首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies have shown that a variety of mammalian cell types, including macrophages, contain small amounts of redox-active iron in their lysosomes. Increases in the level of this iron pool predispose the cell to oxidative stress. Limiting the availability of intralysosomal redox-active iron could therefore represent potential cytoprotection for cells under oxidative stress.

In the present study we have shown that an initial 6 h exposure of J774 macrophages to 30 μM iron, added to the culture medium as FeCl3, increased the lysosomal iron content and their sensitivity to H2O2-induced (0.25 mM for 30 min) oxidative stress. Over time (24-72 h), however, the cells were desensitized to the cytotoxic effects of H2O2; most likely as a consequence of both lysosomal iron exocytosis and of ferritin synthesis (demonstrated by atomic absorption spectrophotometry, autometallography, and immunohistochemistry). When the cells were exposed to a second dose of iron, their lysosomal content of iron increased again but the cells became no further sensitized to the cytotoxic effects of H2O2. Using the lysosomotropic weak base, acridine orange, we demonstrated that after the second exposure to iron and H2O2, lysosomes remained intact and were no different from control cells which were exposed to H2O2 but not iron.

These data suggest that the initial induction of ferritin synthesis leads to enrichment of lysosomes with ferritin via autophagocytosis. This limits the redox-availability of intralysosomal iron and, in turn, decreases the cells' sensitivity to oxidative stress. These in vitro observations could also explain why cells under pathological conditions, such as haemochromatosis, are apparently able to withstand high iron concentrations for some time in vivo.  相似文献   

2.
Methylmercury (MeHg) is a neurotoxic agent acting via diverse mechanisms, including oxidative stress. MeHg also induces astrocytic dysfunction, which can contribute to neuronal damage. The cellular effects of MeHg were investigated in human astrocytoma D384 cells, with special reference to the induction of oxidative-stress-related events. Lysosomal rupture was detected after short MeHg-exposure (1 μM, 1 h) in cells maintaining plasma membrane integrity. Disruption of lysosomes was also observed after hydrogen peroxide (H2O2) exposure (100 μM, 1 h), supporting the hypothesis that lysosomal membranes represent a possible target of agents causing oxidative stress. The lysosomal alterations induced by MeHg and H2O2 preceded a decrease of the mitochondrial potential. At later time points, both toxic agents caused the appearance of cells with apoptotic morphology, chromatin condensation, and regular DNA fragmentation. However, MeHg and H2O2 stimulated divergent pathways, with caspases being activated only by H2O2. The caspase inhibitor z-VAD-fmk did not prevent DNA fragmentation induced by H2O2, suggesting that the formation of high-molecular-weight DNA fragments was caspase independent with both MeHg and H2O2. The data point to the possibility that lysosomal hydrolytic enzymes act as executor factors in D384 cell death induced by oxidative stress.  相似文献   

3.
The effect of iron on H2O2 production by mouse peritoneal macrophages exposed to opsonised zymosan has been investigated. Macrophages elicited with thioglycollate broth produced less H2O2 than macrophages activated by Corynebacterium parvum, and levels were not affected by prior incubation of the cells with 0.1 mM iron nitrilotriacetate. However, preincubation with the iron chelator desferrioxamine (1 mM) reduced H2O2 production by both types of macrophages. Incubation of macrophages with agar, a component of thioglycollate broth, also reduced H2O2 production, particularly by C. parvum-activated macrophages. The results indicate that although iron appears to be necessary for H2O2 production by macrophages, the low level of production by thioglycollate-elicited macrophages is not due to an inadequate level of metabolically utilisable iron, but may be a result of prior ingestion of agar present in the broth.  相似文献   

