首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osmotic swelling of NIH3T3 mouse fibroblasts activates a bromoenol lactone (BEL)-sensitive taurine efflux, pointing to the involvement of a Ca2+-independent phospholipase A2 (iPLA2) (Lambert IH. J Membr Biol 192: 19–32, 2003). We report that taurine efflux from NIH3T3 cells was not only increased by cell swelling but also decreased by cell shrinkage. Arachidonic acid release to the cell exterior was similarly decreased by shrinkage yet not detectably increased by swelling. NIH3T3 cells were found to express cytosolic calcium-dependent cPLA2-IVA, cPLA2-IVB, cPLA2-IVC, iPLA2-VIA, iPLA2-VIB, and secretory sPLA2-V. Arachidonic acid release from swollen cells was partially inhibited by BEL and by the sPLA2-inhibitor manoalide. Cell swelling elicited BEL-sensitive arachidonic acid release from the nucleus, to which iPLA2-VIA localized. Exposure to the bee venom peptide melittin, to increase PLA2 substrate availability, potentiated arachidonic acid release and osmolyte efflux in a volume-sensitive, 5-lipoxygenase-dependent, cyclooxygenase-independent manner. Melittin-induced arachidonic acid release was inhibited by manoalide and slightly but significantly by BEL. A BEL-sensitive, melittin-induced PLA2 activity was also detected in lysates devoid of sPLA2, indicating that both sPLA2 and iPLA2 contribute to arachidonic acid release in vivo. Swelling-induced taurine efflux was inhibited potently by BEL and partially by manoalide, whereas the reverse was true for melittin-induced taurine efflux. It is suggested that in NIH3T3 cells, swelling-induced taurine efflux is dependent at least in part on arachidonic acid release by iPLA2 and possibly also by sPLA2, whereas melittin-induced taurine efflux is dependent on arachidonic acid release by sPLA2 and, to a lesser extent, iPLA2. osmotic stress; cell volume regulation; calcium-independent phospholipase A2; secretory phospholipase A2; nucleus  相似文献   

2.
Shirai  Yoshinori  Ito  Masao 《Brain Cell Biology》2004,33(3):297-307
Phospholipase A2 (PLA2) is a family of enzymes playing diverse roles in lipid signaling in neurons and glia cells. In this study, we examined the expression of subtypes of PLA2 in the cerebellum using immunolabeling and in situ hybridization methods. Two Ca2+-dependent cytosolic subtypes (cPLA2α and cPLA2β), one Ca2+-independent cytosolic subtype (iPLA2), and two secretory subtypes (sPLA2IIA and sPLA2V) were detected in the cerebellum. cPLA2α is present in somata and dendrites of Purkinje cells, while sPLA2IIA is associated with the endoplasmic reticulum in perinuclear regions of Purkinje cell somata. iPLA2 is present in granule cells, stellate cells and also in the nucleus of Purkinje cells. In addition, cPLA2β is localized in granule cells, and sPLA2V in Bergmann glia cells. These results provide an important basis for identifying functional roles of PLA2s in the cerebellum.  相似文献   

3.
To test thehypothesis that intracellular Ca2+activation of large-conductanceCa2+-activatedK+ (BK) channels involves thecytosolic form of phospholipase A2 (cPLA2), we first inhibited theexpression of cPLA2 by treating GH3 cells with antisenseoligonucleotides directed at the two possible translation start siteson cPLA2. Western blot analysis and a biochemical assay of cPLA2activity showed marked inhibition of the expression ofcPLA2 in antisense-treated cells.We then examined the effects of intracellularCa2+ concentration([Ca2+]i)on single BK channels from these cells. Open channel probability (Po) for thecells exposed to cPLA2 antisenseoligonucleotides in 0.1 µM intracellularCa2+ was significantly lower thanin untreated or sense oligonucleotide-treated cells, but the voltagesensitivity did not change (measured as the slope of thePo-voltagerelationship). In fact, a 1,000-fold increase in[Ca2+]ifrom 0.1 to 100 µM did not significantly increasePoin these cells, whereas BK channels from cells in the other treatmentgroups showed a normalPo-[Ca2+]iresponse. Finally, we examined the effect of exogenous arachidonic acidon thePoof BK channels from antisense-treated cells. Although arachidonic aciddid significantly increasePo,it did so without restoring the[Ca2+]isensitivity observed in untreated cells. We conclude that although [Ca2+]idoes impart some basal activity to BK channels inGH3 cells, the steepPo-[Ca2+]irelationship that is characteristic of these channels involves cPLA2.

