首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was carried out in order to determine if the efficiency of amiodarone, a class III antiarrhythmic agent, is associated with changes in mitochondrial oxidative phosphorylation. A population of 30 rats were treated with amiodarone (100 mg/kg/day) for 5 days. A second population receiving only vehicle was used as control. The hearts were perfused according to the working mode. After 15 min of normoxic perfusion, the left main coronary artery was ligated and the ligation was maintained for 20 min. The ligation was removed and reperfusion continued for a further 30 min. The electrocardiogram was monitored continuously. At the end of perfusion, the ischemic and non ischemic areas were visually separated and mitochondria were harvested from each area. Their oxidative and energy metabolism were assessed with palmitoylcarnitine as substrate in 2 respiration media differing in their free calcium concentration (0 or 0.34 m). In normoxic conditions, amiodarone treatment increased the cardiac metabolic efficiency (mechanical work to oxygen consumption ratio). The local ischemia decreased the aortic and coronary flows without modifying the cardiac metabolic efficiency. Amiodarone treatment maintained the aortic flow at a significantly higher value; the duration of severe arrhythmias was significantly decreased by the drug. The reperfusion of the ischemic area allowed the partial recovery of fluid dynamics. The coronary flow was restored to 89% of the pre ischemic value. Conversely, the aortic flow never exceeded that measured at the end of ischemia, partly due to the important development of severe arrhythmias. The recovery of aortic flow and metabolic efficiency during reperfusion was improved by amiodarone treatment; ventricular tachycardia and fibrillation duration were reduced. In the mitochondria issued from the normoxic area, the energy metabolism was not altered by the amiodarone treatment, but the presence of calcium in the respiration medium modified the oxidative phosphorylation. The divalent cation slightly decreased the state III respiration rate and increased noticeably the state IV respiration rate. This was associated with an important mitochondrial AMP production and maintenance of ADP in the respiration medium. This energy wasting was reported to decrease the mitochondrial metabolic efficiency. After an ischemia-reperfusion sequence, mitochondrial oxidation phosphorylation was reduced and amiodarone treatment amplified this decrease. This was presumably due to an increased mitochondrial calcium accumulation. Thus, the beneficial properties of amiodarone during reperfusion are supposed to be due to a protection against the deleterious effect of excess matrix calcium on mitochondrial energy metabolism.  相似文献   

2.
Angiotensin II (AngII) type 1 receptor (AT1R) blockers (ARBs) limit left ventricular (LV) dysfunction and necrosis after reperfused myocardial infarction (RMI) and proteomics can detect changes in protein levels after injury. We applied proteomics to detect changes in levels of specific protein in the ischemic zone (IZ) and non-ischemic zone (NIZ) of dog hearts after in vivo RMI (90 min of anterior ischemia; 120 min of reperfusion) and treatment with intravenous vehicle (control) and the ARBs valsartan or irbesartan (10 mg/kg) over 30 min before RMI. We also assessed LV function, infarction and apoptosis. Both ARBs limited the RMI-induced LV dysfunction, infarct size and apoptosis. Proteomics detected differential expression of 5 randomly selected proteins in the IZ compared to the NIZ after RMI: decrease in subunit of ATP synthase isoform precursor (consistent with increased conversion to subunit under metabolic stress), M chain creatine kinase (consistent with cellular damage) and ventricular myosin light chain-1 (consistent with structural damage and decreased contractility); and increase in NAD+-isocitrate dehydrogenase (ICDH) and subunit and ATP synthase D chain (mitochondrial, consistent with metabolic dysfunction). Importantly, changes in NAD+-ICDH and ATP synthase D chain were reversed by ARB therapy. Thus, proteomics can detect regional changes in metabolic, contractile, and structural proteins after RMI and several of these proteins are favorably modified by ARBs, suggesting that they may be novel therapeutic targets. (Mol Cell Biochem 263: 179–188, 2004)  相似文献   

