首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the redox antioxidant network, dihydrolipoate can synergistically enhance the ascorbate-dependent recycling of vitamin E. Since the major endogenous thiol antioxidant in biological systems is glutathione (GSH) it was of interest to compare the effects of dihydrolipoate with GSH on ascorbate-dependent recycling of the water-soluble homologue of vitamin E, Trolox, by electron spin resonance (ESR). Trolox phenoxyl radicals were generated by a horseradish peroxidase (HRP)-hydrogen peroxide (H2O2) oxidation system. In the presence of dihydrolipoate, Trolox radicals were suppressed until both dihydrolipoate and endogenous levels of ascorbate in skin homogenates were consumed. Similar experiments made in the presence of GSH revealed that Trolox radicals reappeared immediately after ascorbate was depleted and that GSH was not able to drive the ascorbate-dependent Trolox recycling reaction. However, at higher concentrations GSH was able to increase ascorbate-mediated Trolox regeneration from the Trolox radical. ESR and spectrophotometric measurements demonstrated the ability of dihydrolipoate or GSH to react with dehydroascorbate, the two-electron oxidation product of ascorbate in this system. Dihydrolipoate regenerated greater amounts of ascorbate at a much faster rate than equivalent concentrations of GSH. Thus the marked difference between the rate and efficiency of ascorbate generation by dihydrolipoate as compared with GSH appears to account for the different kinetics by which these thiol antioxidants influence ascorbate-dependent Trolox recycling.  相似文献   

2.
Ascorbate is readily oxidized in aqueous solution by ascorbate oxidase. Ascorbate radicals are formed, which disproportionate to ascorbate and dehydroascorbic acid. Addition of erythrocytes with increasing intracellular ascorbate concentrations decreased the oxidation of ascorbate in a concentration-dependent manner. Concurrently, it was found, utilizing electron spin resonance spectroscopy, that extracellular ascorbate radical levels were decreased. Control experiments showed that these results could not be explained by leakage of ascorbate from the cells, inactivation of ascorbate oxidase, or oxygen depletion. Thus, this means that intracellular ascorbate is directly responsible for the decreased oxidation of extracellular ascorbate. Exposure of ascorbate-loaded erythrocytes to higher levels of extracellular ascorbate radicals resulted in the detection of intracellular ascorbate radicals. Moreover, efflux of dehydroascorbic acid was observed under these conditions. These data confirm the view that intracellular ascorbate donates electrons to extracellular ascorbate free radical via a plasma membrane redox system. Such a redox system enables the cells to effectively counteract oxidative processes and thereby prevent depletion of extracellular ascorbate.  相似文献   

3.
The uptake, recycling, and function of ascorbic acid was evaluated in cultured U-937 monocytic cells. Dehydroascorbic acid, the two-electron oxidized form of the vitamin, was taken up on the glucose transporter and reduced to ascorbate to a much greater extent than ascorbate itself was accumulated by the cells. In contrast to dehydroascorbic acid, ascorbate entered the cells on a sodium- and energy-dependent transporter. Intracellular ascorbate enhanced the transfer of electrons across the cell membrane to extracellular ferricyanide. Rates of ascorbate-dependent ferricyanide reduction were saturable, fivefold greater than basal rates, and facilitated by intracellular recycling of ascorbate. Whereas reduction of dehydroascorbic acid concentrations above 400 microM consumed reduced glutathione (GSH), even severe GSH depletion by 1-chloro-2,4-dinitrobenzene was without effect on the ability of the cells to reduce concentrations of dehydroascorbic acid likely to be in the physiologic range (< 200 microM). Dialyzed cytosolic fractions from U-937 cells reduced dehydroascorbic acid to ascorbate in an NADPH-dependent manner that appeared due to thioredoxin reductase. However, thioredoxin reductase did not account for the bulk of dehydroascorbic acid reduction, since its activity was also decreased by treatment of intact cells with 1-chloro-2,4-dinitrobenzene. Thus, U-937 cells loaded with dehydroascorbic acid accumulate ascorbate against a concentration gradient via a mechanism that is not dependent on GSH or NADPH, and this ascorbate can serve as the major source of electrons for transfer across the plasma membrane to extracellular ferricyanide.  相似文献   

