首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
1. 1. The Mg2+- plus Ca2+-dependent ATPase (Ca2+-ATPase) in human red cell membranes is susceptible to inhibition by low concentrations of vanadate.
2. 2. Several natural activators of Ca2+-ATPase (Mg2+, K+, Na+ and calmodulin) modify inhibition by increasing the apparent affinity of the enzyme for vanadate.
3. 3. Among the ligands tested, K+, in combination with Mg2+, had the most pronounced effect on inhibition by vanadate.
4. 4. Under conditions optimal for inhibition of Ca2+-ATPase, the K for vanadate was 1.5 μM and inhibition was nearly complete at saturating vanadate concentrations.
5. 5. There are similarities between the kinetics of inhibition of red cell Ca2+-ATPase and (Na+ + K+)-ATPase prepared from a variety of sources; however, (Na+ + K+)-ATPase is approx. 3 times more sensitive to inhibition by vanadate.
Keywords: Ca2+-ATPase; Red cell membrane; Vanadate; Calmodulin  相似文献   

3.
We have investigated the localization of a set of intrinsic ATPase activities associated with purified synaptic plasma membranes and consisting of (a) a Mg2+-ATPase; (b) an ATPase active at high concentrations of Ca2+ in the absence of Mg2+ (CaH-ATPase); (c) a Ca2+ requiring Mg2+-dependent ATPase (Ca + Mg)-ATPase, stimulated by calmodulin (Ca-CaM-ATPase); (d) a Ca2+-dependent ATPase stimulated by dopamine (DA-ATPase); and (e) the ouabain-sensitive (Na + K)-ATPase. The following results were obtained: (1) All ATPases are largely confined to the presynaptic membrane; (2) the DA-, (Ca + Mg)-, (Ca-CaM)-, and (Na + K)-ATPases are oriented with their ATP hydrolysis sites facing the synaptoplasm; (3) the Mg- and CaH-ATPases are oriented with their ATP hydrolysis sites on the junctional side of the presynaptic membrane and are therefore classified as ecto-ATPases of as yet unknown function.  相似文献   

4.
Vanadate inhibits the Ca++-ATPase of sarcoplasmic reticulum from pig heart half maximally at about 10?5 M. Mg++ promotes this inhibition by vanadate whereas increasing Ca++-concentrations protect the enzyme against vanadate inhibition. Keeping the ratio Mg++ATP constant there was no influence of ATP on the vanadate inhibition at concentrations up to 5 × 10?3 M ATP. Whenever the ratio Mg++ATP was higher than 1:1 the inhibitory effect of vanadate on the Ca++-ATPase was increased.  相似文献   

5.
The activity of calcium-stimulated and magnesium-dependent adenosinetriphosphatase which possesses a high affinity for free calcium (high-affinity (Ca2+ + Mg2+)-ATPase, EC 3.6.1.3) has been detected in rat ascites hepatoma AH109A cell plasma membranes. The high-affinity (Ca2+ + Mg2+)-ATPase had an apparent half saturation constant of 77 ± 31 nM for free calcium, a maximum reaction velocity of 9.9 ± 3.5 nmol ATP hydrolyzed/mg protein per min, and a Hill number of 0.8. Maximum activity was obtained at 0.2 μM free calcium. The high-affinity (Ca2+ + Mg2+)-ATPase was absolutely dependent on 3–10 mM magnesium and the pH optimum was within physiological range (pH 7.2–7.5). Among the nucleoside trisphosphates tested, ATP was the best substrate, with an apparent Km of 30 μM. The distribution pattern of this enzyme in the subcellular fractions of the ascites hepatoma cell homogenate (as shown by the linear sucrose density gradient ultracentrifugation method) was similar to that of the known plasma membrane marker enzyme alkaline phosphatase (EC 3.1.3.1), indicating that the ATPase was located in the plasma membrane. Various agents, such as K+, Na+, ouabain, KCN, dicyclohexylcarbodiimide and NaN3, had no significant effect on the activity of high-affinity (Ca2+ + Mg2+)-ATPase. Orthovanadate inhibited this enzyme activity with an apparent half-maximal inhibition constant of 40 μM. The high-affinity (Ca2+ + Mg2+)-ATPase was neither inhibited by trifluoperazine, a calmodulin-antagonist, nor stimulated by bovine brain calmodulin, whether the plasma membranes were prepared with or without ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid. Since the kinetic properties of the high-affinity (Ca2+ + Mg2+)-ATPase showed a close resemblance to those of erythrocyte plasma membrane (Ca2+ + Mg2+)-ATPase, the high-affinity (Ca2+ + Mg2+)-ATPase of rat ascites hepatoma cell plasma membrane is proposed to be a calcium-pumping ATPase of these cells.  相似文献   

