首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lysosomal storage disorders (LSD) represent a heterogeneous group of inherited diseases characterized by the accumulation of non-metabolized macromolecules (by-products of cellular turnover) in different tissues and organs. LSDs primarily develop as a consequence of a deficiency in a lysosomal hydrolase or its co-factor. The majority of these enzymes are glycosidases and sulfatases, which in normal conditions participate in degradation of glycoconjugates: glycoproteins, glycosaminoproteoglycans, and glycolipids. Significant insights have been gained from studies of animal models, both in understanding mechanisms of disease and in establishing proof of therapeutic concept. These studies have led to the introduction of therapy for certain LSD subtypes, primarily by enzyme replacement or substrate reduction therapy. Animal models have been useful in elucidating molecular changes, particularly prior to onset of symptoms. On the other hand, it should be noted certain animal (mouse) models may have the underlying biochemical defect, but not show the course of disease observed in human patients. There is interest in examining therapeutic options in the larger spontaneous animal models that may more closely mimic the brain size and pathology of humans. This review will highlight lessons learned from studies of animal models of disease, drawing primarily from publications in 2011–2012.  相似文献   

2.
Over the past several years, considerable progress has been made in the development of gene therapy as a therapeutic strategy for a variety of inherited metabolic diseases, including neuropathic lysosomal storage disorders (LSDs). The premise of gene therapy for this group of diseases is borne of findings that genetic modification of a subset of cells can provide a more global benefit by virtue of the ability of the secreted lysosomal enzymes to effect cross-correction of adjacent and distal cells. Preclinical studies in small and large animal models of these disorders support the application of either a direct in vivo approach using recombinant adeno-associated viral vectors or an ex vivo strategy using lentiviral vector-modified hematopoietic stem cells to correct the neurological component of these diseases. Early clinical studies utilizing both approaches have begun or are in late-stage planning for a small number of neuropathic LSDs. Although initial indications from these studies are encouraging, it is evident that second-generation vectors that exhibit a greater safety profile and transduction activity may be required before this optimism can be fully realized. Here, I review recent progress and the remaining challenges to treat the neurological aspects of various LSDs using this therapeutic paradigm.  相似文献   

3.
Lysosomes are specialized organelles with an acidic pH that act as recycling hubs for intracellular and extracellular components. They harbour numerous different hydrolytic enzymes to degrade substrates like proteins, peptides, and glycolipids. Reduced catalytic activity of lysosomal enzymes can cause the accumulation of these substrates and loss of lysosomal integrity, resulting in lysosomal dysfunction and lysosomal storage disorders (LSDs). Post-mitotic cells, such as neurons, seem to be highly sensitive to damages induced by lysosomal dysfunction, thus LSDs often manifest with neurological symptoms. Interestingly, some LSDs and Parkinson’s disease (PD) share common cellular pathomechanisms, suggesting convergence of aetiology of the two disease types. This is further underlined by genetic associations of several lysosomal genes involved in LSDs with PD. The increasing number of lysosome-associated genetic risk factors for PD makes it necessary to understand functions and interactions of lysosomal proteins/enzymes both in health and disease, thereby holding the potential to identify new therapeutic targets. In this review, we highlight genetic and mechanistic interactions between the complex lysosomal network, LSDs and PD, and elaborate on methodical challenges in lysosomal research.  相似文献   

4.
Doo-Byoung Oh 《BMB reports》2015,48(8):438-444
Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy. [BMB Reports 2015; 48(8): 438-444]  相似文献   