3.
Sawicki G  Jugdutt BI 《Proteomics》2004,4(7):2195-2202
In this study, we demonstrate the use of proteomics to detect regional differences in protein levels between the reperfused ischemic zone (IZ) and the nonischemic zone (NIZ) of dog hearts which were subjected to in vivo ischemia-reperfusion injury. Using the two-dimensional gel electrophoresis (2-DE) technique, we identified five proteins that were differentially expressed in the IZ versus NIZ: (1) the alpha subunit of ATP synthase isoform precursor was decreased 1.71-fold; (2) creatine kinase M chain was decreased 1.72-fold; (3) NAD+-isocitrate dehydrogenase, alpha subunit was increased 8.34-fold; (4) ATP synthase D chain, mitochondrial was increased 3.02-fold; (5) ventricular myosin light chain-1 was decreased 2.02-fold. Additionally, we found that the level of actin was decreased 2.6-times in the IZ compared to the NIZ on Western blot analysis but was unchanged on 2-DE.  相似文献   

4.
Recovery of high-energy compounds by ischemic myocardium is believed to be important for its return to normal functioning. While it has been previously shown that oxidative phosphorylation is markedly reduced in mitochondria isolated from ischemic myocardium in the presence of all substrates, alterations in ATPase activity have not been confirmed. This study demonstrates that, although the rate of ATP hydrolysis produced by mitochondria isolated from 2-hr ischemic myocardium does not significantly differ from that produced by non-ischemic mitochondria, the rate produced by 2-hr ischemic, 2 hr reperfused mitochondria is significantly higher. Also, Ca++ content was observed to be higher in reperfused than in non-reperfused ischemic mitocheondria. The addition of EDTA, EGTA, or oligomycin to the reperfused ischemic mitochondria resulted in the inhibition of ATPase activity. These results indicate that mitochondrial ATPase in ischemic myocardium is activated by Ca++ ions and that ischemic reperfused myocardium may contain mitochondria with uncontrolled ATPase activity such that high energy phosphate supplies are excessively depleted when the cells are reperfused.  相似文献   

5.
Sawicki G  Jugdutt BI 《Proteomics》2007,7(12):2100-2110
To determine whether reperfused myocardial infarction (RMI) induces PTM of the delta-subunit of the mitochondrial metabolic enzyme ATP synthase (ATP/delta) in the ischemic zone (IZ) and whether this can be reversed by the angiotensin II type 1 receptor (AT(1)R) blocker valsartan, we applied a pharmaco-proteomics approach in canine RMI hearts with or without valsartan pretreatment. Using the 2-DE technique, we identified differential regional expression of ATP/delta in the IZ compared to the non-ischemic zone (NIZ), with an approximately 2-fold increase in the IZ that was normalized by valsartan. Furthermore in the IZ, RMI triggered S-nitrosylation of cysteine-100, nitration of the two tyrosines 88 and 225, and hydroxylation of lysine-182 in ATP/delta followed by its myristoylation. Importantly, valsartan abolished these modifications of ATP/delta in the IZ, triggered phosphorylation of serine-76 in both the IZ and NIZ, and decreased necrosis, apoptosis, left ventricular dysfunction and remodeling. Thus, AT(1)R-blocker-induced cardioprotection during RMI is associated with phosphorylation of ATP/delta and inhibition of nitric oxide-related chemical modifications such as S-nitrosylation, nitration and hydroxylation. Targeting specific PTMs during RMI, such as those of ATP/delta with AT(1)R blockade, might be a potentially powerful novel therapeutic approach. However, the identification of S-nitrosylation was putative and requires MS/MS verification.  相似文献   

