首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
BLT101-family plasma membrane proteins are found in a wide range of organisms from bacteria to nematodes and are involved in the regulation of cellular cation concentration under stress conditions. A comparison of the promoter regions of barley blt101 and its wheat ortholog, wpi6, revealed highly conserved nucleotide sequences between both genes and a unique insertion of a Xumet element in the blt101 promoter. The Xumet insertion occurred between a putative abscisic acid-responsive element (ABRE) and the dehydration-responsive element/c-repeat (DRE/CRT) within the blt101 promoter. However, blt101 and wpi6 were induced similarly in response to ABA, drought and low temperature, suggesting that the insertion does not affect promoter functions. The Xumet insertion in the blt101/wpi6 promoter region was detected in five barley cultivars, but absent in two wheat cultivars tested, suggesting that the insertion is barley-specific. Genomic Southern blot analysis revealed a large number of Xumet sequences interspersed in the barley genome, whereas only one or very few copies are present in the wheat genome. The data suggested that an expansion in copy number of Xumet elements occurred in the barley genome through evolution.  相似文献   

2.
Summary The nucleotide sequence and derived amino acid sequence of a cDNA clone (BLT4) for a low temperature induced barley gene were determined. This gene, together with a small family of related genes, was shown to reside on chromosome 3. The BLT4 clone has homology with genes in wheat and oats. Its expression was studied in oats and in barley doubled haploid lines segregating for spring/winter habit and for frost hardiness. These analyses show that elevated steady state levels of BLT4 mRNA are produced in shoot meristematic tissue after 3 days low positive temperature treatment. The low temperature response was found in all barley doubled haploid lines and was therefore not associated specifically with either the spring/winter habit or frost hardiness. Elevated levels of BLT4 mRNA were also seen in drought-stressed barley and it is likely that this is a gene encoding a low molecular weight protein that is responsive to dehydrative stresses, such as cold and drought.The EMBL accession number for BLT4 is X56547 H. vulgare cDNA  相似文献   

3.
A novel cDNA clone, Tad1, was isolated from crown tissue of winter wheat after differential screening of cold acclimation-induced genes. The Tad1 cDNA encoded a 23kDa polypeptide with a potential N-terminal signal sequence. The putative mature sequence showed striking similarity to plant defensins or gamma-thionins, representing low molecular size antipathogenic polypeptides. High levels of Tad1 mRNA accumulation occurred within one day of cold acclimation in crown tissue and the level was maintained throughout 14 days of cold acclimation. Similar rapid induction was observed in young seedlings treated with low temperature but not with exogenous abscisic acid. In contrast to defensins from other plant species, neither salicylic acid nor methyl jasmonate induced expression of Tad1. The recombinant mature form of TAD1 polypeptide inhibited the growth of the phytopathogenic bacteria, Pseudomonas cichorii; however, no antifreeze activity was detected. Collectively, these data suggested that Tad1 is induced in cold-acclimated winter wheat independent of major defense signaling(s) and is involved in low temperature-induced resistance to pathogens during winter hardening.  相似文献   

4.
Christova PK  Christov NK  Imai R 《Planta》2006,223(6):1207-1218
A novel cold-induced cystatin cDNA clone (TaMDC1) was isolated from cold acclimated winter wheat crown tissue by using a macroarray-based differential screening method. The deduced amino acid sequence consisted of a putative N-terminal secretory signal peptide of 37 amino acids and a mature protein (mTaMDC1) with a molecular mass of 23 kDa. The mTaMDC1 had a highly conserved N-terminal cystatin domain and a long C-terminal extension containing a second region, which exhibited partial similarity to the cystatin domain. The recombinant mTaMDC1 was purified from Escherichia coli and its cysteine proteinase inhibitory activity against papain was analyzed. The calculated Ki value of 5.8×10−7 M is comparable to those reported for other phytocystatins. Northern and western blot analyses showed elevated expression of TaMDC1 mRNA and protein during cold acclimation of wheat. In addition to cold, accumulation of the TaMDC1 message was induced by other abiotic stresses including drought, salt and ABA treatment. Investigation of in vitro antifungal activity of mTaMDC1 showed strong inhibition on the mycelium growth of the snow mold fungus Microdochium nivale. Hyphae growth was totally inhibited in the presence of 50 μg/ml mTaMDC1 and morphological changes such as swelling, fragmentation and sporulation of the fungus were observed. The mechanisms of the in vitro antifungal effects and the possible involvement of TaMDC1 in cold induced snow mold resistance of winter wheat are discussed.  相似文献   