5.
There are more than 40 different forms of inherited lysosomal storage diseases (LSDs) known to occur in humans and the aggregate incidence has been estimated to approach 1 in 7000 live births. Most LSDs are associated with high morbidity and mortality and represent a significant burden on patients, their families, and health care providers. Except for symptomatic therapies, many LSDs remain untreatable, and gene therapy is among the only viable treatment options potentially available. Therapies for some LSDs do exist, or are under evaluation, including heterologous bone marrow transplantation (BMT), enzyme replacement therapy (ERT), and substrate reduction therapy (SRT), but these treatment options are associated with significant concerns, including high morbidity and mortality (BMT), limited positive outcomes (BMT), incomplete response to therapy (BMT, ERT, and SRT), life-long therapy (ERT, SRT), and cost (BMT, ERT, SRT). Gene therapy represents a potential alternative therapy, albeit a therapy with its own attendant concerns. Animal models of LSDs play a critical role in evaluating the efficacy and safety of therapy for many of these conditions. Naturally occurring animal homologs of LSDs have been described in the mouse, rat, dog, cat, guinea pig, emu, quail, goat, cattle, sheep, and pig. In this review we discuss those animal models that have been used in gene therapy experiments and those with promise for future evaluations.  相似文献   

6.
The lysosomal storage diseases (LSDs) collectively account for death in 1 in 8,000 children. Although some forms are treatable, they are essentially incurable and usually are lethal in the first decade of life. The most intractable forms of LSD are those with neuronal involvement. In an effort to identify the pathological signaling driving pathology in the LSDs, invertebrate models have been developed. In this review, we outline our current understanding of LSDs and recent findings using invertebrate models. We outline strategies and pitfalls for the development of such models. Available models of LSD in Drosophila and Caenorhabditis elegans are uncovering roles for LSD-related proteins with previously unknown function using both gain-of-function and loss-of-function strategies. These models of LSD in Drosophila and C. elegans have identified potential pathogenic signaling cascades that are proving critical to our understanding of these lethal diseases.  相似文献   

7.
There are over 70 human diseases that are caused by defects in various aspects of lysosomal function. Until 20 years ago, the only specific therapy available for lysosomal storage disorders was allogeneic haemopoietic stem cell transplantation. Over the last two decades, there has been remarkable progress and there are now licensed treatments for seven of these diseases. In some cases, a choice of agents is available. For selected enzyme-deficiency disordes, ERT (enzyme-replacement therapy) has proved to be highly effective. In other cases, ERT has been less impressive, and it seems that it is not possible to efficiently deliver recombinant enzyme to all tissues. These difficulties have led to the development of other small-molecule-based therapies, and a drug for SRT (substrate-reduction therapy) is now licensed and potential chaperone molecules for ERT are in the late stages of clinical development. Nonetheless, there is still significant unmet clinical need, particularly when it comes to treating LSDs which affect the brain. LSDs have led the way in the development of treatment for genetic disorders, and it seems likely that there will be further therapeutic innovations in the future.  相似文献   

8.
9.
More than 50 hereditary lysosomal storage disorders (LSDs) are currently described. Most of these disorders are due to a deficiency of certain hydrolases/glycosidases and subsequent accumulation of nonhydrolyzable carbohydrate-containing compounds in lysosomes. Such accumulation causing hypertrophy of the lysosomal compartment is a characteristic feature of affected cells in LSDs. The investigation of biochemical and cellular parameters is of particular interest for understanding “life” of lysosomes in the normal state and in LSDs. This review highlights the wide spectrum of biochemical and morphological changes during developing LSDs that are extremely critical for many metabolic processes inside the various cells and tissues of affected persons. The data presented will help establish new complex strategies for metabolic correction of LSDs.  相似文献   

10.
Small molecules have been identified as potential therapeutic agents for lysosomal storage diseases (LSDs), inherited metabolic disorders caused by defects in proteins that result in lysosome dysfunctional. Some small molecules function assisting the folding of mutant misfolded lysosomal enzymes that are otherwise degraded in ER-associated degradation. The ultimate result is the enhancement of the residual enzymatic activity of the deficient enzyme. Most of the high throughput screening (HTS) assays developed to identify these molecules are single-target biochemical assays. Here we describe a cell-based assay using patient cell lines to identify small molecules that enhance the residual arylsulfatase A (ASA) activity found in patients with metachromatic leukodystrophy (MLD), a progressive neurodegenerative LSD. In order to generate sufficient cell lines for a large scale HTS, primary cultured fibroblasts from MLD patients were transformed using SV40 large T antigen. These SV40 transformed (SV40t) cells showed to conserve biochemical characteristics of the primary cells. Using a specific colorimetric substrate para-nitrocatechol sulfate (pNCS), detectable ASA residual activity were observed in primary and SV40t fibroblasts from a MLD patient (ASA-I179S) cultured in multi-well plates. A robust fluorescence ASA assay was developed in high-density 1,536-well plates using the traditional colorimetric pNCS substrate, whose product (pNC) acts as "plate fluorescence quencher" in white solid-bottom plates. The quantitative cell-based HTS assay for ASA generated strong statistical parameters when tested against a diverse small molecule collection. This cell-based assay approach can be used for several other LSDs and genetic disorders, especially those that rely on colorimetric substrates which traditionally present low sensitivity for assay-miniaturization. In addition, the quantitative cell-based HTS assay here developed using patient cells creates an opportunity to identify therapeutic small molecules in a disease-cellular environment where potentially disrupted pathways are exposed and available as targets.  相似文献   