4.
Ascorbic acid is necessary for optimal insulin secretion from pancreatic islets. We evaluated ascorbate recycling and whether it is impaired by increased glucose metabolism in the rat beta-cell line INS-1. INS-1 cells, engineered with the potential for overexpression of glucokinase under the control of a tetracycline-inducible gene expression system, took up and reduced dehydroascorbic acid to ascorbate in a concentration-dependent manner that was optimal in the presence of physiologic D-glucose concentrations. Ascorbate uptake did not affect intracellular GSH concentrations. Whereas depletion of GSH in culture to levels about 25% of normal also did not affect the ability of the cells to reduce dehydroascorbic acid, more severe acute GSH depletion to less than 10% of normal levels did impair dehydroascorbic acid reduction. Culture of inducible cells in 11.8 mM D-glucose and doxycycline for 48 h enhanced glucokinase activity, increased glucose utilization, abolished D-glucose-dependent insulin secretion, and increased generation of reactive oxygen species. The latter may have contributed to subsequent decreases in the ability of the cells both to maintain intracellular ascorbate and to recycle it from dehydroascorbic acid. Cultured beta cells have a high capacity to recycle ascorbate, but this is sensitive to oxidant stress generated by increased glucose metabolism due to culture in high glucose concentrations and increased glucokinase expression. Impaired ascorbate recycling as a result of increased glucose metabolism may have implications for the role of ascorbate in insulin secretion in diabetes mellitus and may partially explain glucose toxicity in beta cells.  相似文献   

5.
Summary Ascorbate free radical is considered to be a substrate for a plasma membrane redox system in eukaryotic cells. Moreover, it might be involved in stimulation of cell proliferation. Ascorbate free radical can be generated by autoxidation of the ascorbate dianion, by transition metal-dependent oxidation of ascorbate, or by an equilibrium reaction of ascorbate with dehydroascorbic acid. In this study, we investigated the formation of ascorbate free radical, at physiological pH, in mixtures of ascorbate and dehydroascorbic acid by electron spin resonance spectroscopy. It was found that at ascorbate concentrations lower than 2.5 mM, ascorbate-free radical formation was not dependent on the presence of dehydroascorbic acid. Removal of metal ions by treatment with Chelex 100 showed that autoxidation under these conditions was less than 20%. Therefore, it is concluded that at low ascorbate concentrations generation of ascorbate free radical mainly proceeds through metal-ion-dependent reactions. When ascorbate was present at concentrations higher than 2.5 mM, the presence of dehydroascorbic acid increased the ascorbate free-radical signal intensity. This indicates that under these conditions ascorbate free radical is formed by a disproportionation reaction between ascorbate and dehydroascorbic acid, having aK equil of 6 × 10–17 M. Finally, it was found that the presence of excess ferricyanide completely abolished ascorbate free-radical signals, and that the reaction between ascorbate and ferricyanide yields dehydroascorbic acid. We conclude that, for studies under physiological conditions, ascorbate free-radical concentrations cannot be calculated from the disproportionation reaction, but should be determined experimentally.Abbreviations AFR ascorbate free radical - DHA dehydroascorbic acid - EDTA ethylenediaminetetraacetic acid - DTPA diethylenetri-aminepentaacetic acid - TEMPO 2,2,6,6-tetramethylpiperidinoxy  相似文献   

6.
Mitochondria generate reactive oxygen species as by-products of oxidative metabolism. Since ascorbic acid can scavenge such destructive species, we studied the ability of mitochondria from rat liver and muscle to take up, recycle, and oxidize ascorbate. Freshly prepared mitochondria contain ascorbate, as do mitoplasts that lack the outer mitochondrial membrane. Both mitochondria and mitoplasts rapidly take up oxidized ascorbate as dehydroascorbic acid and reduce it to ascorbate. Ascorbate concentrations in mitochondria and mitoplasts rise into the low millimolar range during dehydroascorbic acid uptake, although uptake and reduction is opposed by ascorbate efflux. Mitochondrial dehydroascorbic acid reduction depends mainly on GSH, but mitochondrial thioredoxin reductase may also contribute. Reactive oxygen species generated within mitochondria oxidize ascorbate more readily than they do GSH and alpha-tocopherol. These results show that mitochondria can recycle ascorbate, which in turn might help to prevent deleterious effects of oxidant stress in the organelle.  相似文献   