4.
Iron ions in the two iron centers of beef heart mito-chondrial F, ATPase, which we have been recently characterized (FEBS Letters 1996,379, 231-235), exhibit different redox properties. In fact, the ATP-dependent site is able to maintain iron in the redox state of Fe(II) even in the absence of reducing agents, whereas in the nucleotide-independent site iron is oxidized to Fe(III) upon removal of the reductant. Fe(III) ions in the two sites display different reactivity towards H2O2, because only Fe(III) bound in the nucleotide-independent site rapidly reacts with H2O2 thus mediating a 30% enzyme inactivation. Thermophilic bacterium PS3 bears one Fe(III) binding site, which takes up Fe(III) either in the absence or presence of nucleotides and is unable to maintain iron in the redox state of Fe(II) in the absence of ascorbate. Fe(III) bound in thermophilic F1ATPase in a molar ratio 1:1 rapidly reacts with H2O2 mediating a 30% enzyme inactivation. These results support the presence in mitochon-drial and thermophilic F1ATPase of a conserved site involved in iron binding and in oxidative inactivation, in which iron exhibits similar redox properties. On the other hand, at variance with thermophilic F1ATPase, the mitochondrial enzyme has the possibility of maintaining one equivalent of Fe(II) in its peculiar ATP-dependent site, besides one equivalent of Fe(III) in the conserved nucleotide-independent site. In this case mitochondrial F, ATPase undergoes a higher inactivation (75%) upon exposure to H2O2. Under all conditions the inactivation is significantly prevented by PBN and DMSO but not by Cu, Zn superoxide dis-mutase, thus suggesting the formation of OH radicals as mediators of the oxidative damage. No dityrosines, carbonyls or oxidized thiols are formed. In addition, in any cases no protein fragmentation or aggregation is observed upon the treatment with H2O2.  相似文献   

5.
Free radical formation and subsequent lipid peroxidation may participate in the pathogenesis of tissue injury, including the brain injury induced by hypoxia or trauma and cardiac injury arising from ischemia and reperfusion. However, the exact cellular mechanisms by which the initial oxidative insult leads to the ultimate tissue damage are not known. A number of reports have indicated that protein kinase C (PKC) may be activated following oxidative stress and that this enzyme may play an important role in the steps leading to cellular damage. In this work, we have examined in a cell model whether PKC is activated following oxidative exposure. UC11MG cells, a human astrocytoma cell line, were treated with H2O2. Incubation with 0.5 mM H2O2 increased malondialdehyde levels by as early as 15 minutes. To assess the effects of H2O2 treatment on PKC activation, we measured phosphorylation of an endogenous PKC substrate, the MARCKS (myristoylated alanine-rich C kinase substrate) protein. Treatment of cells with 0.2-1.0 mM H2O2 resulted in a rapid increase in MARCKS phosphorylation. Phosphorylation was stimulated approximately 2.5-fold following treatment with 0.5 mM H2O2 for ten minutes. Treatment with phorbol 12-myristate 13-acetate, a PKC activator, increased MARCKS phosphorylation approximately 4-fold. The H2O2-induced MARCKS phosphorylation was inhibited by the addition of the kinase inhibitors H-7 and staurosporine. Furthermore, specific down-regulation of PKC by phorbol ester also inhibited H2O2-induced MARCKS phosphorylation. These results indicate that PKC is rapidly activated in cells following an oxidative exposure and that this cell system may be a good model to further investigate the role of PKC in regulating oxidative damage in the cell.  相似文献   