6.
To determine whether therapy with the angiotensin II type 1 receptor blocker (ARB) candesartan and the comparator angiotensin-converting-enzyme inhibitor (ACEI) enalapril during healing after reperfused ST-elevation myocardial infarction (RSTEMI) limit adverse remodeling of infarct zone (IZ) collagens and left ventricular (LV) diastolic dysfunction, we randomized 24 dogs surviving anterior RSTEMI (90-min coronary occlusion) to placebo, candesartan, and enalapril therapy between day 2 and 42. Six other dogs were sham. We measured regional IZ and non-infarct zone (NIZ) collagens (hydroxyproline; types I/III; cross-linking), transforming growth factor-β (TGF-β) and topography at 6 weeks, and hemodynamics, LV diastolic and systolic function, and remodeling over 6 weeks. Compared to sham, placebo-RSTEMI differentially altered regional collagens, with more pronounced increase in TGF-β, hydroxyproline, and type I, insoluble, and cross-linked collagens in the IZ than NIZ, and increased IZ soluble and type III collagens at 6 weeks, and induced persistent LV filling pressure elevation, diastolic and systolic dysfunction, and LV remodeling over 6 weeks. Compared to placebo-RSTEMI, candesartan and enalapril limited adverse regional collagen remodeling, with normalization of type III, soluble and insoluble collagens and decrease in pyridinoline cross-linking in the IZ at 6 weeks, and attenuation of LV filling pressure, diastolic dysfunction, and remodeling over 6 weeks. The results suggest that candesartan and enalapril during healing after RSTEMI prevent rather than worsen adverse remodeling of IZ collagens and LV diastolic dysfunction, supporting the clinical use of ARBs and ACEIs during subacute RSTEMI.  相似文献   

7.
Angiotensin II (AngII) type 1 receptor (AT1R) blockers (ARBs) limit left ventricular (LV) dysfunction and necrosis after reperfused myocardial infarction (RMI) and proteomics can detect changes in protein levels after injury. We applied proteomics to detect changes in levels of specific protein in the ischemic zone (IZ) and non-ischemic zone (NIZ) of dog hearts after in vivo RMI (90 min of anterior ischemia; 120 min of reperfusion) and treatment with intravenous vehicle (control) and the ARBs valsartan or irbesartan (10 mg/kg) over 30 min before RMI. We also assessed LV function, infarction and apoptosis. Both ARBs limited the RMI-induced LV dysfunction, infarct size and apoptosis. Proteomics detected differential expression of 5 randomly selected proteins in the IZ compared to the NIZ after RMI: decrease in a subunit of ATP synthase isoform precursor (consistent with increased conversion to a subunit under metabolic stress), M chain creatine kinase (consistent with cellular damage) and ventricular myosin light chain-1 (consistent with structural damage and decreased contractility); and increase in NAD+ -isocitrate dehydrogenase (ICDH) and alpha subunit and ATP synthase D chain (mitochondrial, consistent with metabolic dysfunction). Importantly, changes in NAD+ -ICDH and ATP synthase D chain were reversed by ARB therapy. Thus, proteomics can detect regional changes in metabolic, contractile, and structural proteins after RMI and several of these proteins are favorably modified by ARBs, suggesting that they may be novel therapeutic targets.  相似文献   

8.

Background and Purpose

Mitochondrial dysfunction has been implicated in the cell death observed after cerebral ischemia, and several mechanisms for this dysfunction have been proposed. Reperfusion after transient cerebral ischemia may cause continued and even more severe damage to the brain. Many lines of evidence have shown that mitochondria suffer severe damage in response to ischemic injury. The purpose of this study was to observe the features of mitochondrial dysfunction in isolated mitochondria during the reperfusion period following focal cerebral ischemia.

Methods

Male Wistar rats were subjected to focal cerebral ischemia. Mitochondria were isolated using Percoll density gradient centrifugation. The isolated mitochondria were fixed for electron microscopic examination; calcium-induced mitochondrial swelling was quantified using spectrophotometry. Cyclophilin D was detected by Western blotting. Fluorescent probes were used to selectively stain mitochondria to measure their membrane potential and to measure reactive oxidative species production using flow cytometric analysis.

Results

Signs of damage were observed in the mitochondrial morphology after exposure to reperfusion. The mitochondrial swelling induced by Ca2+ increased gradually with the increasing calcium concentration, and this tendency was exacerbated as the reperfusion time was extended. Cyclophilin D protein expression peaked after 24 hours of reperfusion. The mitochondrial membrane potential was decreased significantly during the reperfusion period, with the greatest decrease observed after 24 hours of reperfusion. The surge in mitochondrial reactive oxidative species occurred after 2 hours of reperfusion and was maintained at a high level during the reperfusion period.

