首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Egg sex ratio and paternal traits: using within-individual comparisons   总被引:9,自引:3,他引:6  
Empirical studies of sex ratios in birds have been limited dueto difficulties in determining offspring sex. Since molecularsexing techniques removed this constraint, the last 5 yearshas seen a great increase in studies of clutch sex ratio manipulationby female birds. Typically these studies investigate variationin clutch sex ratios across individuals in relation to environmentalcharacteristics or parental traits, and often they find no relationships. In this study we also found that clutch sex ratiosdid not vary in relation to a number of biological and environmentalfactors for 238 great tit Parus major nests. However, interestingsex ratio biases were revealed when variation in clutch sexratios was analyzed within individual females breeding in successiveyears. There was a significant positive relationship betweenthe change in sex ratio of a female's clutch from one yearto the next and the relative body condition of her partner.Females mating with males of higher body condition in yearx + 1 produced relatively male-biased sex ratios, and the oppositewas true for females mated with lower condition males. Within-individualanalysis also allowed investigations of sex ratio in relationto partner change. There was no change in sex ratios of femalespairing with the same male; however, females pairing with anew male produced clutches significantly more female biased. Comparisons of clutch sex ratios within individuals may be apowerful method for detecting sex ratio variation, and perhapsfemale birds may indeed manipulate egg sex but require personalcontextual experience for such decisions.  相似文献   

2.
Prohl  Heike 《Behavioral ecology》2002,13(2):175-181
In this study I examined the relationship among abundance ofreproductive resources, population density, and adult sex ratioin the strawberry dart-poison frog, Dendrobates pumilio, andhow these variables in turn influence the mating system, malereproductive success, and sexual selection. I studied the matingbehavior in two populations of D. pumilio living in a primaryand secondary rainforest on the Caribbean slope of Costa Rica.The abundance of tadpole-rearing sites (reproductive resourcesfor females) was approximately 10-fold higher in the secondary forest. Accordingly, the population density was higher and theadult sex ratio was strongly female biased in the secondaryforest, whereas the adult sex ratio was even in the primaryforest. The female-biased sex ratio was associated with a higherlevel of polygyny and higher male mating and reproductive successin the secondary forest. In contrast, the level of polyandrydid not differ between habitats. As expected, the opportunityfor sexual selection on male mating success was lower in thesecondary forest, the habitat with high female density. Inconclusion, my results suggest that ecological variables suchas resource availability have a great impact on the matingsystem and sexual selection through their effect on population structure. Moreover, the results of this study give furtherevidence that the opportunity for sexual selection is influencedby the adult sex ratio and hence by the operational sex ratioin a population.  相似文献   

3.
The maintenance of plumage color polymorphism in the parasiticjaeger (Stercorarius parasiticus) is still not well understood.Earlier studies indicated that selection may favor pale femalesand melanic males. If so, females would maximize their fitness,producing pale female and melanic male offspring. We thereforepredicted that females might bias their offspring sex ratiotoward daughters in pale pairs and toward sons in melanic pairs.Females might also choose to mate assortatively in relationto plumage color, thereby maximizing the probability of producingeither pale or melanic offspring. Because females are largerthan males, differential rearing costs may affect the offspringsex ratio independent of parental plumage color. We examinedoffspring sex ratio allocation, breeding variables indicativeof parental quality, and mating pattern in relation to plumagecolor in a colony of parasitic jaegers in northern Norway. Jaegerstended to mate assortatively in relation to plumage color. Thereproductive performance declined with season, and matched pairsappeared to be of lower quality than mixed pairs. The proportionof male offspring increased with hatching date in matched paleand mixed pairs, whereas the situation was reversed in matchedmelanic pairs. Matched pale pairs produced an overall surplusof favorable pale but costly daughters despite their lower quality,while melanic pairs produced a surplus of favorable melanicsons. However, differential offspring rearing costs and parentalrearing capacity may have additionally affected the realizedoffspring sex ratio. Mixed pairs producing an overall surplusof pale and melanic daughters allocated their resources accordingto differential rearing costs and parental quality only. Wesuggest that both strategies of sex ratio allocation togetherwith differences in reproductive success in matched versus mixedpairs may have a balancing effect on the mating pattern betweenplumage morphs and may contribute to the maintenance of thecolor polymorphism in this species.  相似文献   