6.
A S Bloom  C O Haavik  D Strehlow 《Life sciences》1978,23(13):1399-1404
The effect of (?)-Δ9-THC on the activities of Mg2+?, Na+?K+? and Mg2+Ca2+-ATPases were studied in mouse brain subcellular fractions. In vitrotreatment with Δ9-THC produced a dose dependent stimulation of Mg2+ ATPase in the crude mitochondrial fraction and its subfractions and a dose-related inhibition of this activity in the microsomal fraction. Na+-K+- and Mg2+-Ca2+-ATPase activities were inhibited in a dose-related manner in all subcellular fractions studied.  相似文献   

7.
Plasma membrane vesicles, isolated from ejaculated ram sperm, were found to contain Ca2+-activated Mg2+-ATPase and Ca2+ transport activities. Membrane vesicles that were exposed to oxalate as a Ca2+-trapping agent accumulated Ca2+ in the presence of Mg2+ and ATP. The Vmax for Ca2+ uptake was 33 nmol/mg protein per h, and the Km values for Ca2+ and ATP were 2.5 μM and 45 μM, respectively. 1 μM of the Ca2+ ionophore A23187, added initially, completely inhibited net Ca2+ uptake and, if added later, caused the release of Ca2+ previously accumulated. A Ca2+-activated ATPase was present in the same membrane vesicles which had a Vmax of 1.5 μmol/mg protein per h at free Ca2+ concentration of 10 μM. This Ca2+-ATPase had Km values of 4.5 μM and 110 μM for Ca2+ and ATP, respectively. This kinetic parameter was similar to that observed for uptake of Ca2+ by the vesicles. The Ca2+-ATPase activity was insensitive to ouabain. Both Ca2+ transport and Ca2+-ATPase activity were inhibited by the flavonoid quercetin. Thus, ram spermatozoa plasma membranes have both a Ca2+ transport activity and a Ca2+-stimulated ATPase activity with similar substrate affinities and specificities and similar sensitivity to quercetin.  相似文献   

8.
Antibodies raised in rabbits against the purified erythrocyte membrane Ca2+ pumping ATPase were affinity-purified using an ATPase-Sepharose column. Addition of a few molecules of the purified antibody per molecule of ATPase was sufficient to inhibit the ATPase activity. Extensively washed ghosts or preincubated pure ATPase sometimes develop an appreciable Mg2+-ATPase activity. In such cases, the antibodies inhibited the Mg2+-ATPase as well as the Ca2+-ATPase. This is consistent with the hypothesis that a portion of the Mg2+-ATPase activity of ghosts is derived from the Ca2+-ATPase. When nitrophenylphosphatase activity was observed, both Mg2+ - and Ca2+-stimulated activities were observed. Only the Ca2+ activity was inhibited by the antibodies, confirming that this activity is due to the Ca2+ pump, and suggesting that the Mg2+-nitrophenylphosphatase is due to a separate enzyme. Amounts of antibody comparable to those which inhibited the Ca2+-ATPases had no effect on the Na+-K+-ATPase; 4-fold higher amounts of antibody significantly stimulated the Na+-K+-ATPase, but this effect of the antibody was not specific: Immunoglobulins from the nonimmune serum also significantly stimulated the Na+-K+-ATPase.In resealed erythrocyte membranes, antibodies incorporated into the ghosts inactivated the Ca2+-ATPase, while antibodies added to the outside had no significant effect.  相似文献   

9.
A membrane fraction enriched in axolemma was obtained from optic nerves of the squid (Sepiotheutis sepioidea) by differential centrifugation and density gradient fractionation. The preparation showed an oligomycin- and NaN3-insensitive (Ca2+ + Mg2+)-ATPase activity. The dependence of the ATPase activity on calcium concentration revealed the presence of two saturable components. One had a high affinity for calcium (K121 = 0.12 μM) and the second had a comparatively low affinity (K212 = 49.5 μM). Only the high-affinity component was specifically inhibited by vanadate (K1 = 35 μM). Calmodulin (12.5 μ/ml) stimulated the (Ca2+ + Mg2+)-ATPase by approx. 50%, and this stimulation was abolished by trifluoperazine (10 μM). Further treatment of the membrane fraction with 1% Nonidet P-40 resulted in a partial purification of the ATPase about 15-fold compared to the initial homogenate. This (Ca2+ + Mg2+)-ATPase from squid optic nerve displays some properties similar to those of the uncoupled Ca2+-pump described in internally dialyzed squid axons, suggesting that it could be its enzymatic basis.  相似文献   