Conclusions

Reperfusion following focal cerebral ischemia induced significant mitochondrial morphological damage and Ca2+-induced mitochondrial swelling. The mechanism of this swelling may be mediated by the upregulation of the Cyclophilin D protein, the destruction of the mitochondrial membrane potential and the generation of excessive reactive oxidative species.  相似文献   

9.
Mitochondrial calcium overload has been implicated in the irreversible damage of reperfused heart. Accordingly, we studied the effect of an oxygen-bridged dinuclear ruthenium amine complex (Ru360), which is a selective and potent mitochondrial calcium uniporter blocker, on mitochondrial dysfunction and on the matrix free-calcium concentration in mitochondria isolated from reperfused rat hearts. The perfusion of Ru360 maintained oxidative phosphorylation and prevented opening of the mitochondrial permeability transition pore in mitochondria isolated from reperfused hearts. We found that Ru360 perfusion only partially inhibited the mitochondrial calcium uniporter, maintaining the mitochondrial matrix free-calcium concentration at basal levels, despite high concentrations of cytosolic calcium. Additionally, we observed that perfused Ru360 neither inhibited Ca2+ cycling in the sarcoplasmic reticulum nor blocked ryanodine receptors, implying that the inhibition of ryanodine receptors cannot explain the protective effect of Ru360 in isolated hearts. We conclude that the maintenance of postischemic myocardial function correlates with an incomplete inhibition of the mitochondrial calcium uniporter. Thus, the chemical inhibition by this molecule could be an approach used to prevent heart injury during reperfusion.  相似文献   

10.
Dysfunction of mitochondrial calcium homeostasis transforms this cation from a key regulator of mitochondrial function, into a death effector during post-ischemic reperfusion. High intramitochondrial calcium and prevailing cellular conditions favor the opening of the mitochondrial permeability transition pore (mPTP), that induces mitochondrial swelling and provides a mechanism for cytochrome c release, a hallmark signal protein of the mitochondrial apoptosis pathway; indeed, a second mechanism induced by pro-apoptotic BAX protein, could account for cytochrome c leak in the post-ischemic heart. The present study was undertaken to determine which one of these mechanisms triggers the mitochondrial apoptosis pathway in the reperfused heart. To accomplish this goal we prevented the opening of the mPTP in such hearts, by diminishing calcium overload with Ru360, a specific mitochondrial calcium uniporter inhibitor. We found that mPTP opening in reperfused hearts increased along with reperfusion time and concurs with cytochrome c release from mitochondria. Maximal cytochrome c release correlated with mitochondrial dysfunction and complete NAD+ deletion. Fully inserted BAX was detected early after reperfusion and remained unchanged during the evaluated reperfusion times. Remarkably, heart perfusion with Ru360, inhibited mPTP opening and BAX docking into the mitochondrial membranes, suggesting a mPTP upstream role on BAX migration/insertion.  相似文献   

11.
The pathways activated by post-conditioning may converge on the mitochondria, in particular on the mitochondrial permeability transition pore. We sought to characterize the inhibition status of the mitochondrial permeability transition early after the post-conditioning maneuver and before long reperfusion was established. We observed that post-conditioning maneuvers applied to isolated rat hearts, after a prolonged ischemia and before reperfusion, promoted cardiac mechanical function recovery and maintained mitochondrial integrity. These effects were evaluated by mitochondrial swelling, calcium transport, and NAD+ content measurements; the improvements were established before restoring a long lasting reperfusion period. Mitochondrial integrity was associated with a diminution in oxidative stress, since carbonylation of proteins was prevented and aconitase activity was preserved in the post-conditioned hearts, implying that ROS might mediate mitochondrial dysfunction and mPTP opening. In addition, we found that cytochrome release was significantly abolished in the post-conditioned heart, in contrast with conventionally reperfused hearts.  相似文献   