11.
Lysosomal storage diseases (LSDs) are debilitating genetic conditions that frequently manifest as neurodegenerative disorders. They severely affect eye, motor and cognitive functions and, in most cases, abbreviate the lifespan. Postmitotic cells such as neurons and mononuclear phagocytes rich in lysosomes are most often affected by the accumulation of undegraded material. Cell death is well documented in parts of the brain and in other cells of LSD patients and animal models, although little is known about mechanisms by which death pathways are activated in these diseases, and not all cells exhibiting increased storage material are affected by cell death. Lysosomes are essential for maturation and completion of autophagy-initiated protein and organelle degradation. Moreover, accumulation of effete mitochondria has been documented in postmitotic cells whose lysosomal function is suppressed or in aging cells with lipofuscin accumulation. Based upon observations in the literature and our own data showing similar mitochondrial abnormalities in several LSDs, we propose a new model of cell death in LSDs. We suggest that the lysosomal deficiencies in LSDs inhibit autophagic maturation, leading to a condition of autophagic stress. The resulting accumulation of dysfunctional mitochondria showing impaired Ca2+ buffering increases the vulnerability of the cells to pro-apoptotic signals.  相似文献   

12.
Beck M 《Human genetics》2007,121(1):1-22
During the last few years, much progress has been made in the treatment of lysosomal storage disorders. In the past, no specific therapy was available for the affected patients, and management consisted solely of supportive care and treatment of complications. Since enzyme replacement therapy has been successfully introduced for patients with Gaucher disease, this principle of treatment has been taken into consideration for other lysosomal storage disorders as well. Clinical trials could demonstrate the clinical benefit of this therapeutic principle in Fabry disease, mucopolysaccharidoses type I, II and VI and in Pompe disease. However, the usefulness of enzyme replacement therapy is limited due to the fact that a given enzyme preparation does not have beneficial effects on all aspects of a disorder in the same degree. Additionally, clinical studies have shown that many symptoms of a lysosomal storage disorder even after long-term treatment are no more reversible. A further novel therapeutic option for lysosomal storage disorders consists of the application of small molecules that either inhibit a key enzyme which is responsible for substrate synthesis (substrate deprivation) or act as a chaperone to increase the residual activity of the lysosomal enzyme (enzyme enhancing therapy). Various gene therapeutic techniques (in vivo and ex vivo technique) have been developed in order to administer the gene that is defective in a patient to the bloodstream or directly to the brain in order to overcome the blood–brain barrier. This review will give an insight into these newly developed therapeutic strategies and will discuss their advantages and limitations.  相似文献   

