首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heavy metals impact on the cytoplasmic function in a number of different ways, principally by their binding to protein sulflhdryl groups, by producing a deficiency of essential ions and, eventually, by substituting the essemial ions. Other modes of toxicity are possible, including disruption of cell transport processes and oxidative damage by free radicals generated by metal redox cycling. Plants have developed a variety of biochemical defense strategies to prevent heavy metal poisoning. The possible defense mechanism in plant may involve: metal binding to cell walls, avoidance of uptake these toxic metal ions, reduction of heavy metal transport across the cell membrane, active efflux, compartmentalization and metal chelation. Phytochelatins that can tightly bind and sequester metals may play an important role in the accumulation of heavy metals and preventing them from entering the cell metabolic pathway, the rates of high molecular weight (HMW) metal phytochelatin complexes (Cd-Sa-complex) formation may be an important determinant of the plant tolerance. In addition, plants possess several antioxidant defense systems to protect themselves from the oxidative stress by heavy metals.  相似文献   

2.
Transport of toxic heavy metals across cell membranes   总被引:5,自引:0,他引:5  
Membrane transport of nonessential toxic heavy metals (type D heavy metals) not only controls their access to intracellular target sites but also helps determine their uptake, distribution, and excretion from the body. The critical role of membranes in the toxicology of class D metals has attracted the attention of many investigators, and extensive information has been collected on the mechanism(s) of metal transfer across membranes. Characteristics of metal transport in different cells, or even on opposite sides of the same cell, or under different physiological conditions, are not identical, and no unitary hypothesis has been formulated to explain this process in all cells. However, it seems possible that the mechanisms proposed for different cells represent variations on a few common themes.  相似文献   

3.
Membrane cholesterol dynamics: cholesterol domains and kinetic pools   总被引:10,自引:0,他引:10  
Nonreceptor mediated cholesterol uptake and reverse cholesterol transport in cells occur through cellular membranes. Thus, elucidation of cholesterol dynamics in membranes is essential to understanding cellular cholesterol accumulation and loss. To this end, it has become increasingly evident that cholesterol is not randomly distributed in either model or biologic membranes. Instead, membrane cholesterol appears to be organized into structural and kinetic domains or pools. Cholesterol-rich and poor domains can even be observed histochemically and physically isolated from epithelial cell surface membranes. The physiologic importance of these domains is 2-fold: (i) Select membrane proteins (receptors, transporters, etc.) are localized in either cholesterol-rich or cholesterol-poor domains. Consequently, the structure and properties of the domains rather than of the bulk lipid may selectively affect the function of proteins residing therein. (ii) Kinetic evidence suggests that cholesterol transport through and between membranes may occur through specific domains or pools. Regulation of the size and properties of such domains may be controlling factors of cholesterol transport or accumulation in cells. Recent technologic advances in the use of fluorescent sterols have allowed examination of cholesterol domain structure in model and biologic membranes. These techniques have been applied to examine the role of high-density lipoprotein, cholesterol lowering drugs, and intracellular lipid transfer proteins in membrane sterol domain structure and sterol movement between membranes.  相似文献   

4.
According to the Fluid Mosaic Model, a biological membrane is a two-dimensional fluid of oriented proteins and lipids. The lipid bilayer is the basic structure of all cell and organelle membranes. Cell membranes are dynamic, fluid structures, and most of their molecules are able to move in the plane of the membrane. Fluidity is the quality of ease of movement and represents the reciprocal value of membrane viscosity. Fluid properties of biological membranes are essential for numerous cell functions. Even slight changes in membrane fluidity may cause aberrant function and pathological processes. Several evidences suggest that trace elements, e.g., iron, copper, zinc, selenium, chromium, cadmium, mercury and lead may influence membrane fluidity. The interaction of heavy metals with cellular membranes may contribute to explain, at least partially, the toxicity associated with these metals.  相似文献   

