首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light and substrate regulation of nitrate reductase (NR) expression were compared in wild type and mutant lines of Nicotiana plumbaginifolia. Mutants affected in the NR structural gene (nia) or in the biosynthesis of the NR molybdenum cofactor (cnx) were examined. nia mutants expressing a defective apoenzyme, as well as cnx mutants, overexpressed NR mRNA, whereas nia mutants devoid of detectable NR protein had reduced or undetectable NR mRNA levels. Diurnal fluctuations of NR mRNA were specifically abolished in nia and cnx mutants, suggesting that the integrity of NR catalytic activity is required for the expression of diurnal oscillations. Unlike some fungal mutants, the nia and cnx mutants examined retained nitrate inducibility of NR expression. The possibility of autogenous control of NR expression in higher plants is discussed.  相似文献   

2.
Several different cellular processes determine the size of the metabolically available nitrate pool in the cytoplasm. These processes include not only ion fluxes across the plasma membrane and tonoplast but also assimilation by the activity of nitrate reductase (NR). In roots, the maintenance of cytosolic nitrate activity during periods of nitrate starvation and resupply (M. van der Leij, S.J. Smith, A.J. Miller [1998] Planta 205: 64-72; R.-G. Zhen, H.-W. Koyro, R.A. Leigh, A.D. Tomos, A.J. Miller [1991] Planta 185: 356-361) suggests that this pool is regulated. Under nitrate-replete conditions vacuolar nitrate is a membrane-bound store that can release nitrate to the cytoplasm; after depletion of cytosolic nitrate, tonoplast transporters would serve to restore this pool. To study the role of assimilation, specifically the activity of NR in regulating the size of the cytosolic nitrate pool, we have compared wild-type and mutant plants. In leaf mesophyll cells, light-to-dark transitions increase cytosolic nitrate activity (1.5-2.8 mm), and these changes were reversed by dark-to-light transitions. Such changes were not observed in nia1nia2 NR-deficient plants indicating that this change in cytosolic nitrate activity was dependent on the presence of functional NR. Furthermore, in the dark, the steady-state cytosolic nitrate activities were not statistically different between the two types of plant, indicating that NR has little role in determining resting levels of nitrate. Epidermal cells of both wild type and NR mutants had cytosolic nitrate activities that were not significantly different from mesophyll cells in the dark and were unaltered by dark-to-light transitions. We propose that the NR-dependent changes in cytosolic nitrate provide a cellular mechanism for the diurnal changes in vacuolar nitrate storage, and the results are discussed in terms of the possible signaling role of cytosolic nitrate.  相似文献   

3.
4.
Molybdenum cofactor (Mo-co) was determined in seeds of wheat and barley by its ability to restore nitrate reductase (NR) activity in extracts of nitrate reductase-deficient mutants. Its activity was compared with that of wheat roots and leaves. Conditions for assay of Mo-co from different sources in the presence of molybdate and reduced glutathione (GSH) were optimised. The effect of heat-treatment of cell-free extracts from seeds, roots and leaves was also investigated. Mutant extracts of Neurospora crassa nit-1 and Nicotiana tabacum CnxA68, used as apoprotein source for in vitro complementation, were shown to give comparable results. The Mo-co activity, extracted from wheat and barley seeds, could be separated into two peaks by gel chromatography.  相似文献   

5.
We have isolated a haploid cell line of N. plumbaginifolia, hNP 588, that is constitutive and not inducible for nitrate reductase. Nitrate reductase mutants were isolated from hNP 588 protoplasts upon UV irradiation. Two of these nitrate reductase-deficient cell lines, nia 3 and nia 25, neither of which contained any detectable nitrate reductase activity, were selected for complementation studies. A cloned Arabidopsis thaliana nitrate reductase gene Nia 2 was introduced into each of the two mutants resulting in 56 independent kanamycin-resistant cell lines. Thirty of the 56 kanamycin-resistant cell lines were able to grow on nitrate as the sole nitrogen source. Eight of these were further analyzed for nitrate reductase enzyme activity and nitrate reductase mRNA production. All eight lines had detectable nitrate reductase activity ranging from 7% to 150% of wild-type hNP 588 callus. The enzyme activity levels were not influenced by the nitrogen source in the medium. The eight lines examined expressed a constitutive, non-inducible 3.2 kb mRNA species that was not present in untransformed controls.  相似文献   