  相似文献   

4.
Mammalian genomes encode genes for more than 30 phospholipase A2s (PLA2s) or related enzymes, which are subdivided into several classes including low-molecular-weight secreted PLA2s (sPLA2s), Ca2+-dependent cytosolic PLA2s (cPLA2s), Ca2+-independent PLA2s (iPLA2s), platelet-activating factor acetylhydrolases (PAF-AHs), lysosomal PLA2s, and a recently identified adipose-specific PLA. Of these, the intracellular cPLA2 and iPLA2 families and the extracellular sPLA2 family are recognized as the “big three”. From a general viewpoint, cPLA2α (the prototypic cPLA2) plays a major role in the initiation of arachidonic acid metabolism, the iPLA2 family contributes to membrane homeostasis and energy metabolism, and the sPLA2 family affects various biological events by modulating the extracellular phospholipid milieus. The cPLA2 family evolved along with eicosanoid receptors when vertebrates first appeared, whereas the diverse branching of the iPLA2 and sPLA2 families during earlier eukaryote development suggests that they play fundamental roles in life-related processes. During the past decade, data concerning the unexplored roles of various PLA2 enzymes in pathophysiology have emerged on the basis of studies using knockout and transgenic mice, the use of specific inhibitors, and information obtained from analysis of human diseases caused by mutations in PLA2 genes. This review focuses on current understanding of the emerging biological functions of PLA2s and related enzymes.  相似文献   

5.
Cardiolipin, a major component of mitochondria, is critical for mitochondrial functioning including the regulation of cytochrome c release during apoptosis and proper electron transport. Mitochondrial cardiolipin with its unique bulky amphipathic structure is a potential substrate for phospholipase A2 (PLA2) in vivo. We have developed mass spectrometric methodology for analyzing PLA2 activity toward various cardiolipin forms and demonstrate that cardiolipin is a substrate for sPLA2, cPLA2 and iPLA2, but not for Lp-PLA2. Our results also show that none of these PLA2s have significant PLA1 activities toward dilyso-cardiolipin. To understand the mechanism of cardiolipin hydrolysis by PLA2, we also quantified the release of monolyso-cardiolipin and dilyso-cardiolipin in the PLA2 assays. The sPLA2s caused an accumulation of dilyso-cardiolipin, in contrast to iPLA2 which caused an accumulation of monolyso-cardiolipin. Moreover, cardiolipin inhibits iPLA2 and cPLA2, and activates sPLA2 at low mol fractions in mixed micelles of Triton X-100 with the substrate 1-palmitoyl-2-arachidonyl-sn-phosphtidylcholine. Thus, cardiolipin functions as both a substrate and a regulator of PLA2 activity and the ability to assay the various forms of PLA2 is important in understanding its function.  相似文献   

6.
Macrophages are a major source of lipid mediators in the human lung. Expression and contribution of cytosolic (cPLA2) and secreted phospholipases A2 (sPLA2) to the generation of lipid mediators in human macrophages are unclear. We investigated the expression and role of different PLA2s in the production of lipid mediators in primary human lung macrophages. Macrophages express the alpha, but not the zeta isoform of group IV and group VIA cPLA2 (iPLA2). Two structurally-divergent inhibitors of group IV cPLA2 completely block arachidonic acid release by macrophages in response to non-physiological (Ca2+ ionophores and phorbol esters) and physiological agonists (lipopolysaccharide and Mycobacterium protein derivative). These inhibitors also reduce by 70% the synthesis of platelet-activating factor by activated macrophages. Among the full set of human sPLA2s, macrophages express group IIA, IID, IIE, IIF, V, X and XIIA, but not group IB and III enzymes. Me-Indoxam, a potent and cell impermeable inhibitor of several sPLA2s, has no effect on arachidonate release or platelet-activating factor production. Agonist-induced exocytosis is not influenced by cPLA2 inhibitors at concentrations that block arachidonic acid release. Our results indicate that human macrophages express cPLA2-alpha, iPLA2 and several sPLA2s. Cytosolic PLA2-alpha is the major enzyme responsible for lipid mediator production in human macrophages.  相似文献   

7.
Neutrophils (PMN) contain two types of phospholipase A2 (PLA2), a 14 kDa ‘secretory’ Type II PLA2 (sPLA2) and an 85 kDa ‘cytosolic’ PLA2 (cPLA2), that differ in a number of key characteristics: (1) cPLA2 prefers arachidonate (AA) as a substrate but hydrolyzes all phospholipids; sPLA2 is not AA specific but prefers ethanolamine containing phosphoacylglycerols. (2) cPLA2 is active at nM calcium (Ca2+) concentrations; sPLA2 requires μM Ca2+ levels. (3) cPLA2 activity is regulated by phosphorylation; sPLA2 lacks phosphorylation sites. (4) cPLA2 is insensitive to reduction; sPLA2 is inactivated by agents that reduce disulfide bonds. We utilized PMN permeabilized with Staphylococcus aureus α-toxin to determine whether one or both forms of PLA2 were activated in porated cells under conditions designed to differentiate between the two enzymes. PMN were labeled with [3H]AA to measure release from phosphatidylcholine and phosphatidylinositol; gas chromatography-mass spectrometry was utilized to determine total AA release (mainly from phosphatidylethanolamine) and to asses oleate and linoleate mass. A combination of 500 nM Ca2+, a guanine nucleotide, and stimulation with n-formyl-met-leu-phe (FMLP) were necessary to induce maximal AA release in permeabilized PMN measured by either method; AA was preferentially released. [3H]AA and AA mass release occurred in parallel over time. A hydrolyzable form of ATP was necessary for maximum AA release and staurosporin inhibited PLA2 activation. Dithiothreitol treatment had little affect on [3H]AA release and metabolism but inhibited AA mass release. Assay of cell supernatants after cofactor addition did not detect sPLA2 activity and the cytosolic buffer utilized did not support activity of recombinant sPLA2. These results strongly suggested that cPLA2 was the enzyme activated in the permeabilized cell model and this is the first report which unambiguously demonstrates AA release in response to activation of a specific type of PLA2 in PMN.  相似文献   