12.
Summary The distribution of calcium between isolated rat liver mitochondria and the extramitochondrial medium at 37°C and in the presence of 2mm inorganic phosphate, 3mm ATP, 0.05 or 1.1mm free magnesium and a calcium buffer, nitrilotriacetic acid, was investigated using a45Ca exchange technique. The amounts of40Ca in the mitochondria and medium were allowed to reach equilibrium before initiation of the measurement of45Ca exchange. At 0.05mm free magnesium and initial extramitochondrial free calcium concentrations of between 0.15 and 0.5 m, the mitochondria accumulated calcium until the extramitochondrial free calcium concentration was reduced to 0.15 m. Control experiments showed that the mitochondria were stable under the incubation conditions employed. The45Ca exchange data were found to be consistent with a system in which two compartments of exchangeable calcium are associated with the mitochondria. Changes in the concentration of inorganic phosphate did not significantly affect the45Ca exchange curves, whereas an increase in the concentration of free magnesium inhibited exchange. The maximum rate of calcium outflow from the mitochondria was estimated to be 1.7 nmol/min per mg of protein, and the value ofK 0.5 for intramitochondrial exchangeable calcium to be about 1.6 nmol per mg of protein. Ruthenium Red decreased the fractional transfer rate for calcium inflow to the mitochondria while nupercaine affected principally the fractional transfer rates for the transfer of calcium between the two mitochondrial compartments. The use of the incubation conditions and45Ca exchange technique described in this report for studies of the effects of agents which may alter mitochondrial calcium uptake or release (e.g., the pre-treatment of cells with hormones) is briefly discussed.  相似文献   

13.
Ischemia-reperfusion injury to cardiac myocytes involves membrane damage mediated by oxygen free radicals. Lipid peroxidation is considered a major mechanism of oxygen free radical toxicity in reperfused heart. Mitochondrial respiration is an important source of these reactive oxygen species and hence a potential contributor to reperfusion injury. We have examined the effects of ischemia (30 min) and ischemia followed by reperfusion (15 min) of rat hearts, on the kinetic parameters of cytochrome c oxidase, on the respiratory activities and on the phospholipid composition in isolated mitochondria. Mitochondrial content of malonyldialdheyde (MDA), an index of lipid peroxidation, was also measured. Reperfusion was accompanied by a significant increase in MDA production. Mitochondrial preparations from control, ischemic and reperfused rat heart had equivalent Km values for cytochrome c, although the maximal activity of the oxidase was 25 and 51% less in ischemic and reperfused mitochondria than that of controls. These changes in the cytochrome c oxidase activity were associated to parallel changes in state 3 mitochondrial respiration. The cytochrome aa3 content was practically the same in these three types of mitochondria. Alterations were found in the mitochondrial content of the major phospholipid classes, the most pronounced change occurring in the cardiolipin, the level that decreased by 28 and by 50% as function of ischemia and reperfusion, respectively. The lower cytochrome c oxidase activity in mitochondria from reperfused rat hearts could be almost completely restored to the level of control hearts by exogenously added cardiolipin, but not by other phospholipids nor by peroxidized cardiolipin. It is proposed that the reperfusion-induced decline in the mitochondrial cytochrome c oxidase activity can be ascribed, at least in part, to a loss of cardiolipin content, due to peroxidative attack of its unsaturated fatty acids by oxygen free radicals. These findings may provide an explanation for some of the factors that lead to myocardial reperfusion injury.  相似文献   

14.
The effects of apelin-12, a 12 amino acid peptide (H-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe-OH, A-12), on recovery of energy metabolism and cardiac function have been studied in isolated working rat hearts perfused with Krebs buffer (KB) containing 11 mM glucose and subjected to global ischemia and reperfusion. Infusion of 140 μM A-12 before ischemia enhanced myocardial ATP, the total pool of adenine nucleotides (ΣAN = ATP+ADP+AMP) and the energy charge of cardiomyocytes ((ATP + 0.5ADP)/ΣAN) at the end of reperfusion compared with control (KB infusion) and decreased lactate content and lactate/pyruvate ratio in the reperfused myocardium up to the initial values. This was accompanied by improved recovery of coronary flow and cardiac function. Co-administration of A-12 and 100 μM L-NAME (an inhibitor of NO synthases) significantly attenuated the A-12 effects on metabolic and functional recovery of reperfused hearts. These results indicate involvement of NO in mechanisms of cardioprotection that are tightly associated with recovery of energy metabolism in the postischemic heart.  相似文献   

15.