6.
Shi FM  Li YZ 《BMB reports》2008,41(1):79-85
The source of nitric oxide (NO) in plants is unclear and it has been reported NO can be produced by nitric oxide synthase (NOS) like enzymes and by nitrate reductase (NR). Here we used wild-type, Atnos1 mutant and nia1, nia2 NR-deficient mutant plants of Arabidopsis thaliana to investigate the potential source of NO production in response to Verticillium dahliae toxins (VD-toxins). The results revealed that NO production is much higher in wild-type and Atnos1 mutant than in nia1, nia2 NR-deficient mutants. The NR inhibitor had a significant effect on VD-toxins-induced NO production; whereas NOS inhibitor had a slight effect. NR activity was significantly implicated in NO production. The results indicated that as NO was induced in response to VD-toxins in Arabidopsis, the major source was the NR pathway. The production of NOS-system appeared to be secondary.  相似文献   

7.
Two nitrate reductase (NR) mutants were selected for low nitrate reductase (LNR) activity by in vivo NR microassays of M2 seedlings derived from nitrosomethylurea-mutagenized soybean (Glycine max [L.] Merr. cv Williams) seeds. The mutants (LNR-5 and LNR-6) appeared to have normal nitrate-inducible NR activity. Both mutants, however, showed decreased NR activity in vivo and in vitro compared with the wild-type. In vitro FMNH2-dependent nitrate reduction and Cyt c reductase activity of nitrate-grown plants, and nitrogenous gas evolution during in vivo NR assays of urea-grown plants, were also decreased in the mutants. The latter observation was due to insufficient generation of nitrite substrate, rather than some inherent difference in enzyme between mutant and wild-type plants. When grown on urea, crude extracts of LNR-5 and LNR-6 lines had similar NADPH:NR activities to that of the wild type, but both mutants had very little NADH:NR activity, relative to the wild type. Blue Sepharose columns loaded with NR extract of urea-grown mutants and sequentially eluted with NADPH and NADH yielded a NADPH:NR peak only, while the wild-type yielded both NADPH: and NADH:NR peaks. Activity profiles confirmed the lack of constitutive NADH:NR in the mutants throughout development. The results provide additional support to our claim that wild-type soybean contains three NR isozymes, namely, constitutive NADPH:NR (c1NR), constitutive NADH:NR (c2NR), and nitrate-inducible NR (iNR).  相似文献   

8.
9.
Summary A total of 70 cnx mutants have been characterized from a collection of 211 nitrate reductase deficient (NR-) mutants isolated from mutagenized Nicotiana plumbaginifolia protoplast cultures after chlorate selection and regeneration into plants. They are presumed to be affected in the biosynthesis of the molybdenum cofactor since they are also deficient for xanthine dehydrogenase activity but contain NR apoenzyme. The remaining clones were classified as nia mutants. Sexual crosses performed between cnx mutants allowed them to be classified into six independent complementation groups. Mutants representative of these complementation groups were used for somatic hybridization experiments with the already characterized N. plumbaginifolia mutants NX1, NX24, NX23 and CNX103 belonging to the complementation groups cnxA, B, C and D respectively. On the basis of genetic analysis and somatic hybridization experiments, two new complementation groups, cnxE and F, not previously described in higher plants, were characterized. Unphysiologically high levels of molybdate can restore the NR activity of cnxA mutant seedlings in vivo, but cannot restore NR activity to any mutant from the other cnx complementation groups.  相似文献   

10.
Summary Ten nitrate reductase (NR)-deficient mutants have been characterized for their cross-reactivity against specific barley (Hordeum vulgare L.) nitrate reductase antibodies. The rabbit antibodies raised against the purified barley wild type (cv. Steptoe) enzyme quantitatively inactivate nitrate reductase in crude extracts. All nitrate-grown (induced) mutants show positive precipitin reaction against the antiserum by Ouchterlony double diffusion test and all have the ability to neutralize antisera in a NR protection assay. Under induced growth conditions, mutants Az 12, Az 23, Az 29 and Az 30 which have low NR associated catalytic activities also have the lowest level of antigenicity; mutants Az 13, Az 31, Az 33 and Az 34 have intermediate level of both NR associated catalytic activities and antigenicity, while mutants Az 28 and Az 32 have the highest level of both NR associated catalytic activities and antigenicity. Under noninduced growth conditions, all mutants except Az 12 contain detectable but very low levels of NR antigenicity. These results support the concept that these NR-deficient mutants with various levels of NR associated catalytic activities represent different mutation events at the loci coding the NR structural components.Abbreviations NR nitrate reductase - DTT dithiothreitol - FAD flavin adenine dinucleotide - BSA bovine serum albumin - NRCRM nitrate reductase cross-reacting materials Scientific Paper No. 5765. College of Agriculture Research Center, Washington State University, Pullman, Project Nos. 0233 and 0430. Supported in part by National Science Foundation Grant #PCM7807649, and U.S. Department of Agriculture CRGO Grant #7900536  相似文献   