6.
Metmyoglobin (Mb) was glycated by glucose in a nonenzymatic in vitro reaction. Amount of iron release from the heme pocket of myoglobin was found to be directly related with the extent of glycation. After in vitro glycation, the unchanged Mb and glycated myoglobin (GMb) were separated by ion exchange (BioRex 70) chromatography, which eliminated free iron from the protein fractions. Separated fractions of Mb and GMb were converted to their oxy forms -MbO2 and GMbO2, respectively. H2O2-induced iron release was significantly higher from GMbO2 than that from MbO2. This free iron, acting as a Fenton reagent, might produce free radicals and degrade different cell constituents. To verify this possibility, degradation of different cell constituents catalyzed by these fractions in the presence of H2O2 was studied. GMbO2 degraded arachidonic acid, deoxyribose and plasmid DNA more efficiently than MbO2. Arachidonic acid peroxidation and deoxyribose degradation were significantly inhibited by desferrioxamine (DFO), mannitol and catalase. However, besides free iron-mediated free radical reactions, role of iron of higher oxidation states, formed during interaction of H2O2 with myoglobin might also be involved in oxidative degradation processes. Formation of carbonyl content, an index of oxidative stress, was higher by GMbO2. Compared to MbO2, GMbO2 was rapidly auto-oxidized and co-oxidized with nitroblue tetrazolium, indicating increased rate of Mb and superoxide radical formation in GMbO2. GMb exhibited more peroxidase activity than Mb, which was positively correlated with ferrylmyoglobin formation in the presence of H2O2. These findings correlate glycation-induced modification of myoglobin and a mechanism of increased formation of free radicals. Although myoglobin glycation is not significant within muscle cells, free myoglobin in circulation, if becomes glycated, may pose a serious threat by eliciting oxidative stress, particularly in diabetic patients.  相似文献   

7.
The reaction of iron (II) with H2O2 is believed to generate highly reactive species (e.g., OH) capable of initiating biological damage. This study investigates the possibility that the severity of oxidative damage induced by iron in hepatic mitochondria is determined by the level of mitochondrial-H2O2 generation, which is believed to be particularly prominent in state-4 respiration.

Iron-induced damage is found to be greater in state-4 than in state-3 respiration. Experiments using uncoupling agents and Ca++ to mimic state-3 conditions indicate that this effect reflects differences in the steady-state oxidation-level of the electron carriers of the respiratory chain (and hence the level of H2O2 -generation). rather than changes in redox potential or transportation of the metal-ion. Evidence is also presented for a mechanism in which Fe(II) and H2O2 react inside the mitochondrial matrix.

Ascorbate (vitamin C) is shown to be pro-oxidant in this system. except when present at very high concentration when it becomes antioxidant in nature.  相似文献   

8.
Adsorbed to a variety of particles, iron may be carried to the lungs by inhalation thereby contributing to a number of inflammatory lung disorders. Redox-active iron is a potent catalyst of oxidative processes, but intracellularly it is bound primarily to ferritin in a non-reactive form and probably is catalytically active largely within the lysosomal compartment. Damage to the membranes of these organelles causes the release to the cytosol of a host of powerful hydrolytic enzymes, inducing apoptotic or necrotic cell death. The results of this study, using cultured BEAS-2B cells, which are adenovirus transformed human bronchial epithelial cells, and A549 cells, which have characteristics similar to type II alveolar epithelial cells, suggest that the varying abilities of different types of lung cells to resist oxidative stress may be due to differences in intralysosomal iron chelation. Cellular ferritin and iron were assayed by ELISA and atomic absorption, while plasma and lysosomal membrane stability were evaluated by the acridine orange uptake and trypan blue dye exclusion tests, respectively. Normally, and also after exposure to an iron complex, A549 cells contained significantly more ferritin (2.26 +/- 0.60 versus 0.63 +/- 0.33 ng/microg protein, P <0.001) and less iron (0.96 +/- 0.14 versus 1.48 +/- 0.21 ng/microg protein, P <0.05) than did BEAS-2B cells. Probably as a consequence, iron-exposed A549 cells displayed more stable lysosomes (P <0.05) and better survival (P <0.05) following oxidative stress. Following starvation-induced autophagocytosis, which also enhances resistance to oxidant stress, the A549 cells showed a significant reduction in ferritin, and the BEAS-2B cells did not. These results suggest that intralysosomal ferritin enhances lysosomal stability by iron-chelation, preventing Fenton-type chemistry. This notion was further supported by the finding that endocytosis of apoferritin, added to the medium, stabilized lysosomes (P <0.001 versus P <0.01) and increased survival (P <0.01 versus P <0.05) of iron-loaded A549 and BEAS-2B cells. Assuming that primary cell lines of the alveolar and bronchial epithelium behave in a similar manner as these respiratory cell lines, intrabronchial instillation of apoferritin-containing liposomes may in the future be a treatment for iron-dependent airway inflammatory processes.  相似文献   