Background

Mitochondria are critical to cardiac injury during reperfusion as a result of damage sustained during ischemia, including the loss of bcl-2. We asked if bcl-2 depletion not only leads to selective permeation of the outer mitochondrial membrane (MOMP) favoring cytochrome c release and programmed cell death, but also favors opening of the mitochondrial permeability transition pore (MPTP). An increase in MPTP susceptibility would support a role for bcl-2 depletion mediated cell death in the calcium overload setting of early reperfusion via MPTP as well as later in reperfusion via MOMP as myocardial calcium content normalizes.

Methods

Calcium retention capacity (CRC) was used to reflect the sensitivity of the MPTP opening in isolated cardiac mitochondria. To study the relationship between bcl-2 inhibition and MPTP opening, mitochondria were incubated with a bcl-2 inhibitor (HA14-1) and CRC measured. The contribution of preserved bcl-2 content to MPTP opening following ischemia-reperfusion was explored using transgenic bcl-2 overexpressed mice.

Results

CRC was decreased in mitochondria following reperfusion compared to ischemia alone, indicating that reperfusion further sensitizes to MPTP opening. Incubation of ischemia-damaged mitochondria with increasing HA14-1concentrations increased calcium-stimulated MPTP opening, supporting that functional inhibition of bcl-2 during simulated reperfusion favors MPTP opening. Moreover, HA14-1 sensitivity was increased by ischemia compared to non-ischemic controls. Overexpression of bcl-2 attenuated MPTP opening in following ischemia-reperfusion. HA14-1 inhibition also increased the permeability of the outer membrane in the absence of exogenous calcium, indicating that bcl-2 inhibition favors MOMP when calcium is low.

Conclusions

The depletion and functional inhibition of bcl-2 contributes to cardiac injury by increasing susceptibility to MPTP opening in high calcium environments and MOMP in the absence of calcium overload. Thus, ischemia-damaged mitochondria with decreased bcl-2 content are susceptible to MPTP opening in early reperfusion and MOMP later in reperfusion when cytosolic calcium has normalized.  相似文献   

16.
The purpose of this study was to modify the amount of 22:4 n-6, 22:5 n-6 and 20:5 n-3 in cardiac phospholipids and to evaluate the influence of these changes on the functioning of working rat hearts and mitochondrial energy metabolism under normoxic conditions and during postischemic reperfusion. The animals were fed one of these four diets: (i) 10% sunflower seed oil (SSO); (ii) 10% SSO + 1% cholesterol; (iii) 5% fish oil (FO, EPAX 3000TG, Pronova) + 5% SSO; (iv) 5% FO + 5% SSO + 1% cholesterol. Feeding n-3 PUFA decreased n-6 PUFA and increased n-3 PUFA in plasma lipids. In the phospholipids of cardiac mitochondria, this dietary modification also induced a decrease in the n-6/n-3 PUFA ratio. Cholesterol feeding induced marked hepatic steatosis (HS) characterized by the whitish appearance of the liver. It also brought about marked changes in the fatty acid composition of plasma and mitochondrial phospholipids. These changes, characterized by the impairment of 5- and 6-desaturases, were more obvious in the SSO-fed rats, probably because of the presence of the precursor of the n-6 family (linoleate) in the diet whereas the FO diet contained large amounts of eicosapentaenoic and docosahexaenoic acids. In the mitochondrial phospholipids of SSO-fed rats, the (22:4 n-6 + 22:5 n-6) to 18:2 n-6 ratio was decreased by HS, without modification of the proportion of 20:4 n-6. In the mitochondrial phospholipids of FO-fed rats, the amount of 20:5 n-3 tended to be higher (+56%). Cardiac functioning was modulated by the diets. Myocardial coronary flow was enhanced by HS in the SSO-fed rats, whereas it was decreased in the FO-fed animals. The rate constant k012 representing the activity of the adenylate kinase varied in the opposite direction, suggesting that decreased ADP concentrations could cause oxygen wasting through the opening of the permeability transition pore. The recovery of the pump function tended to be increased by n-3 PUFA feeding (+22%) and HS (+45%). However, the release of ascorbyl free radical during reperfusion was not significantly modified by the diets. Conversely, energy production was increased by ischemia/reperfusion in the SSO group, whereas it was not modified in the FO group. This supports greater ischemia/reperfusion-induced calcium accumulation in the SSO groups than in the FO groups. HS did not modify the mitochondrial energy metabolism during ischemia/reperfusion. Taken together, these data suggest that HS- and n-3 PUFA-induced decrease in 22:4 and 22:5 n-6 and increase in 20:5 n-3 favor the recovery of mechanical activity during post-ischemic reperfusion.  相似文献   