13.
Lysosomal storage disorders (LSDs) are diseases characterized by the accumulation of macromolecules in the late endocytic system and are caused by inherited defects in genes that encode mainly lysosomal enzymes or transmembrane lysosomal proteins. Niemann-Pick type C disease (NPCD), a LSD characterized by liver damage and progressive neurodegeneration that leads to early death, is caused by mutations in the genes encoding the NPC1 or NPC2 proteins. Both proteins are involved in the transport of cholesterol from the late endosomal compartment to the rest of the cell. Loss of function of these proteins causes primary cholesterol accumulation, and secondary accumulation of other lipids, such as sphingolipids, in lysosomes. Despite years of studying the genetic and molecular bases of NPCD and related-lysosomal disorders, the pathogenic mechanisms involved in these diseases are not fully understood. In this review we will summarize the pathogenic mechanisms described for NPCD and we will discuss their relevance for other LSDs with neurological components such as Niemann- Pick type A and Gaucher diseases. We will particularly focus on the activation of signaling pathways that may be common to these three pathologies with emphasis on how the intra-lysosomal accumulation of lipids leads to pathology, specifically to neurological impairments. We will show that although the primary lipid storage defect is different in these three LSDs, there is a similar secondary accumulation of metabolites and activation of signaling pathways that can lead to common pathogenic mechanisms. This analysis might help to delineate common pathological mechanisms and therapeutic targets for lysosomal storage diseases.  相似文献   

14.
Lysosomes are ubiquitous intracellular organelles that have an acidic internal pH, and play crucial roles in cellular clearance. Numerous functions depend on normal lysosomes, including the turnover of cellular constituents, cholesterol homeostasis, downregulation of surface receptors, inactivation of pathogenic organisms, repair of the plasma membrane and bone remodeling. Lysosomal storage disorders (LSDs) are characterized by progressive accumulation of undigested macromolecules within the cell due to lysosomal dysfunction. As a consequence, many tissues and organ systems are affected, including brain, viscera, bone and cartilage. The progressive nature of phenotype development is one of the hallmarks of LSDs. In recent years biochemical and cell biology studies of LSDs have revealed an ample spectrum of abnormalities in a variety of cellular functions. These include defects in signaling pathways, calcium homeostasis, lipid biosynthesis and degradation and intracellular trafficking. Lysosomes also play a fundamental role in the autophagic pathway by fusing with autophagosomes and digesting their content. Considering the highly integrated function of lysosomes and autophagosomes it was reasonable to expect that lysosomal storage in LSDs would have an impact upon autophagy. The goal of this review is to provide readers with an overview of recent findings that have been obtained through analysis of the autophagic pathway in several types of LSDs, supporting the idea that LSDs could be seen primarily as "autophagy disorders."  相似文献   

15.
Lysosomes play a vital role in the maintenance of cellular homeostasis through the recycling of cell constituents, a key metabolic function which is highly dependent on the correct function of the lysosomal hydrolases and membrane proteins, as well as correct membrane lipid stoichiometry and composition. The critical role of lysosomal functionality is evident from the severity of the diseases in which the primary lesion is a genetically defined loss-of-function of lysosomal hydrolases or membrane proteins. This group of diseases, known as lysosomal storage diseases (LSDs), number more than 50 and are associated with severe neurodegeneration, systemic disease, and early death, with only a handful of the diseases having a therapeutic option. Another key homeostatic system is the metabolic stress response or heat shock response (HSR), which is induced in response to a number of physiological and pathological stresses, such as protein misfolding and aggregation, endoplasmic reticulum stress, oxidative stress, nutrient deprivation, elevated temperature, viral infections, and various acute traumas. Importantly, the HSR and its cardinal members of the heat shock protein 70 family has been shown to protect against a number of degenerative diseases, including severe diseases of the nervous system. The cytoprotective actions of the HSR also include processes involving the lysosomal system, such as cell death, autophagy, and protection against lysosomal membrane permeabilization, and have shown promise in a number of LSDs. This review seeks to describe the emerging understanding of the interplay between these two essential metabolic systems, the lysosomes and the HSR, with a particular focus on their potential as a therapeutic target for LSDs.  相似文献   