10.
Although acute alterations in Ca2+ fluxes may mediate the skeletal responses to certain humoral agents, the processes subserving those fluxes are not well understood. We have sought evidence for Ca2+-dependent ATPase activity in isolated osteoblast-like cells maintained in primary culture. Two Ca2+-dependent ATPase components were found in a plasma membrane fraction: a high affinity component (half-saturation constant for Ca2+ of 280 nM, Vmax of 13.5 nmol/mg per min) and a low affinity component, which was in reality a divalent cation ATPase, since Mg2+ could replace Ca2+ without loss of activity. The high affinity component exhibited a pH optimum of 7.2 and required Mg2+ for full activity. It was unaffected by potassium or sodium chloride, ouabain or sodium azide, but was inhibited by lanthanum and by the calmodulin antagonist trifluoperazine. This component was prevalent in a subcellular fraction which was also enriched in 5′-nucleotidase and adenylate cyclase activities, suggesting the plasma membrane as its principal location. Osteosarcoma cells, known to resemble osteoblasts in their biological characteristics and responses to bone-seeking hormones, contained similar ATPase activities. Inclusion of purified calmodulin in the assay system caused small non-reproducible increases in the Ca2+-dependent ATPase activity of EGTA-washed membranes. Marked, consistent calmodulin stimulation was demonstrated in membranes exposed previously to trifluoperazine and then washed in trifluoperazine-free buffer. These results indicate the presence of a high affinity, calmodulin-sensitive Ca2+-dependent ATPase in osteoblast-like bone cells. As one determinant of Ca2+ fluxes in bone cells, this enzyme may participate in the hormonal regulation of bone cell function.  相似文献   

11.
In contrast to everted mitochondrial inner membrane vesicles and eubacterial plasma membrane vesicles, the ATPase activity of chloroplast ATP synthase in thylakoid membranes is extremely low. Several treatments of thylakoids that unmask ATPase activity are known. Illumination of thylakoids that contain reduced ATP synthase (reduced thylakoids) promotes the hydrolysis of ATP in the dark. Incubation of thylakoids with trypsin can also elicit higher rates of ATPase activity. In this paper the properties of the ATPase activity of the ATP synthase in thylakoids treated with trypsin are compared with those of the ATPase activity in reduced thylakoids. The trypsin-treated membranes have significant ATPase activity in the presence of Ca2+, whereas the Ca2+-ATPase activity of reduced thylakoids is very low. The Mg2+-ATPase activity of the trypsinized thylakoids was only partially inhibited by the uncouplers, at concentrations that fully inhibit the ATPase activity of reduced membranes. Incubation of reduced thylakoids with ADP in Tris buffer prior to assay abolishes Mg2+-ATPase activity. The Mg2+-ATPase activity of trypsin-treated thylakoids was unaffected by incubation with ADP. Trypsin-treated membranes can make ATP at rates that are 75–80% of those of untreated thylakoids. The Mg2+-ATPase activity of trypsin-treated thylakoids is coupled to inward proton translocation and 10 mM sulfite stimulates both proton uptake and ATP hydrolysis. It is concluded that cleavage of the γ subunit of the ATP synthase by trypsin prevents inhibition of ATPase activity by the ε subunit, but only partially overcomes inhibition by Mg2+ and ADP during assay.  相似文献   

12.
13.
Plasma membrane vesicles of Ehrlich ascites carcinoma cells have been isolated to a high degree of purity. In the presence of Mg2+, the plasma membrane preparation exhibits a Ca2+-dependent ATPase activity of 2 μmol Pi per h per mg protein. It is suggested that this (Ca2+ + Mg2+)-ATPase activity is related to the measured Ca2+ transport which was characterized by Km values for ATP and Ca2+ of 44 ± 9 μM and 0.25 ± 0.10 μM, respectively. Phosphorylation of plasma membranes with [γ-32P]ATP and analysis of the radioactive species by polyacrylamide gel electrophoresis revealed a Ca2+-dependent hydroxylamine-sensitive phosphoprotein with a molecular mass of 135 kDa. Molecular mass and other data differentiate this phosphoprotein from the catalytic subunit of (Na+ + K+)-ATPase and from the catalytic subunit of (Ca2+ + Mg2+)-ATPase of endoplasmic reticulum. It is suggested that the 135 kDa phosphoprotein represents the phosphorylated catalytic subunit of the (Ca2+ + Mg2+)-ATPase of the plasma membrane of Ehrlich ascites carcinoma cells. This finding is discussed in relation to previous attempts to identify a Ca2+-pump in plasma membranes isolated from nucleated cells.  相似文献   