5.
6.
The objective of this study was to identify plasma membraneproteins that are specifically induced by cold acclimation inwheat (Triticum aestivum L.). Two cultivars with a marked differencein the genetic ability to cold-acclimate, namely, spring wheat(cv. Chinese Spring) and winter wheat (cv. Norstar), were usedas the experimental material. After four weeks of growth ina cold chamber, the freezing tolerance in the shoots of winterwheat increased to –18°C, whereas it increased onlyto –8°C in the shoots of spring wheat. In the caseof roots from both cultivars, freezing tolerance increased onlyslightly after the growth in the cold environment. Cold acclimationinduced remarkable changes in the electrophoretic patterns ofplasma membrane proteins which depended on both the cultivarand the tissue examined. Levels of polypeptides with molecularmasses from 22 to 31 kDa decreased in both the root and shootplasma membranes from both cultivars. Among these polypeptides,levels of those of 28 and 26 kDa decreased abruptly after oneweek of cold acclimation. By contrast, levels of polypeptidesof 89, 83, 52, 23, 18 and 17 kDa increased specifically in theshoots of winter wheat. The increases in the levels of the 23-,18- and 17-kDa polypeptides were proportional to the developmentof freezing tolerance. Freeze-fracture electron microscopy ofplasma membranes from shoot cells revealed that the number ofintramembrane particles on the fracture faces decreased markedlyin winter wheat after cold acclimation, but to a lesser extentin spring wheat. These results suggest that the plasma membranesmight undergo molecular reorganization during cold acclimation. 1Contribution no. 3709 from the Institute of Low TemperatureScience, Hokkaido University.  相似文献   

7.
Effects of low‐temperature stress, cold acclimation and growth at high irradiance in a spring (Triticum aestivum L. cv. Katepwa) and a winter wheat (Triticum aestivum L. cv. Monopol) were examined in leaves and crowns with respect to the sucrose utilisation and carbon allocation. Light‐saturated and carbon dioxide (CO2)‐saturated rates of CO2 assimilation were decreased by 50% in cold‐stressed spring and winter wheat cultivars. Cold‐ or high light‐acclimated Katepwa spring wheat maintained light‐saturated rates of CO2 assimilation comparable to those of control spring wheat. In contrast, cold‐ or high light‐acclimated winter wheat maintained higher light and CO2‐saturated rates of CO2 assimilation than non‐acclimated controls. In leaves, during either cold stress, cold acclimation or acclimation to high irradiance, the sucrose/starch ratio increased by 5‐ to 10‐fold and neutral invertase activity increased by 2‐ to 2.5‐fold in both the spring and the winter wheat. In contrast, Monopol winter wheat, but not Katepwa spring wheat, exhibited a 3‐fold increase in leaf sucrose phosphate synthase (SPS) activity, a 4‐fold increase in sucrose:sucrose fructosyl transferase activity and a 6.6‐fold increase in acid invertase upon cold acclimation. Although leaves of cold‐stressed and high light‐grown spring and winter wheat showed 2.3‐ to 7‐fold higher sucrose levels than controls, these plants exhibited a limited capacity to adjust either sucrose phosphate synthase or sucrose synthase activity (SS[s]). In addition, the acclimation to high light resulted in a 23–31% lower starch abundance and no changes at the level of fructan accumulation in leaves of either winter or spring wheat when compared with controls. However, high light‐acclimated winter wheat exhibited a 1.8‐fold higher neutral invertase activity and high light‐acclimated spring wheat exhibited an induction of SS(d) activity when compared with controls. Crowns of Monopol showed higher fructan accumulation than Katepwa upon cold and high light acclimation. We suggest that the differential adjustment of CO2‐saturated rates of CO2 assimilation upon cold acclimation in Monopol winter wheat, as compared with Katepwa spring wheat, is associated with the increased capacity of Monopol for sucrose utilisation through the biosynthesis of fructans in the leaves and subsequent export to the crowns. In contrast, the differential adjustment of CO2‐saturated rates of CO2 assimilation upon high light acclimation of Monopol appears to be associated with both increased fructan and starch accumulation in the crowns.  相似文献   