7.
Stable nitroxide radicals have been considered as therapeutic antioxidants because they can scavenge more toxic radicals in biologic systems. However, as radicals they also have the potential to increase oxidant stress in cells and tissues. We studied the extent to which this occurs in cultured EA.hy926 endothelial cells exposed to the nitroxide Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl). Tempol was rapidly reduced by the cells, as manifest by an increase in the ability of the cells to reduce extracellular ferricyanide and by disappearance of the Tempol EPR signal. Cells loaded with ascorbic acid, which directly reacts with Tempol, showed increased rates of Tempol-dependent ferricyanide reduction, and a more rapid loss of the Tempol EPR signal than cells not containing ascorbate. In this process, intracellular ascorbate was oxidized, and was depleted at lower Tempol concentrations than was GSH, another important intracellular low molecular weight antioxidant. Further evidence that Tempol concentrations of 100-1000 μM induced an oxidant stress was that it caused an increase in the oxidation of dihydrofluorescein in cells and inhibited ascorbate transport at concentrations as low as 50-100 μM. The presence of intracellular ascorbate both prevented dihydrofluorescein oxidation and spared GSH from oxidation by Tempol. Such sparing was not observed when GSH was depleted by other mechanisms, indicating that it was likely due to protection against oxidant stress. These results show that whereas Tempol may scavenge other more toxic radicals, care must be taken to ensure that it does not itself induce an oxidant stress, especially with regard to depletion of ascorbic acid.  相似文献   

8.
C J Kay  L P Solomonson  M J Barber 《Biochemistry》1991,30(48):11445-11450
Assimilatory nitrate reductase (NR) from Chlorella is homotetrameric, each subunit containing FAD, heme, and Mo-pterin in a 1:1:1 stoichiometry. Measurements of NR activity and steady-state reduction of the heme component under conditions of NADH limitation or competitive inhibition by nitrite suggested intramolecular electron transfer between heme and Mo-pterin was a rate-limiting step and provided evidence that heme is an obligate intermediate in the transfer of electrons between FAD and Mo-pterin. In addition to the physiological substrates NADH and nitrate, various redox mediators undergo reactions with one or more of the prosthetic groups. These reactions are coupled by NR to NADH oxidation or nitrate reduction. To test whether intramolecular redox reactions of NR were rate-determining, rate constants for redox reactions between NR and several chemically diverse mediators were measured by cyclic voltammetry in the presence of NADH or nitrate. Reduction of ferrocenecarboxylic acid, dichlorophenolindophenol, and cytochrome c by NADH-reduced NR was coupled to reoxidation at a glassy carbon electrode (ferrocene and dichlorophenolindophenol) or at a bis(4-pyridyl) disulfide modified gold electrode (cytochrome c), yielding rate constants of 10.5 x 10(6), 1.7 x 10(6), and 2.7 x 10(6) M-1 s-1, respectively, at pH 7. Kinetics were consistent with a second-order reaction, implying that intramolecular heme reduction by NADH and endogenous FAD was not limiting. In contrast, reduction of methyl viologen and diquat at a glassy carbon electrode, coupled to oxidation by NR and nitrate, yielded similar kinetics for the two dyes. In both cases, second-order kinetics were not obeyed, and reoxidation of dye-reduced Mo-pterin of NR by nitrate became limiting at low scan rates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Recycling of ascorbic acid from its oxidized forms helps to maintain the vitamin in human erythrocytes. To determine the relative contributions of recycling from the ascorbate radical and dehydroascorbic acid, we studied erythrocytes exposed to a trans-membrane oxidant stress from ferricyanide. Ferricyanide was used both to induce oxidant stress across the cell membrane and to quantify ascorbate recycling. Erythrocytes reduced ferricyanide with generation of intracellular ascorbate radical, the concentrations of which saturated with increasing intracellular ascorbate and which were sustained over time in cells incubated with glucose. Ferricyanide also generated dehydroascorbic acid that accumulated in the cells and incubation medium to concentrations much higher than those of the radical, especially in the absence of glucose. Ferricyanide-stimulated ascorbate recycling from dehydroascorbic acid depended on intracellular GSH but was well maintained at the expense of intracellular ascorbate when GSH was severely depleted by diethylmaleate. This likely reflects continued radical reduction, which is not dependent on GSH. Erythrocyte hemolysates showed both NAD- and NADPH-dependent ascorbate radical reduction. The latter was partially due to thioredoxin reductase. GSH-dependent dehydroascorbate reduction in hemolysates, which was both direct and enzyme-dependent, was greater than that of the radical reductase activity but of lower apparent affinity. Together, these results suggest an efficient two-tiered system in which high affinity reduction of the ascorbate radical is sufficient to remove low concentrations of the radical that might be encountered by cells not under oxidant stress, with back-up by a high capacity system for reducing dehydroascorbate under conditions of more severe oxidant stress.  相似文献   