5.
植物耐重金属机理研究进展   总被引:80,自引:0,他引:80  
由于工业“三废”和机动车尾气的排放、污水灌溉及农药、除草剂和化肥的使用,严重地污染了土壤、水质和大气,其中土壤中的重金属(Hg、Cd、As、Cu和Al)污染更为严重[1]。重金属在植物根、茎、叶及籽粒中的大量累积,不仅严重地影响植物的生长和发育[1~...  相似文献   

6.
Ever since the early microscopists and experimental biologists distinguished the fundamental differences between the animal and plant cells, investigations on the structure and function of the cell membrane have become a fascinating field of biomedical research. The membranes of all types of cells provide the biological border, and maintain the integrity of the cell by protecting it from toxic insult rendered by chemicals, biochemicals, toxins etc. The toxic damage of the cell membrane results in an alteration of the transport mechanism or transmits a message for altered DNA, RNA and protein synthesis, vis-a-vis altered cell division which ultimately leads to death of the cell. In fact, the ligand receptor binding, with particular reference to toxicants of different kinds, may alter the normal physiological function of the cell. If the damaged cell is involved in immune function, the host becomes more susceptible to infection. Prolonged immunosuppression may predispose the host to develop cancer, although cancer cells themselves originate as a result of genetic damage caused by environmental toxicants, endocytosed after binding with membrane receptors, finally reaching the genomic material to cause carcinogenic alteration. The phenomena of membrane binding, transmission of message., processing of message and eventual alteration of biomolecular structure consequently resulting in a disorder or disease process are described in the present communication.  相似文献   

7.
Summary For many organisms, some heavy metals in external media are essential at low concentrations but are toxic at high concentrations. Strongly toxic heavy metals are toxic even at low concentrations. Recently, it was proven that changes of valencies of Fe, Cu and Mn were necessary for these metals to be utilized by organisms, especially microorganisms. The valencies of Hg and Cr are changed by reducing systems of cells in the process of detoxifying them. Thus, the processes of oxidoreduction of these metals are important for biological systems of metal-autoregulation and metal-mediated regulation. Metal ion-specific reducing enzyme systems function in the cell surface layer of microorganisms. These enzymes require NADH or NADPH as an electron donor and FMN or FAD as an electron carrier component. Electron transport may be operated by transplamsa-membrane redox systems. Metal ion reductases are also found in the cytoplasm. The affinities of metal ions to ligand residues change with the valence of the metal elements and mutual interactions of various metal ions are important for regulation of oxidoreduction states. Microorganisms can utilize essential metal elements and detoxify excess metals by respective reducing enzyme systems and by regulating movement of heavy metal ions.  相似文献   

8.
Mammalian phagocytes control bacterial infections effectively through phagocytosis, the process by which particles engulfed at the cell surface are transported to lysosomes for destruction. However, intracellular pathogens have evolved mechanisms to avoid this fate. Many bacterial pathogens use specialized secretion systems to deliver proteins into host cells that subvert signaling pathways controlling membrane transport. These bacterial effectors modulate the function of proteins that regulate membrane transport and alter the phospholipid content of membranes. Elucidating the biochemical function of these effectors has provided a greater understanding of how bacteria control membrane transport to create a replicative niche within the host and provided insight into the regulation of membrane transport in eukaryotic cells.  相似文献   

9.
Lysosomes are known centers for sequestration of calcium and a variety of heavy metals in many invertebrate tissues, and as a result of this compartmentalization these organelles perform important detoxification roles in the animals involved. The present investigation uses a centrifugation method to isolate and purify hepatopancreatic lysosomes from the American lobster, Homarus americanus. Purified lysosomal preparations were used to characterize membrane transport mechanisms in these organelles for transferring and sequestering cytoplasmic copper following its absorption across the plasma membrane from dietary constituents. The copper-specific fluorescent dye, Phen Green, was employed to quantify transmembrane fluxes of this metal as has been recently used to investigate copper movements across hepatopancreatic mitochondrial and plasma membranes. Results indicated the presence of a vanadate-sensitive, calcium-stimulated, copper ATPase in the membranes of these organelles that displayed high affinity carrier-mediated transport kinetics and may significantly contribute to organismic copper homeostasis. Together with a putative bafilomycin-sensitive V-ATPase in the membrane of the same organelles, importing hydrogen ions into the organellar interior, this copper ATPase may function as part of a physiological mechanism for precipitate formation between metallic cations and anions. These ionic precipitate complexes may then act as a sink for excess metals and thereby reduce the circulating concentrations of these elements.  相似文献   