8.
Seasonal low temperature (LT) adversely affects growth of plants. The onset of LT in temperate zones also entails the process of cold acclimation, preparing the plants to withstand freezing temperatures. During this process of cold acclimation a number of physiological, biochemical and molecular changes occur. A differentially expressed enolase gene in wheat plants exposed to LT was previously identified by cDNA‐amplified fragment length polymorphism. In this study, two wheat enolase cDNA, TaENO‐a and TaENO‐b amplified by 5′,3′ rapid amplification of cDNA end (RACE)‐PCR (polymerase chain reaction), were isolated and characterised. Quantitative real‐time PCR (QPCR) was done to assess their expression patterns in leaf and crown tissues of wheat plants exposed to LT. BLAST searches and bioinformatic analyses were done to determine the structure, domains and phylogeny of the cloned sequences. The two cDNA sequences differed mostly in the 5′ and 3′ untranslated regions. Deduced amino acid sequence showed high identity to bacteria, yeast, fungi, human and plant enolases with conserved putative DNA‐binding and repressor domains. A genomic clone containing 17 exons distributed over 4.5 kb structurally shared a high degree of similarity to rice enolase. QPCR revealed combined effects of LT and ageing on expression of TaENO‐a and TaENO‐b. Down‐regulation of TaENO‐a was observed with age in the crown tissues upon exposure to LT, but in leaf initial up‐regulation was followed by down‐regulation. Expression of TaENO‐b was similar to expression patterns previously reported for cold‐regulated (COR) genes in wheat, wherein the recessive vrnA‐1 allele influenced its expression in the leaf and genetic background determines its expression in the crown.  相似文献   

9.
A cDNA, BCA1, encoding a calmodulin-stimulated Ca2+-ATPase in the vacuolar membrane of cauliflower (Brassica oleracea) was isolated based on the sequence of tryptic peptides derived from the purified protein. The BCA1 cDNA shares sequence identity with animal plasma membrane Ca2+-ATPases and Arabidopsis thaliana ACA1, that encodes a putative Ca2+ pump in the chloroplast envelope. In contrast to the plasma membrane Ca2+-ATPases of animal cells, which have a calmodulin-binding domain situated in the carboxy-terminal end of the molecule, the calmodulin-binding domain of BCA1 is situated at the amino terminus of the enzyme.  相似文献   

10.
Seedlings of Lodgepole pine (Pinus contorta L.) and winter wheat (Triticum aestivum L. cv. Monopol) were cold acclimated under controlled conditions to induce frost hardiness. Lodgepole pine responded to cold acclimation by partial inhibition of photosynthesis with an associated partial loss of photosystem II reaction centres, and a reduction in needle chlorophyll content. This was accompanied by a low daily carbon gain, and the development of a high and sustained capacity for non‐photochemical quenching of absorbed light. This sustained dissipation of absorbed light as heat correlated with an increased de‐epoxidation of the xanthophyll cycle pigments forming the quenching forms antheraxanthin and zeaxanthin. In addition, the PsbS protein known to bind chlorophyll and the xanthophyll cycle pigments increased strongly during cold acclimation of pine. In contrast, winter wheat maintained high photosynthetic rates, showed no loss of chlorophyll content per leaf area, and exhibited a high daily carbon gain and a minimal non‐photochemical quenching after cold acclimation. In accordance, cold acclimation of wheat neither increased the de‐epoxidation of the xanthophylls nor the content of the PsbS protein. These different responses of photosynthesis to cold acclimation are correlated with pine, reducing its need for assimilates when entering dormancy associated with termination of primary growth, whereas winter wheat maintains a high need for assimilates as it continues to grow and develop throughout the cold‐acclimation period. It appears that without evolving a sustained ability for controlled dissipation of absorbed light as heat throughout the winter, winter green conifers would not have managed to adapt and establish themselves so successfully in the cold climatic zones of the northern hemisphere.  相似文献   

11.
Cold acclimation in plants is a polygenic phenomenon involving increased expression of several genes. The gene products participate either directly or indirectly towards increasing cold tolerance. Evidence of proteins having a direct effect on cold tolerance is emerging but limited. With isolated protoplasts from warm-grown kale (Brassica oleracea) as a model system, we tested protein fractions from winter bittersweet nightshade, Solanum dulcamara, stems for the presence of proteins that have a cryoprotective effect. Purification of one such fraction resulted in isolation of a 25 kDa protein. N-terminal Edman degradation amino acid sequence analysis showed that it has high homology to osmotin and osmotin-like proteins. When added to warm-grown protoplasts, it increased the cryosurvival of frozen-thawed protoplasts by 24% over untreated or BSA-treated controls at –8 °C. A cDNA library which was made in November from stems and leaves of S. dulcamara was successfully screened for the corresponding cDNA clone. The deduced amino acid sequence indicated that the protein consists of 206 amino acid residues including a N-terminal signal sequence and a putative C-terminal propeptide. The mature protein, without the N-terminal signal sequence, was expressed in Escherichia coli. The partially purified protein in the supernatant fraction of the culture medium had cryoprotective activity.  相似文献   

