首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Interactions of DNA and the gene product D5 (gpD5) of bacteriophage T5, a DNA-binding protein that binds preferentially and cooperatively to double-stranded DNA, were analyzed by metrizamide gradient centrifugation. Conditions were set so that DNA and DNA protein complex sedimented to apparent equilibrium positions. DNA has a buoyant density of 1.12 g/cm3, and DNA saturated with gpD5 has a buoyant density of 1.17 g/cm3. These values are independent of DNA size and base composition in the range studied. At gpD5 concentration below the saturation value in a low ionic strength buffer, DNA distribution is bimodal, indicating cooperative binding of gpD5 to DNA. However, in the presence of 10 mM MgCl2, the binding process becomes distributive, with the buoyant density increasing linearly with the amount of gpD5 added until the saturation. From these data, one molecule of gpD5 is calculated to cover 40 base pairs at saturation. The technique as described has general applicability to the study of any interaction between DNA and dNA-binding proteins that bind in sufficient amount to cause detectable changes in buoyant density.  相似文献   

2.
The DNA polymerase encoded by bacteriophage T5 has been reported previously to be processive and to catalyze extensive strand displacement synthesis. The enzyme, purified from phage-infected cells, did not require accessory proteins for these activities. Although T5 DNA polymerase shares extensive sequence homology with Escherichia coli DNA polymerase I and T7 DNA polymerase, it contains unique regions of 130 and 71 residues at its N and C termini, respectively. We cloned the gene encoding wild-type T5 DNA polymerase and characterized the overproduced protein. We also examined the effect of N- and C-terminal deletions on processivity and strand displacement synthesis. T5 DNA polymerase lacking its N-terminal 30 residues resembled the wild-type enzyme albeit with a 2-fold reduction in polymerase activity. Deletion of 24 residues at the C terminus resulted in a 30-fold reduction in polymerase activity on primed circular DNA, had dramatically reduced processivity, and was unable to carry out strand displacement synthesis. Deletion of 63 residues at the C terminus resulted in a 20,000-fold reduction in polymerase activity. The 3' to 5' double-stranded DNA exonuclease activity associated with T5 DNA polymerase was reduced by a factor of 5 in the polymerase truncated at the N terminus but was stimulated by a factor of 7 in the polymerase truncated at the C terminus. We propose a model in which the C terminus increases the affinity of the DNA for the polymerase active site, thus increasing processivity and decreasing the accessibility of the DNA to the exonuclease active site.  相似文献   

3.
Two forms of the DNA polymerase of bacteriophage T7   总被引:8,自引:0,他引:8  
The DNA polymerase induced by bacteriophage T7 can be isolated in two different forms. The distinguishing properties are: 1) the specific activities of the associated 3' to 5' single- and double-stranded DNA exonuclease activities, 2) the ability to catalyze DNA synthesis and strand displacement at nicks, and 3) the degree of stimulation of DNA synthesis on nicked, duplex DNAs by the gene 4 protein of phage T7. Form I is obtained when purification is carried out in the absence of EDTA while Form II is obtained if all purification steps are carried out in the presence of 0.1 mM EDTA. Form I has low levels of both exonuclease activities, less than 5% of those of Form II. Form I can initiate DNA synthesis at nicks leading to strand displacement, a consequence of which is its ability to be stimulated manyfold by the helicase activity of gene 4 protein on nicked, duplex templates. On the other hand, Form II cannot initiate synthesis at nicks even in the presence of gene 4 protein. In keeping with its higher exonuclease activities, Form II of T7 DNA polymerase has higher turnover of nucleotides activity (5-fold higher than Form I) and exhibits greater fidelity of nucleotide incorporation, as indicated by the rate of incorporation of 2-aminopurine deoxynucleoside monophosphate. Both forms of T7 DNA polymerase exhibit higher fidelity of nucleotide incorporation than bacteriophage T4 DNA polymerase. In the absence of EDTA or in the presence of FeSO4 or CaCl2, Form II irreversibly converts to Form I. The physical difference between the two forms is not known. No difference in molecular weight can be detected between the corresponding subunits of each form of T7 DNA polymerase as measured by gel electrophoresis in the presence of sodium dodecyl sulfate.  相似文献   