4.
Mating experiments using 153 pairs of Diaptomus leptopus Forbeswere video-taped in the laboratory. The following were measuredand scored: attempted capture of the female by the male, timeto successful capture and mounting, duration of copulation,spermatophore placement, time to clutch extrusion, prosome lengthsof all individuals and sex size ratios (female:male lengths)of all pairs. Mating success was not a function of sex sizeratio for D.leptopus at ratios commonly observed in nature inthe populations tested. However, this lack of relationship maynot be true of all populations. Photographic analysis of D.leptopusas well as D.birgei Marsh showed that males always held ontofemale genital segments in the vicinity of the spines with theirright fifth legs. Pearson correlations were calculated comparingprosome lengths to a variety of genital parts. The strongestrelationships were found with female genital segment width atthe level of the spines for both species, and male right fifthleg claw length for D.birgei. These data support the hypothesisthat the relationship between sex size ratio and mating successmay be species specific.  相似文献   

5.
Sex allocation in response to paternal attractiveness in the zebra finch   总被引:4,自引:1,他引:3  
Females mated to attractive males are predicted to produce male-biasedbroods. Previous studies on zebra finches, Taeniopygia guttata,in which colored leg rings were used to alter male attractiveness,support this hypothesis. However, because molecular sexing techniqueswere not available, it was not known when during developmentthis bias arose. Also, because both attractive (red-ringed)and unattractive (green-ringed) males were within the same aviary,assortative mating between treatments may have confounded theresults. Using two different experimental designs, we testedwhether the sex ratio of zebra finch eggs and chicks differedin response to paternal ring color whilst controlling for assortativemating between treatments. In the aviary experiment, birds couldinteract socially, but all males in an aviary had the same legring color. In the cage experiment, each female was randomlyassigned a red- or green-ringed mate, thus also eliminatingassortative mating within treatments. Offspring were sexed basedon plumage or using a molecular method. The sex ratio at layingdid not differ between treatments in either the aviary (n =313 eggs) or cage (n = 151 eggs) experiments, suggesting thatfemale zebra finches do not manipulate the primary sex ratioin response to their mate's ring color. However, in the cageexperiment we found greater male embryonic mortality in theattractive group, which resulted in a female-biased sex ratioat sexual maturity, that is, in the opposite direction to thatfound in previous studies. Possible explanations for the disparitybetween our results and those of previous studies are considered.  相似文献   

6.
The interests of males and females over reproduction rarely coincide and conflicts between the sexes over mate choice, mating frequency, reproductive investment, and parental care are common in many taxa. In Drosophila melanogaster, the optimum mating frequency is higher for males than it is for females. Furthermore, females that mate at high frequencies suffer significant mating costs due to the actions of male seminal fluid proteins. Sexual conflict is predicted to lead to sexually antagonistic coevolution, in which selection for adaptations that benefit males but harm females is balanced by counterselection in females to minimize the extent of male-induced harm. We tested the prediction that elevated sexual conflict should select for increased female resistance to male-induced harm and vice versa. We manipulated the intensity of sexual conflict by experimentally altering adult sex ratio. We created replicated lines of D. melanogaster in which the adult sex ratio was male biased (high conflict lines), equal (intermediate conflict lines), or female biased (low conflict lines). As predicted, females from high sexual conflict lines lived significantly longer in the presence of males than did females from low conflict lines. Our conclusion that the evolutionary response in females was to the level of male-induced harm is supported by the finding that there were no female longevity differences in the absence of males. Differences between males in female harming ability were not detected. This suggests that the response in females was to differences between selection treatments in mating frequency, and not to differences in male harmfulness.  相似文献   

7.
Differential growth rate between males and females, owing to a sexual size dimorphism, has been proposed as a mechanism driving sex‐biased survival. How parents respond to this selection pressure through sex ratio manipulation and sex‐biased parental investment can have a dramatic influence on fitness. We determined how differential growth rates during early life resulting from sexual size dimorphism affected survival of young and how parents may respond in a precocial bird, the black brant Branta bernicla nigricans. We hypothesized that more rapidly growing male goslings would suffer greater mortality than females during brood rearing and that parents would respond to this by manipulating their primary sex ratio and parental investment. Male brant goslings suffered a 19.5% reduction in survival relative to female goslings and, based on simulation, we determined that a female biased population sex ratio at fledging was never overcome even though previous work demonstrated a slight male‐biased post‐fledging survival rate. Contrary to the Fisherian sex ratio adjustment hypothesis we found that individual adult female brant did not manipulate their primary sex ratio (50.39% male, n = 645), in response to the sex‐biased population level sex ratio. However, female condition at the start of the parental care period was a good predictor of their primary sex ratio. Finally, we examined how females changed their behavior in response to primary sex ratio of their broods. We hypothesized that parents would take male biased broods to areas with increased growth rates. Parents with male biased primary sex ratios took broods to areas with higher growth rates. These factors together suggest that sex‐biased growth rates during early life can dramatically affect population dynamics through sex‐biased survival and recruitment which in turn affects decisions parents make about sex allocation and sex‐biased parental investment in offspring to maximize fitness.  相似文献   