9.
Hydrogen peroxide at concentrations from 0.1 to 20 μM enhances phagocytosis and oxidative burst of murine peritoneal macrophages. The activation of these macrophage functions is paralled by prolonged hyperpolarization and a transient increase in cytoplasmic free calcium concentration. All the effects are dose- and time-dependent. The results obtained for H2O2 are compared with those for a natural activator, peptide N-formyl-methionyl-leucly-phenylalanine. The data demonstrate the ability of small doses of hydrogen peroxide to stimulate macrophages through the intracellular mechanisms of ion transduction.  相似文献   

10.
β-Amyloid peptide (Aβ) 1–42, involved in the pathogenesis of Alzheimer’s disease, binds copper ions to form Aβ · Cun complexes that are able to generate H2O2 in the presence of a reductant and O2. The production of H2O2 can be stopped with chelators. More reactive than H2O2 itself, hydroxyl radicals HO (generated when a reduced redox active metal complex interacts with H2O2) are also probably involved in the oxidative stress that creates brain damage during the disease. We report in the present work a method to monitor the effect of chelating agents on the production of hydrogen peroxide by metallo-amyloid peptides. The addition of H2O2 associated to a pre-incubation step between ascorbate and Aβ · Cun allows to study the formation of H2O2 but also, at the same time, its transformation by the copper complexes. Aβ · Cun peptides produce but do not efficiently degrade H2O2. The reported analytic method, associated to precipitation experiments of copper-containing amyloid peptides, allows to study the inhibition of H2O2 production by chelators. The action of a ligand such as EDTA is probably due to the removal of the copper ions from Aβ · Cun, whereas bidentate ligands such as 8-hydroxyquinolines probably act via the formation of ternary complexes with Aβ · Cun. The redox activity of these bidentate ligands can be modulated by the incorporation or the modification of substituents on the quinoline heterocycle.  相似文献   

11.
Hydrogen peroxide (H2O2) is known to both induce and inhibit apoptosis, however the mechanisms are unclear. We found that H2O2 inhibited the activity of recombinant caspase-3 and caspase-8, half-inhibition occurring at about 17 μM H2O2. This inhibition was both prevented and reversed by dithiothreitol while glutathione had little protective effect. 100–200 μM H2O2 added to macrophages after induction of caspase activation by nitric oxide or serum withdrawal substantially inhibited caspase activity. Activation of H2O2-producing NADPH oxidase in macrophages also caused catalase-sensitive inactivation of cellular caspases. The data suggest that the activity of caspases in cells can be directly but reversibly inhibited by H2O2.  相似文献   

12.
The in vivo production of HO- requires iron ions, H2O2 and O2- or other oxidants but probably does not occur through the Haber-Weiss reaction. Instead oxidants, such as O2-, increase free iron by releasing Fe(II) from the iron-sulfur clusters of dehydratases and by interfering with the iron-sulfur clusters reassembly. Fe(II) then reduces H2O2, and in turn Fe(III) and the oxidized cluster are re-reduced by cellular reductants such as NADPH and glutathione. In this way, SOD cooperates with cellular reductants in keeping the iron-sulfur clusters intact and the rate of HO- production to a minimum.

O2- and other oxidants can release iron from Fe(II)-containing enzymes as well as copper from thionein. The released Fe(III) and Cu(II) are then reduced to Fe(II) and Cu(I) and can then participate in the Fenton reaction.

In mammalian cells oxidants are able to convert cytosolic aconitase into active IRE-BP, which increases the “free” iron concentration intracellularly both by decreasing the biosynthesis of ferritin and increasing biosynthesis of transferrin receptors.