4.
5.
Enzyme action at 3' termini of ionizing radiation-induced DNA strand breaks   总被引:13,自引:0,他引:13  
gamma-Irradiation of DNA in vitro produces two types of single strand breaks. Both types of strand breaks contain 5'-phosphate DNA termini. Some strand breaks contain 3'-phosphate termini, some contain 3'-phosphoglycolate termini (Henner, W.D., Rodriguez, L.O., Hecht, S. M., and Haseltine, W. A. (1983) J. Biol. Chem. 258, 711-713). We have studied the ability of prokaryotic enzymes of DNA metabolism to act at each of these types of gamma-ray-induced 3' termini in DNA. Neither strand breaks that terminate with 3'-phosphate nor 3'-phosphoglycolate are substrates for direct ligation by T4 DNA ligase. Neither type of gamma-ray-induced 3' terminus can be used as a primer for DNA synthesis by either Escherichia coli DNA polymerase or T4 DNA polymerase. The 3'-phosphatase activity of T4 polynucleotide kinase can convert gamma-ray-induced 3'-phosphate but not 3'-phosphoglycolate termini to 3'-hydroxyl termini that can then serve as primers for DNA polymerase. E. coli alkaline phosphatase is also unable to hydrolyze 3'-phosphoglycolate groups. The 3'-5' exonuclease actions of E. coli DNA polymerase I and T4 DNA polymerase do not degrade DNA strands that have either type of gamma-ray-induced 3' terminus. E. coli exonuclease III can hydrolyze DNA with gamma-ray-induced 3'-phosphate or 3'-phosphoglycolate termini or with DNase I-induced 3'-hydroxyl termini. The initial action of exonuclease III at 3' termini of ionizing radiation-induced DNA fragments is to remove the 3' terminal phosphate or phosphoglycolate to yield a fragment of the same nucleotide length that has a 3'-hydroxyl terminus. These results suggest that repair of ionizing radiation-induced strand breaks may proceed via the sequential action of exonuclease, DNA polymerase, and DNA ligase. The possible role of exonuclease III in repair of gamma-radiation-induced strand breaks is discussed.  相似文献   

6.
A putative role for mammalian polynucleotide kinases that possess both 5'-phosphotransferase and 3'-phosphatase activity is the restoration of DNA strand breaks with 5'-hydroxyl termini or 3'-phosphate termini, or both, to a form that supports the subsequent action of DNA repair polymerases and DNA ligases, i.e. 5'-phosphate and 3'-hydroxyl termini. To further assess this possibility, we compared the activity of the 3'-phosphatase of purified calf thymus polynucleotide kinase towards a variety of substrates. The rate of removal of 3'-phosphate groups from nicked or short (1 nt) gapped sites in double-stranded DNA was observed to be similar to that of 3'-phosphate groups from single-stranded substrates. Thus this activity of polynucleotide kinase does not appear to be influenced by steric accessibility of the phosphate group. We subsequently demonstrated that the concerted reactions of polynucleotide kinase and purified human DNA ligase I could efficiently repair DNA nicks possessing 3'-phosphate and 5'-hydroxyl termini, and similarly the combination of these two enzymes together with purified rat DNA polymerase beta could seal a strand break with a 1 nt gap. With a substrate containing a nick bounded by 3'- and 5'-OH termini, the rate of gap filling by polymerase beta was significantly enhanced in the presence of polynucleotide kinase and ATP, indicating the positive influence of 5'-phosphorylation. The reaction was further enhanced by addition of DNA ligase I to the reaction mixture. This is due, at least in part, to an enhancement by DNA ligase I of the rate of 5'-phosphorylation catalyzed by polynucleotide kinase.  相似文献   