12.
Overwintering crops such as winter wheat display significant increase in freezing tolerance during a period of cold acclimation (CA). To gain better understanding of molecular mechanisms of CA, it is important to unravel functions and regulations of CA-associated genes. Differential screening of a cDNA library constructed from cold acclimated crown tissue of winter wheat identified three novel CA-associated cDNA clones. Nucleotide sequence analysis showed that the clones encode a high mobility globular protein (HMGB1), a glycine-rich RNA-binding protein (TaGRP2), and a LEA D-11 dehydrin (DHN14). Accumulation of the three mRNAs during 14 days of CA was differentially regulated. In response to drought, and ABA, DHN14 mRNA rapidly accumulated while HMGB1 and TaGRP2 mRNA levels remained unchanged. The possible functions of each of these genes in cold acclimation are discussed.  相似文献   

13.
Overwintering crops such as winter wheat display a significant increase in freezing tolerance during periods of cold acclimation (CA). To gain a better understanding of the molecular mechanisms of CA, it is important to unravel the functions and regulations of CA-associated genes. Differential screening of a cDNA library constructed from cold acclimated crown tissue of winter wheat identified three novel CA-associated cDNA clones. Nucleotide sequence analysis showed that the clones encode a high mobility globular protein (HMGB1), a glycine-rich RNA-binding protein (TaGRP2), and a LEAD-11 dehydrin (DHN14). Accumulation of the three mRNAs during 14 days of CA was differentially regulated. In response to drought, and ABA, DHN14 mRNA rapidly accumulated while HMGB1 and TaGRP2 mRNA levels remained unchanged. The possible functions of each of these genes in cold acclimation are discussed. The text was submitted by the authors in English.  相似文献   

14.
15.
We aimed to study the protection of wheat plasma membrane (PM) under cold stress (0–2 °C) by the overaccumulation of glycine betaine (GB). For this, we used wild-type winter wheat (Triticum aestivum L.) cv. Shi 4185 (WT) and 3 transgenic lines (T1, T4, and T6) expressing the BADH gene isolated from Atriplex hortensis L. Under cold stress, the transgenic lines with higher GB content maintained better membrane integrity and higher plasma membrane H+-ATPase activity than WT. In these transgenic lines, ROS production and membrane lipid peroxidation were lower, while antioxidative enzyme activities and compatible solute contents were higher in comparison with WT. This may be attributable to their enhanced cold-stress tolerance mediated by GB overproduction.  相似文献   

16.
The freezing tolerance of Arabidopsis thaliana is enhanced by cold acclimation, resulting in changes in the compositions and function of the plasma membrane. Here, we show that a dynamin‐related protein 1E (DRP1E), which is thought to function in the vesicle trafficking pathway in cells, is related to an increase in freezing tolerance during cold acclimation. DRP1E accumulated in sphingolipid and sterol‐enriched plasma membrane domains after cold acclimation. Analysis of drp1e mutants clearly showed that DRP1E is required for full development of freezing tolerance after cold acclimation. DRP1E fused with green fluorescent protein was visible as small foci that overlapped with fluorescent dye‐labelled plasma membrane, providing evidence that DRP1E localizes non‐uniformly in specific areas of the plasma membrane. These results suggest that DRP1E accumulates in sphingolipid and sterol‐enriched plasma membrane domains and plays a role in freezing tolerance development during cold acclimation.  相似文献   

17.
Cloning and characterization of a gene encoding wheat starch synthase I   总被引:4,自引:0,他引:4  
 A cDNA clone, and a corresponding genomic DNA clone, containing full-length sequences encoding wheat starch synthase I, were isolated from a cDNA library of hexaploid wheat (Triticum aestivum) and a genomic DNA library of Triticum tauschii, respectively. The entire sequence of the starch synthase-I cDNA (wSSI-cDNA) is 2591 bp, and it encodes a polypeptide of 647 amino-acid residues that shows 81% and 61% identity to the amino-acid sequences of SSI-type starch synthases from rice and potato, respectively. In addition, the putative N-terminal amino-acid sequence of the encoded protein is identical to that determined for the N-terminal region of the 75-kDa starch synthase present in the starch granule of hexaploid wheat. Two prominent starch synthase activities were demonstrated to be present in the soluble fraction of wheat endosperm by activity staining of the non-denaturing PAGE gels. The most anodal band (wheat SSI) shows the highest staining intensity and results from the activity of a 75-kDa protein. The wheat SSI mRNA is expressed in the endosperm during the early to mid stages of wheat grain development but was not detected by Northern blotting in other tissues from the wheat plant. The gene encoding the wheat SSI (SsI-D1) consists of 15 exons and 14 introns, similar to the structure of the rice starch synthase-I gene. While the exons of wheat and rice are virtually identical in length, the wheat SsI-D1 gene has longer sequences in introns 1, 2, 4 and 10, and shorter sequences in introns 6, 11 and 14, than the corresponding rice gene. Received: 5 June 1998 / Accepted: 29 September 1998  相似文献   

