogamy and nuclear migration and positioning in the yeast Saccharomyces cerevisiae [3]. The macrocyclic immunosuppressive antibiotic rapamycin, complexed with its binding protein FKBP12, binds to and inhibits the target of rapamycin protein (TOR) in yeast [4] [5]. We report here that TOR physically interacts with Bik1p, the yeast homolog of human CLIP-170/Restin [6] [7]. Inhibition of TOR by rapamycin significantly affects microtubule assembly, elongation and stability. This function of TOR is independent of new protein synthesis. Rapamycin also causes defects in spindle orientation, nuclear movement and positioning, karyogamy and chromosomal stability, defects also found in the bikDelta mutant. Our data suggest a role for TOR signaling in regulating microtubule stability and function, possibly through Bik1p. 相似文献
10.
Tap42/α4, a regulatory subunit of protein phosphatase 2A, is a downstream effector of the target of rapamycin (TOR) protein kinase, which regulates cell growth in coordination with nutrient and environmental conditions in yeast and mammals. In this study, we characterized the functions and phosphatase regulation of plant Tap46. Depletion of Tap46 resulted in growth arrest and acute plant death with morphological markers of programmed cell death. Tap46 interacted with PP2A and PP2A-like phosphatases PP4 and PP6. Tap46 silencing modulated cellular PP2A activities in a time-dependent fashion similar to TOR silencing. Immunoprecipitated full-length and deletion forms of Arabidopsis thaliana TOR phosphorylated recombinant Tap46 protein in vitro, supporting a functional link between Tap46 and TOR. Tap46 depletion reproduced the signature phenotypes of TOR inactivation, such as dramatic repression of global translation and activation of autophagy and nitrogen mobilization, indicating that Tap46 may act as a positive effector of TOR signaling in controlling those processes. Additionally, Tap46 silencing in tobacco (Nicotiana tabacum) BY-2 cells caused chromatin bridge formation at anaphase, indicating its role in sister chromatid segregation. These findings suggest that Tap46, in conjunction with associated phosphatases, plays an essential role in plant growth and development as a component of the TOR signaling pathway. 相似文献
11.
Grewal SS 《The international journal of biochemistry & cell biology》2009,41(5):1006-1010
The insulin/TOR pathway is a conserved regulator of cell and organism growth in metazoans. Over the last several years, an array of signaling inputs to this pathway has been defined. However the growth-regulatory outputs are less clear. Drosophila has proven to be a powerful genetic model system in which to study insulin/TOR signaling. This review highlights recent studies in Drosophila that have identified essential outputs and key effectors of the pathway. These include the regulation of ribosome synthesis, mRNA translation, autophagy and endocytosis, through downstream effectors such as Myc, FOXO, HIF1-alpha, TIF-IA, 4EBP and Atg1. This network of outputs and effectors can regulate cell and organismal metabolism, and is essential for the control of tissue growth, responses to starvation and stress, and aging. The mechanisms identified in Drosophila likely operate in most metazoans, and are relevent to our understanding of diseases caused by aberrent insulin/TOR signaling such as cancer, diabetes and obesity. 相似文献
12.
The target of rapamycin (TOR) is a serine/threonine kinase of the phosphatidylinositol kinase-related kinase family and is highly conserved from yeast to mammals. TOR functions as a central regulator of cell growth and is itself regulated by a wide range of signals, including growth factors, nutrients and stress conditions. Recent studies in eukaryotic cells have identified two distinct TOR complexes, TORC1 and TORC2, which phosphorylate different substrates and have distinct physiological functions. Here, we discuss new findings that have extended the complexity of TOR signaling and the different roles of the TORC complexes in yeast, flies and mammals. 相似文献
13.
Abraham RT 《Cell》2002,108(1):9-12
The eukaryotic cytoskeleton is a dynamic filamentous network with various cellular and developmental functions. Plant cells display a singular architecture, necessitating a structurally and functionally unique cytoskeleton and plant specific control mechanisms. 相似文献
14.
Abraham RT 《Current biology : CB》2005,15(4):R139-R141
The target of rapamycin (TOR) protein kinase is centrally involved in the coordination of cell growth and proliferation with the availability of growth factors and nutrients. Two recent reports have illuminated a mechanism whereby hypoxic stress dampens TOR signaling in metazoan cells. 相似文献
15.
Mitochondrial signaling, TOR, and life span 总被引:1,自引:0,他引:1
Growing evidence supports the concept that mitochondrial metabolism and reactive oxygen species (ROS) play a major role in aging and determination of an organism's life span. Cellular signaling pathways regulating mitochondrial activity, and hence the generation of ROS and retrograde signaling events originating in mitochondria, have recently moved into the spotlight in aging research. Involvement of the energy-sensing TOR pathway in both mitochondrial signaling and determination of life span has been shown in several studies. This brief review summarizes the recent progress on how mitochondrial signaling might contribute to the aging process with a particular emphasis on TOR signaling from invertebrates to humans. 相似文献
16.