10.
The results of this study suggest that the well-documented loss of GSH and ascorbate in organisms under oxidative stress may be mainly due to their reactions with protein radicals and/or peroxides. Protein hydroperoxides were generated in HL-60 cells exposed to radiation-generated hydroxyl radicals. We found for the first time evidence of chain peroxidation of the proteins in cells, with each hydroxyl radical leading to the formation of about 10 hydroperoxides. Protein peroxidation showed a lag, probably due to the endogenous antioxidant enzymes, with simultaneous loss of the intracellular GSH. Enhancement of the GSH levels by N-acetylcysteine decreased the formation of hydroperoxides, while treatment with l-buthionine sulfoximine had the opposite effect. The effect of variation of GSH levels on the formation of the peroxidized proteins is explained primarily by reduction of the protein hydroperoxides by GSH. Loading of the cells with ascorbate resulted in reduction of the amounts of protein hydroperoxides generated by the radiation, which was proportional to the intracellular ascorbate concentration. In contrast to the GSH, inhibition of protein hydroperoxide formation in the presence of the high (mM) intracellular ascorbate levels achieved was mainly due to the direct scavenging of hydroxyl radicals by the vitamin.  相似文献   

11.
Nitroxides were used as models of persistent free radicals to study the antioxidant function of ascorbic acid in the human erythrocyte. It was concluded that: 1) ascorbate and other reductant(s) derived from dehydroascorbic acid (DHA) in the presence of thiols are the only significant reducing agents for nitroxides, 2) glutathione and DHA reduce nitroxides by a process that cannot be inhibited by ascorbic acid oxidase, 3) erythrocytes can be depleted of ascorbic acid by exhaustive washing in the presence of membrane-permeable cationic nitroxides such as N,N-dimethylamino-Tempo, 4) ascorbate-depleted cells do not reduce nitroxides; however, nitroxide reduction is restored when the cells are incubated with DHA, 5) reduction of nitroxides in ascorbate-depleted, DHA-treated cells is significantly faster than in buffered solutions of DHA and glutathione, 6) several equivalents of nitroxide are reduced relative to the intracellular ascorbate pool, 7) sustained nitroxide reduction is observed even when most of the intracellular ascorbate is oxidized, 8) spin trapping of oxyradicals in tert-butyl hydroperoxide-treated cells is accelerated with ascorbate depletion and inhibited with ascorbate loading, 9) ascorbate can be quantified within intact cells by analyzing the initial reduction rates of membrane-permeable cationic nitroxides, and 10) DHA-stimulated reduction of cationic nitroxides is slower and less extensive in erythrocytes deficient in glucose-6-phosphate dehydrogenase than in normal erythrocytes.  相似文献   