17.
Summary The content of calcium per mg mitochondrial protein has been measured by conventional biochemical methods in myocardial tissue of some mammalian species. In addition, a method is presented for (1) the analysis of mitochondrial volumes in the same tissues and (2) calculating the amount of calcium in units of 106 mitochondria.It appears that a highly significant correlation exists between the calcium content and the number of mitochondria, with a positive correlation coefficient of 0.92. The mean mitochondrial volume in fractions of the rabbit myocardium was found to be 1.3386 m3. Electron microscopic studies demonstrate pure mitochondrial fractions and only moderate structural alterations. The method described may represent a useful supplement for the estimation of calcium fluxes in mitochondria and of alterations in their volume, number and structure under conditions of myocardial ischemia.This work was supported by grants from the Norwegian Council on Cardiovascular Disease and from The Norwegian Research Council for Science and the Humanities  相似文献   

18.
Ubiquitous calpains (calpain I and II) are generally recognized as cytosolic proteins. Recently, mitochondrial localized calpain I (μ-calpain) has been identified. Activation of mito-μ-calpain cleaves apoptosis inducing factor (AIF), a flavoprotein located within the mitochondrial intermembrane space, in liver mitochondria, but not in brain mitochondria. We first tested if activation of mito-μ-calpain cleaves AIF in isolated heart mitochondria. A decrease in AIF content within mitochondria increases cardiac injury during ischemia–reperfusion by augmenting oxidative stress. We hypothesize that the activation of mito-μ-calpain by calcium overload during ischemia–reperfusion results in decreased AIF content within mitochondria by cleaving AIF. The μ-calpain was present within mouse heart mitochondria, mostly in the intermembrane space. Exogenous calcium treatment induced a calpain-dependent decrease of mitochondrial AIF content in isolated mouse heart mitochondria. This process was blocked by a calpain inhibitor (MDL-28170). The Mitochondrial μ-calpain activity was increased by 160 ± 15% during ischemia–reperfusion compared to time control. In contrast, the mitochondrial AIF content was decreased by 52 ± 7% during reperfusion vs. time control in the buffer perfused mouse heart. Inhibition of mito-μ-calpain using MDL-28170 decreased cardiac injury by preserving AIF content within mitochondria during ischemia–reperfusion. Thus, activation of mito-μ-calpain is required to release AIF from cardiac mitochondria. Inhibition of calpains using MDL-28170 decreases cardiac injury by inhibiting both cytosolic calpains and mito-μ-calpain during ischemia–reperfusion.  相似文献   

19.
20.
Adrenal glands from ACTH-treated intact ducks and chronically adenohypophysectomized ducks showed clear zonation into a subcapsular zone (SCZ) and an inner zone (IZ). Adenohypophysectomy caused ultrastructural changes in the IZ but not in the SCZ cells. These included increases in lipid droplets, changes in mitochondrial cristae from tubular to shelf-like, and changes in the shape of the nuclei from spherical to crenated. These changes were reversed by treatment with ACTH. Also, cells of the IZ, but not the SCZ, of adrenals from intact birds given ACTH showed more SER, more dense bodies, fewer lipid droplets and more prominent Golgi complexes. IZ cells incubated in buffer containing no ACTH developed mitochondria with shelf-like cristae and numerous opaque granules in the matrix. Exposure to buffer containing ACTH caused the mitochondrial cristae to become tubular and the matrix granules either decreased in number or disappeared. The granules could be extracted by incubating sections with chelating agents. The mitochondria in SCZ cells did not respond structurally to the presence of ACTH in the incubation medium but the matrix granules, like those in IZ cells, responded to the presence of chelating agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号