7.
Porcine liver DNA polymerase gamma was shown previously to copurify with an associated 3' to 5' exonuclease activity (Kunkel, T. A., and Mosbaugh, D. W. (1989) Biochemistry 28, 988-995). The 3' to 5' exonuclease has now been characterized, and like the DNA polymerase activity, it has an absolute requirement for a divalent metal cation (Mg2+ or Mn2+), a relatively high NaCl and KCl optimum (150-200 mM), and an alkaline pH optimum between 7 and 10. The exonuclease has a 7.5-fold preference for single-stranded over double-stranded DNA, but it cannot excise 3'-terminal dideoxy-NMP residues from either substrate. Excision of 3'-terminally mismatched nucleotides was preferred approximately 5-fold over matched 3' termini, and the hydrolysis product from both was a deoxyribonucleoside 5'-monophosphate. The kinetics of 3'-terminal excision were measured at a single site on M13mp2 DNA for each of the 16 possible matched and mismatched primer.template combinations. As defined by the substrate specificity constant (Vmax/Km), each of the 12 mismatched substrates was preferred over the four matched substrates (A.T, T.A, C.G, G.C). Furthermore, the exonuclease could efficiently excise internally mismatched nucleotides up to 4 residues from the 3' end. DNA polymerase gamma was not found to possess detectable DNA primase, endonuclease, 5' to 3' exonuclease, RNase, or RNase H activities. The DNA polymerase and exonuclease activities exhibited dissimilar rates of heat inactivation and sensitivity to N-ethylmaleimide. After nondenaturing activity gel electrophoresis, the DNA polymerase and 3' to 5' exonuclease activities were partially resolved and detected in situ as separate species. A similar analysis on a denaturing activity gel identified catalytic polypeptides with molecular weights of 127,000, 60,000, and 32,000 which possessed only DNA polymerase gamma activity. Collectively, these results suggest that the polymerase and exonuclease activities reside in separate polypeptides, which could be derived from separate gene products or from proteolysis of a single gene product.  相似文献   

8.
Sequence analysis of the nicks and termini of bacteriophage T5 DNA.   总被引:3,自引:2,他引:1       下载免费PDF全文
Bacteriophage T5 DNA, when isolated from mature phage particles, contains several nicks in one of the two strands. The 5'-terminal nucleotides at the nicks were labeled with polynucleotide kinase and [gamma-32P]ATP, and the 3'-terminal nucleotides were labeled with Escherichia coli DNA polymerase I and [alpha-32P]dGTP. The sequences around the nicks were analyzed by partial nuclease digestion followed by homochromatography fractionation of the resulting oligonucleotides. The nicks had at least the sequence -PuOH pGpCpGpC- in common. In addition, the two 5' external termini had the first seven nucleotides in common.  相似文献   

9.
DNA polymerase gamma, purified from fetal bovine liver, replicated virion single-stranded DNA from bovine parvovirus to a unit-length double-stranded DNA molecule. This product was not nicked and was covalently linked to the 3' hairpin primer. The reaction was inhibited by dideoxythymidine 5'-triphosphate, but was unaffected by ATP or aphidicolin. Double-stranded viral DNA was not a functional template for purified DNA polymerase gamma.  相似文献   

10.
A homogeneous preparation of venom phosphodiesterase from Crotalus adamanteus possesses an intrinsic endonuclease activity, specific for superhelical (form I) and single-stranded DNA. The phosphodiesterase degrades single-stranded T7 DNA by endonucleolytic cleavages. Duplex T7 DNA is hydrolyzed by the liberation of acid-soluble products simultaneously from the 3' and 5' termini but without demonstrable internal scissions in duplex regions. Since venom phosphodiesterase is known to hydrolyze oligonucleotides stepwise from the 3' termini, the cleavage at the 5' end of duplex T7 DNA is ascribed to an endonuclease activity. Form I PM2 DNA is nicked to yield first relaxed circles and then linear DNA which is subsequently hydrolyzed only from the chain termini. The linear duplex DNA intermediates consist of a discrete series of fragments (11 are usually resolved on agarose gels) with initial molecular weights ranging from 6.3 x 10(6) (the intact PM2 DNA size) to approximately 1 x 10(6). The cleavage of the form I molecule must, therefore, occur at a limited number of unique sites. The enzyme also cleaves nonsuperhelical, covalently closed circular PM2 DNA but at a 10(4) times slower rate. Both the endonuclease activity on form I DNA and the known exonuclease activity co-migrate on polyacrtkanude gels, are optimally active at pH 9, are stimulated by small concentrations of Mg2+, and are similarly inactivated by heat, reducing agents, and EDTA.  相似文献   