The biological role of the soxRS regulon of Escherichia coli, which is involved in the adaptation toward oxidative stress, is presumably to counteract the oxidative inactivation of the iron clusters and the subsequent release of iron with consequent increased rate of production of HO.  相似文献   

13.
Introduction Excess of intracellular reactive oxygen species in relation to antioxidative systems results in an oxidative environment which may modulate gene expression or damage cellular molecules. These events are expected to greatly contribute to processes of carcinogenesis. Only few studies are available on the oxidative/reductive conditions in the colon, an important tumour target tissue. It was the objective of this work to further develop methods to assess intracellular oxidative stress within human colon cells as a tool to study such associations in nutritional toxicology.

Methods We have measured H2O2-induced oxidative stress in different colon cell lines, in freshly isolated human colon crypts, and, for comparative purposes, in NIH3T3 mouse embryo fibroblasts. Detection was performed by loading the cells with the fluorigenic peroxide-sensitive dye 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate (diacetoxymethyl ester), followed by in vitro treatment with H2O2 and fluorescence detection with confocal laser scanning microscopy (CLSM). Using the microgel electrophoresis (“Comet”) Assay, we also examined HT29 stem and clone 19A cells and freshly isolated primary colon cells for their relative sensitivity toward H2O2-induced DNA damage and for steady-state levels of endogenous oxidative DNA damage.

Results A dose-response relationship was found for the H2O2-induced dye decomposition in NIH3T3 cells (7.8-125 μM H2O2) whereas no effect occurred in the human colon tumour cell lines HT29 stem and HT29 clone 19A (62-1000 μM H2O2). Fluorescence was significantly increased at 62 μM H2O2 in the human colon adenocarcinoma cell line Caco-2. In isolated human colon crypts, the lower crypt cells (targets of colon cancer) were more sensitive towards H2O2 than the more differentiated upper crypt cells. In contrast to the CLSM results, oxidative DNA damage was detected in both cell lines using the Comet Assay. Endogenous oxidative DNA damage was highest in HT29 clone 19A, followed by the primary colon cells and HT29 stem cells.

Conclusions Oxidative stress in colon cells leads to damage of macromolecules which is sensitively detected in the Comet Assay. The lacking response of the CLSM-approach in colon tumour cells is probably due to intrinsic modes of protective activities of these cells. In general, however, the CLSM method is a sensitive technique to detect very low concentrations of H2O2-induced oxidative stress in NIH3T3 cells. Moreover, by using colon crypts it provides the unique possibility of assessing cell specific levels of oxidative stress in explanted human tissues. Our results demonstrate that the actual target cells of colon cancer induction are indeed susceptible to the oxidative activity of H2O2.  相似文献   

14.
An association between exposure to ambient particulate matter (PM) and increased incidence of mortality and morbidity due to lung cancer and cardiovascular diseases has been demonstrated by recent epidemiological studies. Reactive oxygen species (ROS), especially hydroxyl radicals, generated by PM, have been suggested by many studies as an important factor in the oxidative damage of DNA by PM. The purpose of this study was to characterize quantitatively hydroxyl radical generation by various transition metals in the presence of H2O2 in aqueous buffer solution (pH 7.4) and hydroxylation of 2'-deoxyguanosine (dG) to 8-hydroxy-2'-deoxyguanosine (8-OHdG) under similar conditions. The order of metals' redox reactivity and hydroxyl radical production was Fe(II), V(IV), Cu(I), Cr(III), Ni(II), Co(II), Pb(II), Cd(II). Then, we investigated the generation of hydroxyl radicals in the presence of H2O2 by various airborne PM samples, such as total suspended particulate (TSP), PM10, PM2.5 (PM with aerodynamic diameter 10 and 2.5 μm), diesel exhaust particles (DEP), gasoline exhaust particles (GEP) and woodsmoke soot under the same conditions. When suspensions of PMs were incubated with H2O2 and dG at pH 7.4, all particles induced hydroxylation of dG and formation of 8-OHdG in a dose-dependent increase. Our findings demonstrated that PM's hydroxyl radical (HO√) generating ability and subsequent dG hydroxylation is associated with the concentration of water-soluble metals, especially Fe and V and other redox or ionizable transition metals and not their total metal content, or insoluble metal oxides, via a Fenton-driven reaction of H2O2 with metals. Additionally, we observed, by Electron paramagnetic resonance (EPR), that PM suspensions in the presence of H2O2 generated radical species with dG, which were spin-trapped by 2-methyl-2-nitroso-propane (MNP).  相似文献   