14.
15.
A chicken pectoralis muscle membrane fraction enriched in a Mg2+- or Ca2+-activated (‘basic’) ATPase was obtained by sucrose gradient centrifugation. Enzymatic properties of the ‘basic’ ATPase were determined and used to localize its enzymatic activity in situ by ultrastructural cytochemistry. The enzyme was activated by Mg2+ or Ca2+ but not by Sr2+, Ba2+, Co2+, Ni2+ or Pb2+. It was present in a membranous fraction with a buoyant density of 1.10-1.12 (24–27.5% (ww) sucrose). ‘Basic’ ATPase activity had a sedimentation pattern similar to the putative plasma membrane enzymes, 5′-nucleotidase and leucyl β-naphthylamidase, but different from that of sarcoplasmic reticulum Ca2+ ATPase. Also unlike sarcoplasmic reticulum Ca2+ ATPase, ‘basic’ ATPase was resistant to N-ethylmaleimide and aldehyde fixatives, was active in a medium containing a high Ca2+ concentration (3 mM), and was lost when exposed to Triton X-100 or deoxycholate. In cytochemical studies, a low Pb2+ concentration was used to capture the enzymatically released phosphate ions. Under conditions which eliminated interfering (Na+ + K+) ATPase and sarcoplasmic reticulum Ca2+ ATPase activities, electron-dense lead precipitates were present at the plasmalemma and T-system membranes. These studies suggest that ‘basic’ ATPase activity is associated with plasmalemma and T-system membranes of skeletal muscle.  相似文献   

16.
A new technique for isolating fragmented plasma membranes from skeletal muscle has been developed that is based on gentle mechanical disruption of selected homogenate fractions. (Na+ + K+)-stimulated, Mg2+-dependent ATPase was used as an enzymatic marker for the plasma membrane, Ca2+-stimulated, Mg2+-dependent ATPase as a marker for sarcoplasmic reticulum, and succinate dehydrogenase for mitochondria. Cell Cell segments in an amber low-speed (800 × g) pellet of a frog muscle homogenate were disrupted by repeated gentle shearing with a Polytron homogenizer. Sarcoplasmic reticulum was released into the low-speed supernatant, whereas most of the plasma membrane marker remained in a white, fluffy layer of the sediment, which contained sarcolemma and myofibrils. Additional gentle shearing of the white low-speed sediment extracted plasma membranes in a form that required centrifugation at 100 000 × g for pelleting. This pellet, the fragmented plasma membrane fraction, had a relatively high specific activity of (Na+ + K+)-stimulated ATPase compared with the other fractions, but it had essentially no Ca2+-stimulated ATPase activity and only a small percentage of the succinate dehydrogenase activity of the homogenate.Experimental evidence suggests that the fragmented plasma membrane fraction is derived from delicate transverse tubules rather than from the thicker, basement membrane-coated sarcolemmal sheath of muscle cells. Electron microscopy showed small vesicles lined by a single thin membrane. Hydroxyproline, a characteristic constituent of collagen and basement membrane, could not be detected in this fraction.  相似文献   

17.
N-Ethylmaleimide was employed as a surface label for sarcolemmal proteins after demonstrating that it does not penetrate to the intracellular space at concentrations below 1·10?4 M. The sarcolemmal markers, ouabain-sensitive (Na+ + K+)-ATPase and Na+/Ca2+-exchange activities, were inhibited in N-ethylmaleimide perfused hearts. Intracellular activities such as creatine phosphokinase, glutamate-oxaloacetate transaminase and the internal phosphatase site of the Na+ pump (K+-p-nitrophosphatase) were not affected. Almost 20% of the (Ca2+ + Mg2+)-ATPase and Ca2+ pump were inhibited indicating the localization of a portion of this activity in the sarcolemma. Sarcolemma purified by a recent method (Morcos, N.C. and Drummond, G.I. (1980) Biochim. Biophys. Acta 598, 27–39) from N-ethylmaleimide-perfused hearts showed loss of approx. 85% of its (Ca2+ + Mg2+-ATPase and Ca2+ pump compared to control hearts. (Ca2+ + Mg2+)-ATPase and Ca2+ pump activities showed two classes of sensitivity to vanadate ion inhibition. The high vanadate affinity class (K12 for inhibition approx. 1.5 μM) may be localized in the sarcolemma and represented approx. 20% of the total inhibitable activity in agreement with estimates from N-ethylmaleimide studies. Sucrose density fractionation indicated that only a small portion of Mg2+-ATPase and Ca2+-ATPase may be associated with the sarcolemma. The major portion of these activities seems to be associated with high density particles.  相似文献   