8.
Abstract Is the cost of reproduction different between males and females? On the one hand, males typically compete intensely for mates, thus sexual selection theory predicts higher cost of reproduction for males in species with intense male‐male competition. On the other hand, care provisioning such as incubating the eggs and raising young may also be costly, thus parental care theory predicts higher mortality for the care‐giving sex, which is often the female. We tested both hypotheses of reproductive costs using phylogenetic comparative analyses of sex‐specific adult mortality rates of 194 bird species across 41 families. First, we show that evolutionary increases in male‐male competition were associated with male‐biased mortalities. This relationship is consistent between two measures of mating competition: social mating system and testis size. Second, as predicted by the parental cost hypothesis, females have significantly higher adult mortalities (mean ± SE, 0.364 ± 0.01) than males (0.328 ± 0.01). However, the mortality cost of parental care was only detectable in males, when the influence of mating competition was statistically controlled. Taken together, our results challenge the traditional explanation of female‐biased avian mortalities, because evolutionary changes in female care were unrelated to changes in mortality bias. The interspecific variation in avian mortality bias, as we show here, is driven by males, specifically via the costs of both mating competition and parental care. We also discuss alternative hypotheses for why most birds exhibit female‐biased mortalities, whereas in mammals male‐biased mortalities predominate.  相似文献   

9.
Conventional sex roles imply caring females and competitive males. The evolution of sex role divergence is widely attributed to anisogamy initiating a self‐reinforcing process. The initial asymmetry in pre‐mating parental investment (eggs vs. sperm) is assumed to promote even greater divergence in post‐mating parental investment (parental care). But do we really understand the process? Trivers [Sexual Selection and the Descent of Man 1871–1971 (1972), Aldine Press, Chicago] introduced two arguments with a female and male perspective on whether to care for offspring that try to link pre‐mating and post‐mating investment. Here we review their merits and subsequent theoretical developments. The first argument is that females are more committed than males to providing care because they stand to lose a greater initial investment. This, however, commits the ‘Concorde Fallacy’ as optimal decisions should depend on future pay‐offs not past costs. Although the argument can be rephrased in terms of residual reproductive value when past investment affects future pay‐offs, it remains weak. The factors likely to change future pay‐offs seem to work against females providing more care than males. The second argument takes the reasonable premise that anisogamy produces a male‐biased operational sex ratio (OSR) leading to males competing for mates. Male care is then predicted to be less likely to evolve as it consumes resources that could otherwise be used to increase competitiveness. However, given each offspring has precisely two genetic parents (the Fisher condition), a biased OSR generates frequency‐dependent selection, analogous to Fisherian sex ratio selection, that favours increased parental investment by whichever sex faces more intense competition. Sex role divergence is therefore still an evolutionary conundrum. Here we review some possible solutions. Factors that promote conventional sex roles are sexual selection on males (but non‐random variance in male mating success must be high to override the Fisher condition), loss of paternity because of female multiple mating or group spawning and patterns of mortality that generate female‐biased adult sex ratios (ASR). We present an integrative model that shows how these factors interact to generate sex roles. We emphasize the need to distinguish between the ASR and the operational sex ratio (OSR). If mortality is higher when caring than competing this diminishes the likelihood of sex role divergence because this strongly limits the mating success of the earlier deserting sex. We illustrate this in a model where a change in relative mortality rates while caring and competing generates a shift from a mammalian type breeding system (female‐only care, male‐biased OSR and female‐biased ASR) to an avian type system (biparental care and a male‐biased OSR and ASR).  相似文献   