18.
The molecular mechanisms of cold acclimation are still largely unknown; however, it has been established that overwintering plants such as winter wheat increases freeze tolerance during cold treatments. In prokaryotes, cold shock proteins are induced by temperature downshifts and have been proposed to function as RNA chaperones. A wheat cDNA encoding a putative nucleic acid-binding protein, WCSP1, was isolated and found to be homologous to the predominant CspA of Escherichia coli. The putative WCSP1 protein contains a three-domain structure consisting of an N-terminal cold shock domain with two internal conserved consensus RNA binding domains and an internal glycine-rich region, which is interspersed with three C-terminal CX(2)CX(4)HX(4)C (CCHC) zinc fingers. Each domain has been described independently within several nucleotide-binding proteins. Northern and Western blot analyses showed that WCSP1 mRNA and protein levels steadily increased during cold acclimation, respectively. WCSP1 induction was cold-specific because neither abscisic acid treatment, drought, salinity, nor heat stress induced WCSP1 expression. Nucleotide binding assays determined that WCSP1 binds ssDNA, dsDNA, and RNA homopolymers. The capacity to bind dsDNA was nearly eliminated in a mutant protein lacking C-terminal zinc fingers. Structural and expression similarities to E. coli CspA suggest that WCSP1 may be involved in gene regulation during cold acclimation.  相似文献   

19.
We have isolated, sequenced, and expressed a cold-specific cDNA clone, Wcs120, that specifically hybridizes to a major mRNA species of approximately 1650 nucleotides from cold-acclimated wheat (Triticum aestivum L.). The accumulation of this mRNA was induced in less than 24 hours of cold treatment, and remained at a high steady-state level during the entire period of cold acclimation in the two freezing-tolerant genotypes of wheat tested. The expression of Wcs120 was transient in a less-tolerant genotype even though the genomic organization of the Wcs120 and the relative copy number were the same in the three genotypes. The mRNA level decreased rapidly during deacclimation and was not induced by heat shock, drought, or abscisic acid. The Wcs120 cDNA contains a long open reading frame encoding a protein of 390 amino acids. The encoded protein is boiling stable, highly hydrophilic, and has a compositional bias for glycine (26.7%), threonine (16.7%), and histidine (10.8%), although cysteine, phenylalanine, and tryptophan were absent. The WCS120 protein contains two repeated domains. Domain A has the consensus amino acid sequence GEKKGVMENIKEKLPGGHGDHQQ, which is repeated 6 times, whereas domain B has the sequence TGGTYGQQGHTGTT, which is repeated 11 times. The two domains were also found in barley dehydrins and rice abscisic acid-induced protein families. The expression of this cDNA in Escherichia coli, using the T7 RNA polymerase promoter, produced a protein of 50 kilodaltons with an isoelectric point of 7.3, and this product comigrated with a major protein synthesized in vivo and in vitro during cold acclimation.  相似文献   

20.
The responses in membrane lipid composition, structure, and function of four cultivars of wheat (Triticum aestivum L.) to growth at low temperature have been investigated. Marked growth temperature-dependent alterations in the fatty acid composition and unsaturation of the mitochondrial phospholipids correlate with changes in respiratory activity in all the varieties. Parameters such as the respiratory control ratio and the phosphorylative efficiency decrease in cold-adapted seedlings. Three temperature-dependent structural transitions were identified in the mitochondria by the spin-labeling method. The structural transitions occur at lower temperatures in the cold-grown material. The shift in one transition appears to be quantitatively greater in the winter hardy varieties. Cold-induced changes in all of the other measured parameters were indistinguishable in hardy and nonhardy varieties. The results indicate major involvement of the phospholipid matrix in cold acclimation. A link between cold acclimation and winter survival may exist involving the structural and functional modifications in membrane structure which occur during acclimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号