《Critical reviews in biochemistry and molecular biology》2013,48(6):527-547
The mechanistic (or mammalian) target of rapamycin (mTOR), an evolutionarily conserved protein kinase, orchestrates cellular responses to growth, metabolic and stress signals. mTOR processes various extracellular and intracellular inputs as part of two mTOR protein complexes, mTORC1 or mTORC2. The mTORCs have numerous cellular targets but members of a family of protein kinases, the protein kinase (PK)A/PKG/PKC (AGC) family are the best characterized direct mTOR substrates. The AGC kinases control multiple cellular functions and deregulation of many members of this family underlies numerous pathological conditions. mTOR phosphorylates conserved motifs in these kinases to allosterically augment their activity, influence substrate specificity, and promote protein maturation and stability. Activation of AGC kinases in turn triggers the phosphorylation of diverse, often overlapping, targets that ultimately control cellular response to a wide spectrum of stimuli. This review will highlight recent findings on how mTOR regulates AGC kinases and how mTOR activity is feedback regulated by these kinases. We will discuss how this regulation can modulate downstream targets in the mTOR pathway that could account for the varied cellular functions of mTOR. 相似文献
17.
The mechanistic (or mammalian) target of rapamycin (mTOR), an evolutionarily conserved protein kinase, orchestrates cellular responses to growth, metabolic and stress signals. mTOR processes various extracellular and intracellular inputs as part of two mTOR protein complexes, mTORC1 or mTORC2. The mTORCs have numerous cellular targets but members of a family of protein kinases, the protein kinase (PK)A/PKG/PKC (AGC) family are the best characterized direct mTOR substrates. The AGC kinases control multiple cellular functions and deregulation of many members of this family underlies numerous pathological conditions. mTOR phosphorylates conserved motifs in these kinases to allosterically augment their activity, influence substrate specificity, and promote protein maturation and stability. Activation of AGC kinases in turn triggers the phosphorylation of diverse, often overlapping, targets that ultimately control cellular response to a wide spectrum of stimuli. This review will highlight recent findings on how mTOR regulates AGC kinases and how mTOR activity is feedback regulated by these kinases. We will discuss how this regulation can modulate downstream targets in the mTOR pathway that could account for the varied cellular functions of mTOR. 相似文献
18.
TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae.
The Saccharomyces cerevisiae genes TOR1 and TOR2 encode phosphatidylinositol kinase homologs. TOR2 has two essential functions. One function overlaps with TOR1 and mediates protein synthesis and cell cycle progression. The second essential function of TOR2 is unique to TOR2 and mediates the cell-cycle-dependent organization of the actin cytoskeleton. We have isolated temperature-sensitive mutants that are defective for either one or both of the two TOR2 functions. The three classes of mutants were as follows. Class A mutants, lacking only the TOR2-unique function, are defective in actin cytoskeleton organization and arrest within two to three generations as small-budded cells in the G2/M phase of the cell cycle. Class B mutants, lacking only the TOR-shared function, and class C mutants, lacking both functions, exhibit a rapid loss of protein synthesis and a G1 arrest within one generation. To define further the two functions of TOR2, we isolated multicopy suppressors that rescue the class A or B mutants. Overexpression of MSS4, PKC1, PLC1, RHO2, ROM2, or SUR1 suppressed the growth defect of a class A mutant. Surprisingly, overexpression of PLC1 and MSS4 also suppressed the growth defect of a class B mutant. These genes encode proteins that are involved in phosphoinositide metabolism and signaling. Thus, the two functions (readouts) of TOR2 appear to involve two related signaling pathways controlling cell growth. 相似文献
19.
José L. Crespo 《Plant signaling & behavior》2012,7(2):273-275
The highly conserved target of rapamycin (TOR) Ser/Thr kinase promotes protein synthesis under favorable growth conditions in all eukaryotes. Downregulation of TOR signaling in the model unicellular green alga Chlamydomonas reinhardtii has recently revealed a link between control of protein synthesis, endoplasmic reticulum (ER) stress and the reversible modification of the BiP chaperone by phosphorylation. Inhibition of protein synthesis by rapamycin or cycloheximide resulted in the phosphorylation of BiP on threonine residues while ER stress induced by tunicamycin or heat shock caused the fast dephosphorylation of the protein. Regulation of BiP function by phosphorylation/dephosphorylation events was proposed in early studies in mammalian cells although no connection to TOR signaling has been established so far. Here I will discuss about the coordinated regulation of BiP modification by TOR and ER stress signals in Chlamydomonas. 相似文献
20.
TOR, phosphatidylinositol 3-kinase, p70s6k, and 4E-BP1 have recently emerged as components of a major signalling pathway that is dedicated to protein translation and thus to cell growth. This pathway appears to be conserved, at least in part, in yeast, slime molds, plants, flies, and mammals. TOR and phosphatidylinositol 3-kinase control p70s6k and 4E-BP1, which, in turn, directly control the translation initiation machinery. 相似文献