12.
The natural antioxidants, tocopherols and ascorbate (ASC), are of great interest in terms of human health, because of their role in the prevention of chronic diseases. In cell metabolism, tocopherols are the major lipid-soluble antioxidants, whereas ASC and glutathione (GSH) are hydro-soluble antioxidants. These three metabolites cooperate in scavenging for oxygen radicals and protecting cell membranes. ASC and GSH are required in the process of regeneration of tocopherol from its α-cromanoxyl radical, while, GSH donates electrons for the reduction of dehydroascorbate (DHA), the fully oxidised form of ASC. Two cell lines of sunflower (Helianthus annuus L. cv Gloriasol) with differing capability to synthesise α-tocopherol were identified. In spite of the differing content of α-tocopherol (almost threefold higher in the high synthesising cell line, HT, than in the low synthesising one, LT), the cell lines have comparable growth curves. In the cells collected in the stationary phase, the ASC and GSH pools are also significantly higher in the HT cells than in the LT cells. On the other hand, the enzymes responsible for H2O2 scavenging and ASC and GSH recycling had higher activity in the LT than in the HT cells. The cooperation between the three antioxidant systems in the maintenance of the cellular redox balance is discussed, as well as the possible utilisation of the HT cell line for the in vitro production of natural antioxidants.  相似文献   

13.
The ascorbate and glutathione systems have been studied during the first stages of germination in orthodox seeds of the gymnosperm Pinus pinea L. (pine). The results indicate that remarkable changes in the content and redox balance of these metabolites occur in both the embryo and endosperm; even if with different patterns for the two redox pairs. Dry seeds are devoid of the ascorbate reduced form (ASC) and contain only dehydroascorbic acid (DHA). By contrast, glutathione is present both in the reduced (GSH) and in the oxidized (GSSG) forms. During imbibition the increase in ASC seems to be mainly caused by the reactivation of its biosynthesis. On the other hand, the GSH rise occurring during the first 24 h seems to be largely due to GSSG reduction, even if GSH biosynthesis is still active in the seeds. The enzymes of the ascorbate--glutathione cycle also change during germination, but in different ways. ASC peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2) activities progressively rise both in the embryo and in endosperm. These changes are probably required for counteracting production of reactive oxygen species caused by recovery of oxidative metabolism. The two enzymes involved in the ascorbate recycling, ascorbate free radical (AFR) reductase (EC 1.6.5.4) and DHA reductase (EC 1.8.5.1), show different behaviour: the DHA reductase activity decreases, while that of AFR reductase remains unchanged. The relationship between ascorbate and glutathione metabolism and their relevance in the germination of orthodox seeds are also discussed.  相似文献   

14.
We have compared the abilities of ascorbate and reduced glutathione (GSH) to act as intracellular free radical scavengers and protect cells against radical-mediated lipid peroxidation. Phenoxyl radicals were generated in HL60 cells, through the action of their myeloperoxidase, by adding H2O2 and phenol. Normally cultured cells, which contain no ascorbate; cells that had been preloaded with ascorbate; and those that had been depleted of GSH with buthionine sulfoximine were investigated. Generation of phenoxyl radicals resulted in the oxidation of ascorbate and GSH. Ascorbate loss was much greater in the absence of GSH, and adding glucose gave GSH-dependent protection against ascorbate loss. Ascorbate, or glucose metabolism, had little effect on the GSH loss. Glutathionyl radical formation was detected by spin trapping with DMPO in cells lacking ascorbate, and the signal was suppressed by ascorbate loading. Addition of phenol plus H2O2 to the cells caused lipid peroxidation, as measured with C11-BODIPY. Peroxidation was greatest in cells that lacked both ascorbate and GSH. Either scavenger alone gave substantial inhibition but optimal protection was seen with both present. These results indicate that GSH and ascorbate can each act as an intracellular radical scavenger and protect against lipid peroxidation. With both present, ascorbate is preferred and acts as the ultimate radical sink for phenoxyl or glutathionyl radicals. However, GSH is still consumed by metabolically recycling dehydroascorbate. Thus, recycling scavenging by ascorbate does not spare GSH, but it does enable the two antioxidants to provide more protection against lipid peroxidation than either alone.  相似文献   