15.
Human atherosclerotic lesions typically contain large amounts of ferritin associated with apoptotic macrophages and foam cells, although the reasons are unknown. In the present investigation, we studied the relationship between ferritin induction and occurrence of apoptosis in 7beta-hydroxycholesterol (7beta-OH)-treated monocytic cells and macrophages. We found that 7beta-OH enlarges the intracellular labile iron pool, increases formation of reactive oxygen species (ROS), and induces ferritin and cytosolic accumulation of lipid droplets, lysosomal destabilization, and apoptototic macrophage death. Since ferritin is a phase II-type protective protein, our findings suggest that ferritin upregulation here worked as an inefficient defense mechanism. Addition to the culture medium of both a membrane-permeable iron chelator 10-phenanthroline and the non-membrane-permeable iron chelators apoferritin and desferrioxamine afforded significant protection against the 7beta-OH-induced effects. Consequently, endocytosed iron compounds dramatically augmented 7beta-OH-induced cytotoxicity. We conclude that oxidized lipid 7beta-OH causes not only foam cell formation but also oxidative damage with abnormal metabolism of cellular iron. The findings suggest that modulation of iron metabolism in human atheroma may be a potential therapeutic strategy against atherosclerosis.  相似文献   

16.
Intestinal epithelial cell function is compromised by local immune and inflammatory responses. In this study, we examined the possibility that intestinal epithelial cell injury occurs in the presence of activated inflammatory cells, such as neutrophils and macrophages, via production of reactive oxygen species (ROS). Following exposure to 50–150 μM H2O2, levels of mRNA and protein for Fas and, to a lesser degree, Fas-L were increased and intestinal epithelial cells underwent apoptosis. Treatment of H2O2-exposed cells with agonistic anti-Fas antibody, but not isotype control antibody, significantly enhanced apoptosis. Apoptosis was associated with the activation of caspase 8, while Z-IETD, an inhibitor of caspase 8, blocked apoptosis of H2O2-exposed intestinal epithelial cells. Thus, ROS induced Fas and Fas-L expression in association with intestinal epithelial cell apoptosis. These data support the hypothesis that, following exposure to oxidative stress, enterocytes are primed for cell death via Fas-mediated pathways.  相似文献   

17.
We have previously reported that H2O2-induced apoptosis in HL-60 human leukemia cells takes place in the presence of chloride, requires myeloperoxidase (MPO), and occurs through oxidative reactions involving hypochlorous acid and chloramines. We now report that when chloride is replaced by the pseudohalide thiocyanate, there is little or no H2O2-induced apoptosis. Furthermore, thiocyanate inhibits H2O2-induced apoptosis when chloride is present at physiological concentrations, and this occurs at thiocyanate concentrations that are present in human serum and saliva. In contrast, bromide can substitute for chloride in H2O2-induced apoptosis, but results in a lower percent of the cells induced into apoptosis. Hypobromous acid is likely a short-lived intermediate in this H2O2/MPO/bromide apoptosis, and reagent hypobromous acid and bromamines induce apoptosis in HL-60 cells. We conclude that the physiologic concentrations of thiocyanate found in human plasma could modulate the cytototoxicity of H2O2 and its resulting highly toxic MPO-generated hypochlorous acid by competing with chloride for MPO. Furthermore, the oxidative products of the reaction of thiocyanate with MPO are relatively innocuous for human leukemic cells in culture. In contrast, bromide can support H2O2/MPO/halide apoptosis, but is less potent than chloride and it has no effect in the presence of physiological levels of chloride.  相似文献   