11.
DNA polymerase III holoenzyme (holoenzyme) processively and rapidly replicates a primed single-stranded DNA circle to produce a duplex with an interruption in the synthetic strand. The precise nature of this discontinuity in the replicative form (RF II) and the influence of the 5' termini of the DNA and RNA primers were analyzed in this study. Virtually all (90%) of the RF II products primed by DNA were nicked structures sealable by Escherichia coli DNA ligase; in 10% of the products, replication proceeded one nucleotide beyond the 5' DNA terminus displacing (but not removing) the 5' terminal nucleotide. With RNA primers, replication generally went beyond the available single-stranded template. The 5' RNA terminus was displaced by 1-5 nucleotides in 85% of the products; a minority of products was nicked (9%) or had short gaps (6%). Termination of synthesis on a linear DNA template was usually (85%) one base shy of completion. Thus, replication by holoenzyme utilizes all, or nearly all, of the available template and shows no significant 5'----3' exonuclease action as observed in primer removal by the "nick-translation" activity of DNA polymerase I.  相似文献   

12.
The major abasic endonuclease of human cells, Ape1 protein, is a multifunctional enzyme with critical roles in base excision repair (BER) of DNA. In addition to its primary activity as an apurinic/apyrimidinic endonuclease in BER, Ape1 also possesses 3'-phosphodiesterase, 3'-phosphatase, and 3'-->5'-exonuclease functions specific for the 3' termini of internal nicks and gaps in DNA. The exonuclease activity is enhanced at 3' mismatches, which suggests a possible role in BER for Ape1 as a proofreading activity for the relatively inaccurate DNA polymerase beta. To elucidate this role more precisely, we investigated the ability of Ape1 to degrade DNA substrates that mimic BER intermediates. We found that the Ape1 exonuclease is active at both mismatched and correctly matched 3' termini, with preference for mismatches. In our hands, the exonuclease activity of Ape1 was more active at one-nucleotide gaps than at nicks in DNA, even though the latter should represent the product of repair synthesis by polymerase beta. However, the exonuclease activity was inhibited by the presence of nearby 5'-incised abasic residues, which result from the apurinic/apyrimidinic endonuclease activity of Ape1. The same was true for the recently described exonuclease activity of Escherichia coli endonuclease IV. Exonuclease III, the E. coli homolog of Ape1, did not discriminate among the different substrates. Removal of the 5' abasic residue by polymerase beta alleviated the inhibition of the Ape1 exonuclease activity. These results suggest roles for the Ape1 exonuclease during BER after both DNA repair synthesis and excision of the abasic deoxyribose-5-phosphate by polymerase beta.  相似文献   

13.
14.
Proteins from herpes simplex virus (HSV)-infected cells were used to reconstitute DNA synthesis in vitro on a preformed replication fork. The preformed replication fork consisted of a nicked, double-stranded, circular DNA molecule with a 5' single-strand tail that was noncomplementary to the template. The products of DNA synthesis on this substrate were rolling-circle molecules, as demonstrated by electron microscopy and alkaline agarose gel electrophoresis. The tails contained double-stranded regions, indicating that both leading- and lagging-strand DNA syntheses occurred. Rolling-circle DNA replication was dependent upon HSV DNA polymerase and ATP and was stimulated by a crude fraction containing ICP8 (HSV DNA-binding protein). Similar protein fractions from mock-infected cells were unable to support rolling-circle DNA replication. This in vitro DNA replication system should prove useful in the identification and characterization of the enzymatic activities required at the HSV replication fork.  相似文献   