15.
We studied the response of glutathione‐ and ascorbate‐related antioxidant systems of the two tomato cultivars to Pseudomonas syringae pv. tomato infection. In the inoculated susceptible A 100 cultivar a substantial decrease in reduced glutathione (GSH) content, oxidised glutathione accumulation and GSH redox ratio decline as well as glutathione peroxidase activity increase were found. The enhanced glutathione reductase activity was insufficient to keep the glutathione pool reduced. A transiently increased dehydroascorbic acid (DHA) content and ascorbic acid (AA) redox ratio decrease together with ascorbate peroxidase activity suppression were observed. Adversely to the progressive reduction in GSH pool size, AA content tended to increase but the changes were more modest than those of GSH. By contrast, in interaction with the resistant Ontario cultivar the glutathione pool homeostasis was maintained throughout P. syringae attack and no significant effect on the ascorbate pool was observed. Moreover, in the resistant interaction there was a significantly higher constitutive and pathogen‐induced glutathione‐S‐transferase (GST) activity. The relationship between GST activity and DHA content found in this study indicates that this enzyme could also act as dehydroascorbate reductase. These results reflect the differential involvement of GSH and AA in tomato‐P. syringae interaction and, in favour of the former, they clearly indicate the role of GSH and GSH‐utilizing enzymes in resistance to P. syringae. The maintenance of glutathione pool homeostasis and GST induction appear to contribute to tissue inaccessibility to bacterial attack.  相似文献   

16.
Vitamin C, or ascorbic acid, is efficiently recycled from its oxidized forms by human erythrocytes. In this work the dependence of this recycling on reduced glutathione (GSH) was evaluated with regard to activation of the pentose cycle and to changes in pyridine nucleotide concentrations. The two-electron-oxidized form of ascorbic acid, dehydroascorbic acid (DHA) was rapidly taken up by erythrocytes and reduced to ascorbate, which reached intracellular concentrations as high as 2 mM. In the absence of D-glucose, DHA caused dose-dependent decreases in erythrocyte GSH, NADPH, and NADH concentrations. In the presence of 5 mM D-glucose, GSH and NADH concentrations were maintained, but those of NADPH decreased. Reduction of extracellular ferricyanide by erythrocytes, which reflects intracellular ascorbate recycling, was also enhanced by D-glucose, and ferricyanide activated the pentose cycle. Diethylmaleate at concentrations up to 1 mM was found to specifically deplete erythrocyte GSH by 75-90% without causing oxidant stress in the cells. Such GSH-depleted erythrocytes showed parallel decreases in their ability to take up and reduce DHA to ascorbate, and to reduce extracellular ferricyanide. These results show that DHA reduction involves GSH-dependent activation of D-glucose metabolism in the pentose cycle, but that in the absence of D-glucose DHA reduction can also utilize NADH.  相似文献   

17.
In vitro oxidation of ascorbic acid and its prevention by GSH   总被引:4,自引:0,他引:4  
The interaction of glutathione (GSH) with ascorbic acid and dehydroascorbic acid was examined in in-vitro experiments in order to examine the role of GSH in protecting against the autoxidation of ascorbic acid and in regenerating ascorbic acid by reaction with dehydroascorbic acid. If a buffered solution (pH 7.4) containing 1.0 mM ascorbic acid was incubated at 37 degrees C, there was a rapid loss of ascorbic acid in the presence of oxygen. When GSH was added to this solution, ascorbic acid did not disappear. Maximum protection against ascorbic acid autoxidation was achieved with as little as 0.1 mM GSH. Cupric ions (0.01 mM) greatly accelerated the rate of autoxidation of ascorbic acid, an effect that was inhibited by 0.1 mM GSH. Other experiments showed that GSH complexes with cupric ions, resulting in in a lowering of the amount of GSH in solution as measured in GSH standard curves. These results suggest that the inhibition of ascorbic acid autoxidation by GSH involves complexation with cupric ions that catalyze the reaction. When ascorbic acid was allowed to autoxidize at 37 degrees C the subsequent addition of GSH (up to 10 mM) did not lead to the regeneration of ascorbic acid. This failure to detect a direct reaction between GSH and the dehydroascorbic acid formed by oxidation of ascorbic acid under this condition was presumably due to the rapid hydrolysis of dehydroascorbic acid. When conditions were chosen, i.e., low temperature, that promote stability of dehydroascorbic acid, the direct reaction between GSH and dehydroascorbic acid to form ascorbic acid was readily detected. The marked instability of dehydroascorbic acid at 37 degrees C raises questions regarding the efficiency of the redox couple between GSH and dehydroascorbic acid in maintaining the concentration of ascorbic acid in mammalian cells exposed to an oxidative challenge.  相似文献   