16.
《Autophagy》2013,9(5):719-730
Lysosomes are ubiquitous intracellular organelles that have an acidic internal pH, and play crucial roles in cellular clearance. Numerous functions depend on normal lysosomes, including the turnover of cellular constituents, cholesterol homeostasis, downregulation of surface receptors, inactivation of pathogenic organisms, repair of the plasma membrane and bone remodeling. Lysosomal storage disorders (LSDs) are characterized by progressive accumulation of undigested macromolecules within the cell due to lysosomal dysfunction. As a consequence, many tissues and organ systems are affected, including brain, viscera, bone and cartilage. The progressive nature of phenotype development is one of the hallmarks of LSDs. In recent years biochemical and cell biology studies of LSDs have revealed an ample spectrum of abnormalities in a variety of cellular functions. These include defects in signaling pathways, calcium homeostasis, lipid biosynthesis and degradation and intracellular trafficking. Lysosomes also play a fundamental role in the autophagic pathway by fusing with autophagosomes and digesting their content. Considering the highly integrated function of lysosomes and autophagosomes it was reasonable to expect that lysosomal storage in LSDs would have an impact upon autophagy. The goal of this review is to provide readers with an overview of recent findings that have been obtained through analysis of the autophagic pathway in several types of LSDs, supporting the idea that LSDs could be seen primarily as “autophagy disorders.”  相似文献   

17.
The function of lysosomes relies on the ability of the lysosomal membrane to fuse with several target membranes in the cell. It is known that in lysosomal storage disorders (LSDs), lysosomal accumulation of several types of substrates is associated with lysosomal dysfunction and impairment of endocytic membrane traffic. By analysing cells from two severe neurodegenerative LSDs, we observed that cholesterol abnormally accumulates in the endolysosomal membrane of LSD cells, thereby reducing the ability of lysosomes to efficiently fuse with endocytic and autophagic vesicles. Furthermore, we discovered that soluble N‐ethylmaleimide‐sensitive factor attachment protein (SNAP) receptors (SNAREs), which are key components of the cellular membrane fusion machinery are aberrantly sequestered in cholesterol‐enriched regions of LSD endolysosomal membranes. This abnormal spatial organization locks SNAREs in complexes and impairs their sorting and recycling. Importantly, reducing membrane cholesterol levels in LSD cells restores normal SNARE function and efficient lysosomal fusion. Our results support a model by which cholesterol abnormalities determine lysosomal dysfunction and endocytic traffic jam in LSDs by impairing the membrane fusion machinery, thus suggesting new therapeutic targets for the treatment of these disorders.  相似文献   

18.
19.
Genetically Modified Pig Models for Human Diseases   总被引:1,自引:0,他引:1  
Genetically modified animal models are important for understanding the pathogenesis of human disease and developing therapeutic strategies.Although genetically modified mice have been widely used to model human diseases,some of these mouse models do not replicate important disease symptoms or pathology.Pigs are more similar to humans than mice in anatomy,physiology,and genome. Thus,pigs are considered to be better animal models to mimic some human diseases.This review describes genetically modified pigs that have been used to model various diseases including neurological,cardiovascular,and diabetic disorders.We also discuss the development in gene modification technology that can facilitate the generation of transgenic pig models for human diseases.  相似文献   

20.
《Autophagy》2013,9(3):259-262
Lysosomal storage diseases (LSDs) are debilitating genetic conditions that frequently manifest as neurodegenerative disorders. They severely affect eye, motor and cognitive functions and, in most cases, abbreviate the lifespan. Postmitotic cells such as neurons and mononuclear phagocytes rich in lysosomes are most often affected by the accumulation of undegraded material. Cell death is well documented in parts of the brain and in other cells of LSD patients and animal models, although little is known about mechanisms by which death pathways are activated in these diseases, and not all cells exhibiting increased storage material are affected by cell death. Lysosomes are essential for maturation and completion of autophagy-initiated protein and organelle degradation. Moreover, accumulation of effete mitochondria has been documented in postmitotic cells whose lysosomal function is suppressed or in aging cells with lipofuscin accumulation. Based upon observations in the literature and our own data showing similar mitochondrial abnormalities in several LSDs, we propose a new model of cell death in LSDs. We suggest that the lysosomal deficiencies in LSDs inhibit autophagic maturation, leading to a condition of autophagic stress. The resulting accumulation of dysfunctional mitochondria showing impaired Ca2+ buffering increases the vulnerability of the cells to pro-apoptotic signals.

Addendum to:

Mitochondrial Aberrations in Mucolipidosis Type IV

J.J. Jennings Jr., J.H. Zhu, Y. Rbaibi, X. Luo, C.T. Chu and K. Kiselyov

J Biol Chem 2006; 281:39041-50  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号