15.
The T5 D15 exonuclease purified from an overproducing strain of E. coli was shown to possess a low level of endonucleolytic activity specific for single-stranded DNA when assayed with 1-10 mM Mg2+ as co-factor. Endonuclease activity on double-stranded circular DNA could not be detected under these conditions. Nicked circular DNA was first gapped by the enzyme's exonucleolytic activity, creating a single-stranded region. This gapped substrate was then endonucleolytically cleaved and rapidly degraded. We show that a gapped and not a nicked substrate is required for this activity as previously suggested (Moyer, R. W. and Roth, C. T. 1977, J. Virol. 24, 177-193). The single-strand endonuclease activity could be selectively suppressed by using low concentrations of Mg2+ as co-factor (less than 1 mM), thus allowing nicked double-stranded circular DNA to be gapped to a single-stranded circular species. We also report on sequence similarities between the T5 exonuclease and several prokaryotic DNA polymerases.  相似文献   

16.
Complexes formed between DNA polymerase and genomic DNA at the replication fork are key elements of the replication machinery. We used sedimentation velocity, fluorescence anisotropy, and surface plasmon resonance to measure the binding interactions between bacteriophage T4 DNA polymerase (gp43) and various model DNA constructs. These results provide quantitative insight into how this replication polymerase performs template-directed 5' --> 3' DNA synthesis and how this function is coordinated with the activities of the other proteins of the replication complex. We find that short (single- and double-stranded) DNA molecules bind a single gp43 polymerase in a nonspecific (overlap) binding mode with moderate affinity (Kd approximately 150 nm) and a binding site size of approximately 10 nucleotides for single-stranded DNA and approximately 13 bp for double-stranded DNA. In contrast, gp43 binds in a site-specific (nonoverlap) mode and significantly more tightly (Kd approximately 5 nm) to DNA constructs carrying a primer-template junction, with the polymerase covering approximately 5 nucleotides downstream and approximately 6-7 bp upstream of the 3'-primer terminus. The rate of this specific binding interaction is close to diffusion-controlled. The affinity of gp43 for the primer-template junction is modulated specifically by dNTP substrates, with the next "correct" dNTP strengthening the interaction and an incorrect dNTP weakening the observed binding. These results are discussed in terms of the individual steps of the polymerase-catalyzed single nucleotide addition cycle and the replication complex assembly process. We suggest that changes in the kinetics and thermodynamics of these steps by auxiliary replication proteins constitute a basic mechanism for protein coupling within the replication complex.  相似文献   

17.
Ape1 is the major human abasic endonuclease, initiating repair of this common DNA lesion by incising the phosphodiester backbone 5' to the damage site. This enzyme also functions in specific contexts to excise 3'-blocking termini, e.g. phosphate and phosphoglycolate residues, from DNA. Recently, the comparatively "minor" 3' to 5' exonuclease activity of Ape1 was found to contribute to the excision of certain 3'-mismatched nucleotides. In this study, I characterize more thoroughly the 3'-nuclease properties of Ape1 and define the effects of specific DNA determinants on this function. Data within shows that Ape1 is a non- or poorly processive exonuclease, which degrades one nucleotide gap, 3'-recessed, and nicked DNAs, but exhibits no detectable activity on blunt end or single-stranded DNA. A 5'-phosphate, compared to a 5'-hydroxyl group, reduced Ape1 degradation activity roughly tenfold, suggesting that the biological impact of certain DNA single strand breaks may be influenced by the terminal chemistry. In the context of a base excision repair-like DNA intermediate, a 5'-abasic residue exerted an about tenfold attenuation on the 3' to 5' exonuclease efficiency of Ape1. A 3'-phosphate group had little impact on Ape1 exonuclease activity, and oligonucleotides harboring these blocking termini were activated by Ape1 for DNA polymerase beta extension. Ape1 was also found to remove 3'-tyrosyl residues from 3'-recessed and nicked DNAs, suggesting a potential role in processing covalent topoisomerase I-DNA intermediates formed during chromosome relaxation. While exhibiting preferential excision of thymine in a T:G mismatch context, Ape1 was unable to degrade a triple 3'-thymine mispair. However, Ape1 was able to excise double nucleotide mispairs, apparently through a novel 3'-flap-type endonuclease activity, again activating these substrates for polymerase beta extension.  相似文献   