10.
Hg and Cd are non-essential toxic heavy metals that bioaccumulate in the tissues of living systems but less is known about their interactions with Eukaryotic lipid bilayers. Microscopy experiments showed that Hg and Cd changed the cell morphology of rabbit erythrocytes while Hg also induced cell rupture. As membranes are one of the first available targets, our study aimed to better understand metal-lipid interactions that could lead to toxic effects. Fluorescence spectroscopy (Laurdan Generalized Polarization) and dynamic light scattering were used to analyze metal-induced changes in membrane fluidity and the size of liposomes composed of Brain (Porcine), Liver (Bovine), Heart (Bovine) and Yeast (S. cerevisiae) lipid extracts. Under physiological chloride and pH levels, Hg irreversibly cleaves plasmalogens resulting in an increase in membrane rigidity. These lipids are enriched in Brain, Heart and Erythrocyte membranes and are important in signalling and the protection against oxidative stress. Interestingly, Hg had a heavily reduced effect on the plasmalogen-free Yeast extract membrane. In contrast, Cd induced rigidity by targeting negatively charged phosphatidic acid, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol and cardiolipin in these extracts. Metal-induced liposome aggregation depended on the proportion of negatively charged lipids/plasmalogen and even the order of metal addition. Our results show that data from model systems correlate with trends observed in complex biological extracts and red blood cells and serve as a predictive tool for analyzing metal-lipid interactions. The determination of the specific lipid targets for Hg and Cd provides new insights how these metals exert toxic effects on cell membranes.  相似文献   

11.
Heavy metals are toxic to living organisms. Some have no known beneficial biological function, while others have essential roles in physiological reactions. Mechanisms which deal with heavy metal stress must protect against the deleterious effects of heavy metals, yet avoid depleting the cell of a heavy metal which is also an essential nutrient. We describe the mechanisms of resistance in Escherichia coli to two different heavy metals, mercury and copper. Resistance of E. coli to mercury is reasonably well understood and is known to occur by transport of mercuric ions into the cytoplasmic compartment of the bacterial cell and subsequent reductive detoxification of mercuric ions. Recent mutational analysis has started to uncover the mechanistic detail of the mercuric ion transport processes, and has shown the essential nature of cysteine residues in transport of Hg(II). Resistance to copper is much less well understood, but is known to involve the increased export of copper from the bacterial cell and modification of the copper; the details of the process are still being elucidated. Expression of both metal resistance determinants is regulated by the corresponding cation. In each case the response enables the maintenance of cellular homeostasis for the metal. The conclusions drawn allow us to make testable predictions about the regulation of expression of resistance to other heavy metals.  相似文献   

12.
This review has focused on several parameters related to the delivery of carcinogenic metal compounds to the cell nucleus as a basis for understanding the intermediates formed between metals and cellular components and the effect of these intermediates on DNA structure and function. Emphasis has been placed on metal interactions at the cellular membrane, including lipid peroxidation, metal interactions with glutathione and their relation to membrane injury, and metal effects on the membrane bound enzyme, Na+/K+ ATPase. Metal binding to metallothionein is also considered, particularly as related to transport and utilization of metal ions and to genetic defects in these processes exemplified in Menkes disease. The ability of cadmium to induce the synthesis of metallothionein more strongly than zinc is also discussed in relation to other toxic and carcinogenic metals. The effects of metal ions on purified DNA and RNA polymerase systems are presented with some of the recent studies using biological ligand-metal complexes. This review points out the importance of considering how metals affect in vitro systems when presented as ionic forms or complexed to relevant biological ligands.  相似文献   