10.
The evolution and maintenance of female ornamentation has attracted increasing attention, because the previous explanation, that is a non‐functional copy of functional male ornamentation, seems insufficient to explain female ornamentation. A post‐mating sexual selection, differential allocation, may be more common than pre‐mating sexual selection, but few studies have investigated differential allocation by males. Here, we studied differential allocation of incubation investment by male barn swallows Hirundo rustica, a model species for the study of sexual selection, because our previous correlative study demonstrated a positive relationship between female tail length and male incubation investment. We manipulated the length of the outermost tail feathers in females after clutch completion and examined whether males adjust incubation investment according to female ornamentation. Because extra‐pair paternity is virtually absent in the study population, we were able to study differential allocation based on the tradeoff between current and future reproductive investments, rather than the tradeoff between current paternal investment and additional mating effort. The experimental treatment had no significant effect on male nest attentiveness, whereas female tail length before manipulation predicted male nest attentiveness. The observed pattern is consistent with differential access; that is, well‐ornamented individuals have greater access to mates with high reproductive (parental) ability, rather than differential allocation during incubation. Alternatively, males can directly assess eggs in their nests, and thus, as seen in other species, males might adjust their incubation investment based on the egg characteristics of long‐tailed females.  相似文献   

11.
The evolution and expression of mate choice behaviour in either sex depends on the sex‐specific combination of mating costs, benefits of choice and constraints on choice. If the benefits of choice are larger for one sex, we would expect that sex to be choosier, assuming that the mating costs and constraints on choice are equal between sexes. Because deliberate inbreeding is a powerful genetic method for experimental manipulation of the quality of study organisms, we tested the effects of both male and female inbreeding on egg and offspring production in Drosophila littoralis. Female inbreeding significantly reduced offspring production (mostly due to lower egg‐to‐adult viability), whereas male inbreeding did not affect offspring production (despite a slight effect of paternal inbreeding on egg‐to‐adult viability). As inbreeding depressed female quality more than male quality, the benefits of mate choice were larger for males than for females. In mate choice experiments, inbreeding did not affect male mating success (measured as a probability to be accepted as a mate in a large group), suggesting that females did not discriminate among inbred and outbred males. In contrast, female mating success was affected by inbreeding, with outbred females having higher mating success than inbred females. This result was not explained by lower activity of inbred females. Our results show that D. littoralis males benefit from mating with outbred females of high genetic quality and suggest adaptive male mate choice for female genetic quality in this species. Thus, patterns of mating success in mate choice trials mirrored the benefits of choice: the sex that benefited more from choice (i.e. males) was more choosy.  相似文献   

12.
Current theory postulates that the operational sex ratio (OSR)determines the relative degree of mating competition in thetwo sexes and is in turn influenced by a sexual difference inthe potential reproductive rate (PRR) denned as 1/time out,where time out is the time an individual must spend recoveringfrom a bout of mating activity and/or caring for offspring.In bushcricket mating systems where males provide females witha nuptial gift, relative energy expenditure in offspring influencesthe PRR of males and females and underlies a diet-mediated shiftin the OSR. Here we investigated if there is a similar positiverelationship between relative parental nutrient expenditurein offspring and PRR in the polyandrous butterfly Pieris napi,where female fecundity is strongly dependent on male nuptialgifts at mating. By varying the amount of nutrients femalesreceive at mating and relating this to number of offspring produced,we show that male P. napi have, on average, a nutrient expenditurein offspring equaling that of females. In spite of this, themale reproductive rate is 8–13 times higher than thatof females. Hence the relative degree of parental expenditurein offspring is largely decoupled from the degree of matingcompetition in P. napi. Two alternative explanations are advancedto account for the difference between the butterfly and thebushcricket mating systems.  相似文献   

13.
Front Cover     
In most animals, competition for mating opportunities is higher among males, whereas females are more likely to provide parental care. In few species, though, these "conventional" sex roles are reversed such that females compete more strongly for matings and males provide most or all parental care. This "reversal" in sex roles is often combined with classical polyandry—a mating system in which a female forms a harem with several males. Here, we review the major hypotheses relating such role reversals to evolutionary and behavioural traits (anisogamy, phylogenetic history, sexy males, parental care, genetic paternity, trade‐off between mating and parenting, adult sex ratio) and to ecological factors (food supply, offspring predation). We evaluate each hypothesis in relation to coucals (Centropodinae), a group of nesting cuckoos of great interest for mating system and parental care theory. The black coucal (Centropus grillii) is the only known bird combining classical polyandry with altricial development of young, a costly trait with regard to parental care. Our long‐term study offers a unique possibility to compare the strongly polyandrous black coucal with a monogamous close relative breeding in the same area and habitat, the white‐browed coucal (C. superciliosus). We show that the evolution of sex roles in coucals and other animals has many different facets. Whereas phylogenetic constraints are important, confidence in genetic paternity is not. In combination with facilitating ecological conditions, adult sex ratios are key to understanding sex roles in coucals, shorebirds, and most likely also other animals. We plead for more studies including experimental tests to understand how biased adult sex ratios emerge and whether they drive sexual selection or vice versa. How do sex ratios and sexual selection interact and feedback on each other? Answers to these questions will be fundamental for understanding the evolution of sex roles in mating and parenting in coucals and other species.  相似文献   