18.
Hydrogen peroxide, produced by inflammatory and vascular cells, induces oxidative stress that may contribute to endothelial dysfunction. In smooth muscle cells, H2O2 induces production of O2 by activating NADPH oxidase. However, the mechanisms whereby H2O2 induces oxidative stress in endothelial cells are poorly understood. We examined the effects of H2O2 on O2 levels on porcine aortic endothelial cells (PAEC). Treatment with 60 μmol/L H2O2 markedly increased intracellular O2 levels (determined by conversion of dihydroethidium to hydroxyethidium) and produced cytotoxicity (determined by propidium iodide staining) in PAEC. Overexpression of human manganese superoxide dismutase in PAEC reduced O2 levels and attenuated cytotoxicity resulting from treatment with H2O2. L-NAME, an inhibitor of nitric oxide synthase (NOS), and apocynin, an inhibitor of NADPH oxidase, reduced O2 levels in PAEC treated with H2O2, suggesting that both NOS and NADPH oxidase contribute to H2O2-induced O2 in PAEC. Inhibition of NADPH oxidase using apocynin and NOS rescue with L-sepiapterin together reduced O2 levels in PAEC treated with H2O2 to control levels. This suggests interaction-distinct NOS and NADPH oxidase pathways to superoxide. We conclude that H2O2 produces oxidative stress in endothelial cells by increasing intracellular O2 levels through NOS and NADPH oxidase. These findings suggest a complex interaction between H2O2 and oxidant-generating enzymes that may contribute to endothelial dysfunction.  相似文献   

19.
The reaction of H2O2 with resting metmyoglobin (MetMb), methaemoglobin (MetHb) and cytochrome-c (Cyt-c) was studied in the Soret and visible regions. The differences between the original and the final peak heights of the native haemproteins at 408 nm was found to be directly proportional to the loss of iron from the molecule. The release of iron from haemproteins was studied in a system generating H2O2 continuously at a low rate by an enzymic system, or by addition of large amounts of H2O2. Cytochrome-c, methaemoglobin and metmyoglobin during interaction with H2O2 at a concentration of 200 μM release 40%, 20% and 3%, respectively, of molecular iron after l0min. The inhibition of haem degradation and iron release by enzymatically-generated H2O2 was determined using several hydroxyl radical scavengers, reducing agents and antioxienzymes, such as superoxide dismutase, catalase and caeruloplasmin.  相似文献   

20.
Oxygen radical generating systems, namely, Cu(II)/ H2O2, Cu(II)/ascorbate, Cu(II)/NAD(P)H, Cu(II)/ H2O2/catecholamine and Cu(II)/H2O2/SH-compounds irreversibly inhibited yeast glutathione reductase (GR) but Cu(II)/H2O2 enhanced the enzyme diaphorase activity. The time course of GR inactivation by Cu(II)/H2O2 depended on Cu(II) and H2O2 concentrations and was relatively slow, as compared with the effect of Cu(II)/ascorbate. The fluorescence of the enzyme Tyr and Trp residues was modified as a result of oxidative damage. Copper chelators, catalase, bovine serum albumin and HO˙ scavengers prevented GR inactivation by Cu(II)/H2O2 and related systems. Cysteine, N-acetylcysteine, N-(2-dimercaptopropi-onylglycine and penicillamine enhanced the effect of Cu(II)/H2O2 in a concentration- and time-dependent manner. GSH, Captopril, dihydrolipoic acid and dithiotreitol also enhanced the Cu(II)/H2O2 effect, their actions involving the simultaneous operation of pro-oxidant and antioxidant reactions. GSSG and try-panothione disulfide effectively protected GR against Cu(II)/H2O2 inactivation. Thiol compounds prevented GR inactivation by the radical cation ABTS*+. GR inactivation by the systems assayed correlated with their capability for HO* radical generation. The role of amino acid residues at GR active site as targets for oxygen radicals is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号