13.
It is widely accepted that the increased use of antibiotics has resulted in bacteria with developed resistance to such treatments. These organisms are capable of forming multi‐protein structures that bridge both the inner and outer membrane to expel diverse toxic compounds directly from the cell. Proteins of the resistance nodulation cell division (RND) superfamily typically assemble as tripartite efflux pumps, composed of an inner membrane transporter, a periplasmic membrane fusion protein, and an outer membrane factor channel protein. These machines are the most powerful antimicrobial efflux machinery available to bacteria. In Escherichia coli, the CusCFBA complex is the only known RND transporter with a specificity for heavy metals, detoxifying both Cu+ and Ag+ ions. In this review, we discuss the known structural information for the CusCFBA proteins, with an emphasis on their assembly, interaction, and the relationship between structure and function.  相似文献   

14.
The voltage-dependent anion-selective channel (VDAC) is the most abundant protein in the mitochondrial outer membrane and the major transport pathway for a large variety of compounds ranging from ions to large polymeric molecules such as DNA and tRNA. Plant VDACs feature a secondary structure content and electrophysiological properties akin to those of VDACs from other organisms. They however undergo a specific regulation. The general importance of VDAC in plant physiology has only recently emerged. Besides their role in metabolite transport, plant VDACs are also involved in the programmed cell death triggered in response to biotic and abiotic stresses. Moreover, their colocalization in non-mitochondrial membranes suggests a diversity of function. This review summarizes our current understanding of the structure and function of plant VDACs. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.  相似文献   

15.
The envelope of Gram-negative bacteria is composed of two distinct lipid membranes: an inner membrane and outer membrane. The outer membrane is an asymmetric bilayer with an inner leaflet of phospholipids and an outer leaflet of lipopolysaccharide. Most of the steps of lipid synthesis occur within the cytoplasmic compartment of the cell. Lipids must then be transported across the inner membrane and delivered to the outer membrane. These topological features combined with the ability to apply the tools of biochemistry and genetics make the Gram-negative envelope a fascinating model for the study of lipid trafficking. In addition, as lipopolysaccharide is essential for growth of most strains and is a potent inducer of the mammalian innate immune response via activation of Toll-like receptors, Gram-negative lipid transport is also a promising target for the development of novel antibacterial and anti-inflammatory compounds. This review focuses on recent developments in our understanding of lipid transport across the inner membrane and to the outer membrane of Gram-negative bacteria.  相似文献   

16.
Alzheimer's disease is a chronic neurodegenerative disorder characterized by neuronal loss, cerebrovascular inflammation, and accumulation of senile plaques in the brain parenchyma and cerebral blood vessels. Amyloid-β peptide (Aβ), a major component of senile plaques, has been shown to exert multiple toxic effects to neurons, astrocytes, glial cells, and brain endothelium. Oligomeric Aβ can disturb the structure and function of cell membranes and alter membrane mechanical properties, such as membrane fluidity and molecular order. Much of these effects are attributed to their capability to trigger oxidative stress and inflammation. In this review, we discuss the effects of Aβ on neuronal cells, astrocytes, and cerebral endothelial cells with special emphasis on cell membrane properties and cell functions.  相似文献   

17.
Fronzes R  Remaut H  Waksman G 《The EMBO journal》2008,27(17):2271-2280
Bacteria commonly expose non-flagellar proteinaceous appendages on their outer surfaces. These extracellular structures, called pill or fimbriae, are employed in attachment and invasion, biofilm formation, cell motility or protein and DNA transport across membranes. Over the past 15 years, the power of molecular and structural techniques has revolutionalized our understanding of the biogenesis, structure, function and mode of action of these bacterial organelles. Here, we review the five known classes of Gram-negative non-flagellar appendages from a biosynthetic and structural point of view.  相似文献   