14.
Sex ratios of flowering individuals in dioecious plant populations are often close to unity, or are male biased owing to gender-specific differences in flowering or mortality. Female-biased sex ratios, although infrequent, are often reported in species with heteromorphic sex chromosomes. Two main hypotheses have been proposed to account for female bias: (1) selective fertilization resulting from differential pollen-tube growth of female- versus male-determining microgametophytes (certation); (2) differences in the performance and viability of the sexes after parental investment. Here we investigate these hypotheses in Rumex nivalis (Polygonaceae), a European alpine herb with female-biased sex ratios in which females possess XX, and males XY1Y2, sex chromosomes. Using field surveys and a glasshouse experiment we investigated the relation between sex ratios and life-history stage in 18 populations from contrasting elevations and snowbed microsites and used a male-specific SCAR-marker to determine the sex of nonflowering individuals. Female bias among flowering individuals was one of the highest reported for populations of a dioecious species (mean female frequency = 0.87), but males increased in frequency at higher elevations and in the center of snowbeds. Female bias was also evident in nonflowering individuals (mean 0.78) and in seeds from open-pollinated flowers (mean 0.59). The female bias in seeds was weakly associated with the frequency of male flowering individuals in populations in the direction predicted when certation occurs. Under glasshouse conditions, females outperformed males at several life-history stages, although male seeds were heavier than female seeds. Poor performance of Y1Y2 gametophytes and male sporophytes in R. nivalis may be a consequence of the accumulation of deleterious mutations on Y-sex chromosomes.  相似文献   

15.
African wild dogs (Lycaon pictus) live in cooperative packswith a clear-cut dominance hierarchy in each sex. Reproductionis largely monopolized by the dominant male and female. Alphafemales produced 76% of all litters in the Selous Game Reserveand 81% in Kruger National Park. Only 6-17% of subordinate femalesgave birth each year, compared to 82% of dominant females. Innonmating periods, subordinate females had higher estrogen levelsand higher estrogen/progestin ratios than alpha females, apparentlypreventing ovulation. During mating periods, subordinate femaleshad lower estrogen levels than dominants, mated less often,and were less aggressive. Subordinate males mated at low rates,wore less aggressive than dominants, and had lower testosteronelevels. Beta males were similar to alpha males behavioraDy andhormonaUy, suggesting that alpha males may share paternity withbeta males. If paternity is more evenly shared than maternity,then subordinate males have a larger incentive than subordinatefemales to remain in the pack. Following this expectation, dispersalin Selous was female biased (49% versus 24% dispersing annually).Perhaps as a result of mortality associated with dispersal,the adult sex ratio was male biased, although the pup sex ratiowas unbiased. In Kruger, neither dispersal nor the adult sex-ratiowas biased. Reproductive suppression is widely thought to becaused by social stress in subordinates, but basal cortkosteronelevels were higher in dominants than in subordinates  相似文献   

16.
For several decades, behavioral ecologists have studied theeffects of the environment on the behavior of individuals;but only fairly recently they have started to ask the reversequestion: how do the behavioral strategies of individuals affectthe composition and dynamics of populations and communities?Although intuitively obvious, this feedback from individualto higher levels is difficult to demonstrate, except in systemswith exceptionally fast and marked responses of the populationsto the behavior of its members. Such a system exists in sperm-dependentspecies. In European water frogs, for instance, successfulreproduction of a hybrid species (R. esculenta, genotype LR)requires mating with one of its parental species (R. lessonae,genotype LL), except in the rare cases where hybrids are triploid.The sexual host LL, however, should avoid matings with the sexual parasite LR, because the resulting LR offspring willeliminate the L genome from their germ line. In this studywe investigate how this conflict is solved. Since water froghybrids come in both sexes, rather than as females only likein other sperm-dependent systems, we performed the tests withboth females and males. One individual was given a choice betweentwo individuals of the opposite sex, one an LL and the otheran LR. In both species, females showed the predicted preferencefor LL males, whereas males did not discriminate between LLand LR females. On the individual level, we interpret the sexdifference in choosiness by the lower costs from mating withthe wrong species (LR) and the higher benefits from matingwith large individuals in males than in females. In "normal"species, male preference for large (i.e. more fecund) femalesis advantageous, but in this system such a choice can resultin mating with the larger LR females. With respect to the structureand dynamics of mixed populations, we discuss that the observed female preference is consistent with the higher mating successof LL males found in nature. Hence, mate female choice is astrong candidate for a mechanism promoting coexistence of thesperm-dependent hybrid and its sexual host. This confirms predictionsfrom previous theoretical models.  相似文献   