11.
To clarify the role of the fungal nitrate assimilation pathway in nitrate reduction by mycorrhizal plants, nitrate reductase (NR)-deficient (NR) mutants of the ectomycorrhizal basidiomycete Hebeloma cylindrosporum Romagnesi have been selected. These mutants were produced by u.v. mutagenesis on protoplasts originating from homokaryotic mycelia belonging to complementary mating types of this heterothallic tetrapolar species. Chlorate-resistant mutants were first selected in the presence of different nitrogen (N) sources in the culture medium. Among 1495 chlorate resistant mycelia, 30 failed to grow on nitrate and lacked a detectable NR activity. Growth tests on different N sources suggested that the NR activity of all the different mutants is specifically impaired as a result of mutations in either the gene coding for NR apoprotein or genes controlling the synthesis of the molybdenum cofactor. Furthermore, restoration of NR activity in some of the dikaryons obtained after crosses between the different mutant mycelia suggested that not all the selected mutations mapped in the same gene. Utilization of N on a NH415NO3 medium was studied for two mutant strains and their corresponding wild-type homokaryons. None of the mutants could use nitrate whereas 15N enrichment values indicated that 13–27% of N present in 13-d-old wild-type mycelia originated from nitrate. Apparently, the mutant mycelia do not compensate their inability to use nitrate by a more efficient use of ammonium. These different NR mutants still form mycorrhizas with the habitual host plant, Pinus pinaster (Ait.), making them suitable for study of the contribution of the fungal nitrate assimilation pathway to nitrate assimilation by mycorrhizal plants.  相似文献   

12.
* Here, cytokinin-induced nitric oxide (NO) biosynthesis and cytokinin responses were investigated in Arabidopsis thaliana wild type and mutants defective in NO biosynthesis or cytokinin signaling components. * NO release from seedlings was quantified by a fluorometric method and, by microscopy, observed NO biosynthesis as fluorescence increase of DAR-4M AM (diaminorhodamine 4M acetoxymethyl ester) in different tissues. * Atnoa1 seedlings were indistinguishable in NO tissue distribution pattern and morphological responses, induced by zeatin, from wild-type seedlings. Wild-type and nia1,2 seedlings, lacking nitrate reductase (NR), responded to zeatin with an increase within 3 min in NO biosynthesis so that NR does not seem relevant for rapid NO induction, which was mediated by an unknown 2-(2-aminoethyl)2-thiopseudourea (AET)-sensitive enzyme and was quenched by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-1-oxy-3-oxide (PTIO). Long-term morphological responses to zeatin were severely altered and NO biosynthesis was increased in nia1,2 seedlings. As cytokinin signaling mutants we used the single-receptor knockout cre1/ahk4, three double-receptor knockouts (ahk2,3, ahk2,4, ahk3,4) and triple-knockout ahp1,2,3 plants. All cytokinin-signaling mutants showed aberrant tissue patterns of NO accumulation in response to zeatin and altered morphological responses to zeatin. * Because aberrant NO biosynthesis correlated with aberrant morphological responses to zeatin the hypothesis was put forward that NO is an intermediate in cytokinin signaling.  相似文献   

13.
14.
15.
Mutant plants defective in the assimilation of nitrate can be selected by their resistance to the herbicide chlorate. In Arabidopsis thaliana, mutations at any one of nine distinct loci confer chlorate resistance. Only one of the CHL genes, CHL3, has been shown genetically to be a nitrate reductase (NR) structural gene (NIA2) even though two NR genes (NIA1 and NIA2) have been cloned from the Arabidopsis genome. Plants in which the NIA2 gene has been deleted retain only 10% of the wildtype shoot NR activity and grow normally with nitrate as the sole nitrogen source. Using mutagenized seeds from the NIA2 deletion mutant and a modified chlorate selection protocol, we have identified the first mutation in the NIA1 NR structural gene. nia1, nia2 double mutants have only 0.5% of wild-type shoot NR activity and display very poor growth on media with nitrate as the only form of nitrogen. The nial-1 mutation is a single nucleotide substitution that converts an alanine to a threonine in a highly conserved region of the molybdenum cofactor-binding domain of the NR protein. These results show that the NIA1 gene encodes a functional NR protein that contributes to the assimilation of nitrate in Arabidopsis.  相似文献   