18.
The dark reoxidation of the photochemically reduced primaryelectron acceptor of photosystem II, Q., in the presence of3-(3',4'-dichlorophenyl)-l,l-dimethyl urea (DCMU) by the redoxcounterpart (here designated Z) of Q, was studied by monitoringthe dark recovery of the induction of chlorophyll fluorescence. In normal chloroplasts, the dark reoxidation of reduced Q inthe presence of DCMU was not affected by the externally addedhydrophilic reductants; ascorbate, hydroquinone, hydrogen peroxide,manganous chloride, potassium iodide and potassium ferrocyanide.In chloroplasts whose oxidizing side of photosystem II had beeninactivated by heat- or Tris-treatments, reoxidation was inhibitedpartially. This inhibition increased on the addition of hydrophilicreductants, but was relieved by increasing the redox potentialof the suspension medium with the chloroplasts. We concluded that the redox counterpart, Z, of Q, in the presenceof DCMU is located in a hydrophobic environment which can bedenatured by heat- or Tris-treatments to allow the access ofnormally extruded hydrophilic electron donors. (Received January 10, 1981; Accepted March 12, 1981)  相似文献   

19.
Liu L  Du G  Chen J  Zhu Y  Wang M  Sun J 《Bioresource technology》2009,100(1):362-367
Microbial production of low molecular weight hyaluronic acid (HA) by the addition of hydrogen peroxide and ascorbate during the batch culture of Streptococcus zooepidemicus was investigated. Hydrogen peroxide (1.0 mmol/g HA) and ascorbate (0.5 mmol/g HA) were added at 8h and 12h to degrade HA. With the redox depolymerization of HA, the HA molecular weight decreased from 1,300 kDa for the control to 80 kDa, and the average broth viscosity during 8-16 h decreased from 360 mPa s for the control to 290 mPa s. The average oxygen mass transfer coefficient K(L)a increased from 10h(-1) for the control to 35 h(-1) and the average dissolved oxygen level increased from 1% of air saturation in the control to 10%. HA production increased from 5.0 g/L for the control to 6.5 g/L, and contributed to the increased redox potential and energy charge. This novel process not only significantly enhanced production of low molecular weight HA, but also improved purification efficiency due to a decreased broth viscosity. Low molecular weight HA finds applications in biomedical and healthcare fields.  相似文献   

20.
The oxidizing power of the thiyl radical (GS*) produced on oxidation of glutathione (GSH) was determined as the mid-point electrode potential (reduction potential) of the one-electron couple E(m)(GS*,H+/GSH) in water, as a function of pH over the physiological range. The method involved measuring the equilibrium constants for electron-transfer equilibria with aniline or phenothiazine redox indicators of known electrode potential. Thiyl and indicator radicals were generated in microseconds by pulse radiolysis, and the position of equilibrium measured by fast kinetic spectrophotometry. The electrode potential E(m)(GS*,H+/GSH) showed the expected decrease by approximately 0.06 V/pH as pH was increased from approximately 6 to 8, reflecting thiol/thiolate dissociation and yielding a value of the reduction potential of GS*=0.92+/-0.03 V at pH 7.4. An apparently almost invariant potential between pH approximately 3 and 6, with potentials significantly lower than expected, is ascribed at least in part to errors arising from radical decay during the approach to the redox equilibrium and slow electron transfer of thiol compared to thiolate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号