17.
Sex differences in adult mortality may be responsible for male‐skewed adult sex ratios and male‐skewed parental care in some birds. Because a surplus of breeding males has been reported in serially polyandrous populations of Snowy Plover Charadrius alexandrinus, we examined sex ratio, early‐season nesting opportunities, adult survival and annual reproductive success of a Snowy Plover population at Monterey Bay, California. We tested the hypotheses that male adult survival was greater than female survival and that a sex difference in adult survival led to a skewed adult sex ratio, different mating opportunities and different annual productivity between the sexes. Virtually all females left chicks from their first broods to the care of the male and re‐nested with a new mate. As a result, females had time to parent three successful nesting attempts during the lengthy breeding season, whereas males had time for only two successful attempts. Among years, the median population of nesting Plovers was 96 males and 84 females (median difference = 9), resulting in one extra male per eight pairs. The number of potential breeders without mates during the early nesting period each year was higher in males than in females. Adult male survival (0.734 ± 0.028 se) was higher than female survival (0.693 ± 0.030 se) in top‐ranked models. Annually, females parented more successful clutches and fledged more chicks than their first mates of the season. Our results suggest that in C. alexandrinus a sex difference in adult survival results in a male‐skewed sex ratio, which creates more nesting opportunities and greater annual productivity for females than for males.  相似文献   

18.
The differential environmental sensitivity of the sexes hasstrong implications in the evolutionary history of species asit can alter sexual size dimorphism, population sex ratios,and the faculty of parents to manipulate offspring sex in relationto environmental conditions. We studied sexual differences inhatching patterns and evaluated sex- and size-related mortalityin relation to hatching order and brood sex ratios in the chinstrappenguin Pygoscelis antarctica, a moderately size-dimorphic species,with a modal clutch size of 2 eggs. We found that male, second-hatched,and large eggs showed shorter hatching periods than female,first-hatched, and small eggs. We also found a male-biased mortalityof nestlings in the colony. However, male mortality patternsdiffered depending on the brood sex ratio composition. Mortalityof male chicks in all-male broods was higher than in mixed broodsand higher than female mortality in all-female broods. Contrary,females from mixed brood showed higher mortality than theirmale nest mates and higher too than females in all-female broods.Second-hatched chicks also suffered from higher mortality thanfirst-hatched chicks. Our results indicate that both the superiorcompetitive capacity and the higher energy demand of the largersex constitute 2 causal factors explaining patterns of sex-biasedmortality. Both factors occur in the same species and in differentsituations of sibling competition shaped by brood sex ratiocomposition. This study constitutes a good example of how patternsof sex-related mortality can vary depending on nest environmentalcircumstances. Furthermore, our study suggests that hatchingperiod can be a mechanism underlying sexual differences in theembryonic period of birds.  相似文献   

19.
The differential allocation hypothesis predicts increased investment in offspring when females mate with high-quality males. Few studies have tested whether investment varies with mate relatedness, despite evidence that non-additive gene action influences mate and offspring genetic quality. We tested whether female lekking lance-tailed manakins (Chiroxiphia lanceolata) adjust offspring sex and egg volume in response to mate attractiveness (annual reproductive success, ARS), heterozygosity and relatedness. Across 968 offspring, the probability of being male decreased with increasing parental relatedness but not father ARS or heterozygosity. This correlation tended to diminish with increasing lay-date. Across 162 offspring, egg volume correlated negatively with parental relatedness and varied with lay-date, but was unrelated to father ARS or heterozygosity. Offspring sex and egg size were unrelated to maternal age. Comparisons of maternal half-siblings in broods with no mortality produced similar results, indicating differential allocation rather than covariation between female quality and relatedness or sex-specific inbreeding depression in survival. As males suffer greater inbreeding depression, overproducing females after mating with related males may reduce fitness costs of inbreeding in a system with no inbreeding avoidance, while biasing the sex of outbred offspring towards males may maximize fitness via increased mating success of outbred sons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号