16.
Mutant plants defective in the assimilation of nitrate can be selected by their resistance to the herbicide chlorate. In Arabidopsis thaliana, mutations at any one of nine distinct loci confer chlorate resistance. Only one of the CHL genes, CHL3, has been shown genetically to be a nitrate reductase (NR) structural gene (NIA2) even though two NR genes (NIA1 and NIA2) have been cloned from the Arabidopsis genome. Plants in which the NIA2 gene has been deleted retain only 10% of the wildtype shoot NR activity and grow normally with nitrate as the sole nitrogen source. Using mutagenized seeds from the NIA2 deletion mutant and a modified chlorate selection protocol, we have identified the first mutation in the NIA1 NR structural gene. nia1, nia2 double mutants have only 0.5% of wild-type shoot NR activity and display very poor growth on media with nitrate as the only form of nitrogen. The nial-1 mutation is a single nucleotide substitution that converts an alanine to a threonine in a highly conserved region of the molybdenum cofactor-binding domain of the NR protein. These results show that the NIA1 gene encodes a functional NR protein that contributes to the assimilation of nitrate in Arabidopsis.  相似文献   

17.
Nitric oxide (NO) functions in various physiological and developmental processes in plants. However, the source of this signaling molecule in the diversity of plant responses is not well understood. It is known that NO mediates auxin-induced adventitious and lateral root (LR) formation. In this paper, we provide genetic and pharmacological evidence that the production of NO is associated with the nitrate reductase (NR) enzyme during indole-3-butyric acid (IBA)-induced lateral root development in Arabidopsis thaliana L. NO production was detected using 4,5-diaminofluorescein diacetate (DAF-2DA) in the NR-deficient nia1, nia2 and Atnoa1 (former Atnos1) mutants of A. thaliana. An inhibitor for nitric oxide synthase (NOS) N(G)-monomethyl-l-arginine (l-NMMA) was applied. Our data clearly show that IBA increased LR frequency in the wild-type plant and the LR initials emitted intensive NO-dependent fluorescence of the triazol product of NO and DAF-2DA. Increased levels of NO were restricted only to the LR initials in contrast to primary root (PR) sections, where NO remained at the control level. The mutants had different NO levels in their control state (i.e. without IBA treatment): nia1, nia2 showed lower NO fluorescence than Atnoa1 or the wild-type plant. The role of NR in IBA-induced NO formation in the wild type was shown by the zero effects of the NOS inhibitors l-NMMA. Finally, it was clearly demonstrated that IBA was able to induce NO generation in both the wild-type and Atnoa1 plants, but failed to induce NO in the NR-deficient mutant. It is concluded that the IBA-induced NO production is nitrate reductase-associated during lateral root development in A. thaliana.  相似文献   

18.
Nitrate reductase (NR), a committed enzyme in nitrate assimilation, involves generation of nitric oxide (NO) in plants. Here we show that the NR activity was significantly enhanced by the addition of NO donors sodium nitroprusside (SNP) and NONOate (diethylamine NONOate sodium) to the culturing solution, whereas it was decreased by NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO). Interestingly, both NO gas and SNP directly enhanced but cPTIO inhibited the NR activities of crude enzyme extracts and purified NR enzyme. The cPTIO terminated the interaction between NR-generated NO and the NR itself. Furthermore, the NR protein content was not affected by the SNP treatment. The investigation of the partial reactions catalysed by purified NR using various electron donors and acceptors indicated that the haem and molybdenum centres in NR were the two sites activated by NO. The results suggest that the activation of NR activity by NO is regulated at the post-translational level, probably via a direct interaction mechanism. Accordingly, the concentration of nitrate both in leaves and roots was decreased after 2 weeks of cultivation with SNP. The present study identifies a new mechanism of NR regulation and nitrate assimilation, which provides important new insights into the complex regulation of N-metabolism in plants.  相似文献   

19.
20.
从小麦、油菜、浮萍、番茄、烟草的叶片中分离得到NR-SF。不同植物材料中NR及NR-SF能起交叉反应;不同NR-SF影响NR酶动力学性质相同;不同NR-SF的凝胶电泳谱带显示蛋白和糖蛋白性质。NR-SF广泛存在于植物细胞中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号