18.
(1) Vanadate (pentavalent vanadium) inhibits with high affinity (K0.5 = 3 μM) the ATP-dependent Ca2+ efflux in reconstituted ghosts from human red cells. (2) To inhibit Ca2+ efflux vanadate has to have access to the inner surface of the cell membrane. (3) The inhibitory effect of vanadate is potentiated by intracellular Mg2+ and by intracellular K+. (4) Ca2+ in the external medium antagonizes the inhibitory effect of vanadate.  相似文献   

19.
Calcium is actively transported into intracellular organelles and out of the cytoplasm by Ca2+/Mg2+-ATPases located in the endoplasmic reticulum and plasma membranes. We studied the effects of aluminum on calcium transport in the adult rat brain. We examined 45Ca-uptake in microsomes and Ca2+-ATPase activity in microsomes and synaptosomes isolated from the frontal cortex and cerebellum of adult male Long-Evans rats. ATP-dependent45Ca-uptake was similar in microsomes from both brain regions. The addition of 50-800 μM AICI3 resulted in a concentration-dependent inhibition of 45Ca-uptake. Mg2+-dependent Ca2+-ATPase activity was significantly lower in synaptosomes compared to microsomes in both frontal cortex and cerebellum. In contrast to the uptake studies, AICI3 stimulated Mg2+-dependent Ca2+-ATPase activity in both microsomes and synaptosomes from both brain regions. To determine the relationship between aluminum and Mg2+, we measured ATPase activity in the presence of increasing concentrations of Mg2+ or AICI3. Maximal ATPase activity was obtained between 3 and 6 mM Mg2+. When we substituted AICI3 for Mg2+, ATPase activity was also stimulated in a concentration-dependent manner, but to a greater extent than with Mg2+. One interpretation of these data is that aluminum acts at multiple sites to displace both Mg2+ and Ca2+, increasing the activity of the Ca2+-ATPase, but disrupting transport of calcium.  相似文献   

20.
To further study the toxicity of cadmium in the euryhaline alga, Dunaliella bioculata, ATPase activity and Cd2+ interactions were investigated in this species.Ultracytochemical studies showed the presence of ATPase reaction after incubation with Ca2+ and Mg2+, on different cell structures, the cytoplasm, the nucleoplasm, the axoneme and the membrane of the flagellae. In the cytoplasm, the localization of the lead precipates suggests that they are associated with the endoplasmic reticulum.The in vitro measurement of enzyme activity in crude cell extracts obtained by a partial solubilization of deflagellated algae with Triton X100, revealed a high Mg2+ dependent pyrophosphatase activity, a weak Mg2+-ATPase and a Ca2+-ATPase (Km = 0.12 mM) which was little sensitive to vanadate. In these extracts, a Ca2+ dependent ATPase was detected at the level of a double band by a non-denaturing electrophoresis. The same activity was found in the supernatant of sonicated cells in the absence of detergent, which suggests that this ATPase could be a cytosolic enzyme.In plasma membrane fractions, vanadate-sensitive ATPase activity was measured. This reaction was activated either by Mg2+ at relatively low concentrations (Km = 150µm) or by Ca2 +, but required unusually high concentrations of this ion, 50–100 mM.The inhibitory effects of Cd2+ on Ca2+ ATPase activity in cell extracts were compared with those of other cations. The range of toxicity was: Zn2+ > Cd2+ > Cu2+ > La3+ > Co2+. For Cd2+, the IC50 was 42 µM. The nature of inhibition, though, mixed was for the most part competitive, since the competitive constant value (Ki = 7 µM) was lower than the non-competitive constant value (Ki = 35 µM).In plasma membrane fractions, ATPase activity showed a high sensitivity to the heavy metal. It was non-competitively inhibited by cadmium in a narrow range of micromolar concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号