18.
Heterogeneous nuclear RNA contains double-stranded regions that are not found in mRNA and that may serve as recognition elements for processing enzymes. The double-stranded regions of heterogeneous nuclear RNA prepared from HeLa cells promoted the synthesis of (2',5')oligoadenylate [(2',5')oligo(A) or (2'5')An] when incubated with (2',5')An polymerase. This enzyme is present in elevated levels in interferon-treated cells, and labeled heterogeneous nuclear RNA incubated with extracts of these cells is preferentially cleaved, since mRNA included in the same incubations is not appreciably degraded. The cleavage of heterogenous nuclear RNA is caused by the synthesis of (2'5')An and by a "localized" activation of the (2',5')An-dependent endonuclease, since it was enhanced by ATP, the substrate of the (2',5')An polymerase, and inhibited by 2'-dATP and ethidium bromide. Both of these compounds suppress the synthesis of (2',5')An, the first by competitive inhibition and the latter by intercalating into double-stranded RNA. The possible role of double-stranded regions and of the (2',5')An polymerase-endonuclease system in the processing of heterogeneous nuclear RNA is discussed.  相似文献   

19.
The change of infectivity of phage DNAs after heat and alkali denaturation (and renaturation) was measured. T7 phage DNA infectivity increased 4- to 20-fold after denaturation and decreased to the native level after renaturation. Both the heavy and the light single strand of T7 phage DNA were about five times as infective as native T7 DNA. T4 and P22 phage DNA infectivity increased 4- to 20-fold after denaturation and increased another 10- to 20-fold after renaturation. These data, combined with other authors' results on the relative infectivity of various forms of phiX174 and lambda DNAs give the following consistent pattern of relative infectivity. Covalently closed circular double-stranded DNA, nicked circular double-stranded DNA, and double-stranded DNA with cohesive ends are all equally infective and also most highly infectious for Escherichia coli lysozyme-EDTA spheroplasts; linear or circular single-stranded DNAs are about 1/5 to 1/20 as infective; double-stranded DNAs are only 1/100 as infective. Two exceptions to this pattern were noted: lambda phage DNA lost more than 99% of its infectivity after alkaline denaturation; this infectivity could be fully recovered after renaturation. This behavior can be explained by the special role of the cohesive ends of the phage DNA. T5 phage DNA sometimes showed a transient increase in infectivity at temperatures below the completion of the hyperchròmic shift; at higher temperatures, the infectivity was completely destroyed. T5 DNA denatured in alkali lost more than 99.9% of its infectivity; upon renaturation, infectivity was sometimes recovered. This behavior is interpreted in terms of the model of T5 phage DNA structure proposed by Bujard (1969). The results of the denaturation and renaturation experiments show higher efficiencies of transfection for the following phage DNAs (free of single-strand breaks): T4 renatured DNA at 10(-3) instead of 10(-5) for native DNA; renatured P22 DNA at 3 x 10(-7) instead of 3 x 10(-9) for native DNA; and denatured T7 DNA at 3 x 10(-6) instead of 3 x 10(-7) for native DNA.  相似文献   

20.
Two proteins encoded by bacteriophage T7, the gene 2.5 single-stranded DNA binding protein and the gene 4 helicase, mediate homologous DNA strand exchange. Gene 2.5 protein stimulates homologous base pairing of two DNA molecules containing complementary single-stranded regions. The formation of a joint molecule consisting of circular, single-stranded M13 DNA, annealed to homologous linear, duplex DNA having 3'- or 5'-single-stranded termini of approximately 100 nucleotides requires stoichiometric amounts of gene 2.5 protein. In the presence of gene 4 helicase, strand transfer proceeds at a rate of > 120 nucleotides/s in a polar 5' to 3' direction with respect to the invading strand, resulting in the production of circular duplex M13 DNA. Strand transfer is coupled to the hydrolysis of a nucleoside 5'-triphosphate. The reaction is dependent on specific interactions between gene 2.5 protein and gene 4 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号