18.
Phytoremediation of Heavy Metals: Physiological and Molecular Mechanisms   总被引:2,自引:0,他引:2  
Heavy metals (HM) are a unique class of toxicants since they cannot be broken down to non-toxic forms. Concentration of these heavy metals has increased drastically, posing problems to health and environment, since the onset of the industrial revolution. Once the heavy metals contaminate the ecosystem, they remain a potential threat for many years. Some technologies have long been in use to remove, destroy and sequester these hazardous elements. Even though effective techniques for cleaning the contaminated soils and waters are usually expensive, labour intensive, and often disturbing. Phytoremediation, a fast-emerging new technology for removal of toxic heavy metals, is cost-effective, non-intrusive and aesthetically pleasing. It exploits the ability of selected plants to remediate pollutants from contaminated sites. Plants have inter-linked physiological and molecular mechanisms of tolerance to heavy metals. High tolerance to HM toxicity is based on a reduced metal uptake or increased internal sequestration, which is manifested by interaction between a genotype and its environment. The growing interest in molecular genetics has increased our understanding of mechanisms of HM tolerance in plants and many transgenic plants have displayed increased HM tolerance. Improvement of plants by genetic engineering, i.e., by modifying characteristics like metal uptake, transport and accumulation and plant’s tolerance to metals, opens up new possibilities of phytoremediation. This paper presents an overview of the molecular and physiological mechanisms involved in the phytoremediation process, and discusses strategies for engineering plants genetically for this purpose.  相似文献   

19.
Metals can have a number of detrimental or beneficial effects in the cell, but first they must get in. Organisms have evolved transport mechanisms to get metals that are required, or essential into the cell. Nonessential metals often enter the cell through use of the machinery provided for essential metals. Much work has been done to advance our understanding of how these metals are transported across plasma and organelle membranes. This review provides an overview of essential and nonessential metal transport and homeostatic processes.  相似文献   

20.
ABC (ATP-binding cassette) proteins actively transport a wide variety of substrates, including peptides, amino acids, sugars, metals, drugs, vitamins and lipids, across extracellular and intracellular membranes. Of the 49 hum an ABC proteins, a significant number are known to mediate the extrusion of lipids from membranes or the flipping of membrane lipids across the bilayer to generate and maintain membrane lipid asymmetry. Typical lipid substrates include phospholipids, sterols, sphingolipids, bile acids and related lipid conjugates. Members of the ABCA subfamily of ABC transporters and other ABC proteins such as ABCB4, ABCG1 and ABCG5/8 implicated in lipid transport play important roles in diverse biological processes such as cell signalling, membrane lipid asymmetry, removal of potentially toxic compounds and metabolites, and apoptosis. The importance of these ABC lipid transporters in cell physiology is evident from the finding that mutations in the genes encoding many of these proteins are responsible for severe inherited diseases. For example, mutations in ABCA1 cause Tangier disease associated with defective efflux of cholesterol and phosphatidylcholine from the plasma membrane to the lipid acceptor protein apoA1 (apolipoprotein AI), mutations in ABCA3 cause neonatal surfactant deficiency associated with a loss in secretion of the lipid pulmonary surfactants from lungs of newborns, mutations in ABCA4 cause Stargardt macular degeneration, a retinal degenerative disease linked to the reduced clearance of retinoid compounds from photoreceptor cells, mutations in ABCA12 cause harlequin and lamellar ichthyosis, skin diseases associated with defective lipid trafficking in keratinocytes, and mutations in ABCB4 and ABCG5/ABCG8 are responsible for progressive intrafamilial hepatic disease and sitosterolaemia associated with defective phospholipid and sterol transport respectively. This chapter highlights the involvement of various mammalian ABC transporters in lipid transport in the context of their role in cell signalling, cellular homoeostasis, apoptosis and inherited disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号