8.
Thrombin stimulation of isolated rabbit ventricular myocytes activates a membrane-associated, Ca2+-independent PLA2 (iPLA2) that selectively hydrolyzes plasmalogen phospholipids and results in increased production of arachidonic acid and lysoplasmenylcholine. To determine whether MAPK regulates myocardial iPLA2 activity, we isolated ventricular myocytes from rabbit heart by collagenase digestion and pretreated them with MAPK inhibitors before stimulating them with thrombin. Pretreatment with PD-98059 to inhibit p42/44 MAPK or SB-203580 to inhibit p38 MAPK had no significant effect on thrombin-stimulated, membrane-associated iPLA2 activity. Thrombin stimulation resulted in significant increases in both p42/44 and p38 MAPK activity after 2 min. Pretreatment with the iPLA2-selective inhibitor bromoenol lactone completely inhibited thrombin-stimulated MAPK activity, suggesting that activation of MAPKs was dependent on iPLA2 activation. Ventricular myocyte MAPK activity was increased by incubation of the myocytes with lysoplasmenylcholine, a metabolite produced by iPLA2-catalyzed membrane plasmalogen phospholipid hydrolysis. Altogether, these data suggest that activation of MAPKs occurs downstream of and is dependent on iPLA2 activation in thrombin-stimulated rabbit ventricular myocytes. lysoplasmenylcholine; cell signaling; protease-activated receptors  相似文献   

9.
The purpose of this study was to determine the roles of calcium-dependent phospholipase A2 (cPLA2) and calcium-independent phospholipase A2 (iPLA2) in thapsigargin-induced membrane susceptibility to secretory phospholipase A2 (sPLA2) and programmed cell death. 3H-arachidonic acid release was observed in the presence of thapsigargin. This release was inhibited partially by an inhibitor of iPLA2 (BEL) and completely by an inhibitor of both cPLA2 and iPLA2 (MAFP) suggesting that these enzymes were active during apoptosis. The process of cell death did not require the activity of either enzyme since neither inhibitor impeded the progression of apoptosis. However, both inhibitors increased the susceptibility of the membrane to sPLA2 in the presence of thapsigargin. In the case of BEL, this effect appeared to involve direct induction of apoptosis in a sub-population of the cells independent of the action of iPLA2. In conclusion, the results suggested that cPLA2 and iPLA2 are active during thapsigargin-induced apoptosis in S49 cells and that cPLA2 tempers the tendency of the cells to become susceptible to sPLA2 during apoptosis.  相似文献   

10.
Calcium dependence of C-type natriuretic peptide-formed fast K+ channel   总被引:2,自引:0,他引:2  
The lipid bilayertechnique was used to characterize theCa2+ dependence of a fastK+ channel formed by a synthetic17-amino acid segment [OaCNP-39-(1-17)] ofa 39-amino acid C-type natriuretic peptide (OaCNP-39) found in platypus (Ornithorhynchusanatinus) venom (OaV). TheOaCNP-39-(1-17)-formed K+ channel was reversiblydependent on1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-buffered cis (cytoplasmic)Ca2+ concentration([Ca2+]cis).The channel was fully active when[Ca2+]ciswas >104 M andtrans (luminal)Ca2+ concentration was 1.0 mM, butnot at low[Ca2+]cis.The open probability of single channels increased from zero at1 × 106 McisCa2+ to 0.73 ± 0.17 (n = 22) at103 McisCa2+. Channel openings to themaximum conductance of 38 pS were rapidly and reversibly activated when[Ca2+]cis,but not transCa2+ concentration(n = 5), was increased to >5 × 104 M(n = 14). Channel openings to thesubmaximal conductance of 10.5 pS were dominant at5 × 104 MCa2+.K+ channels did not open whencisMg2+ orSr2+ concentrations were increasedfrom zero to 103 M or when[Ca2+]ciswas maintained at 106 M(n = 3 and 2). The Hill coefficientand the inhibition constant were 1 and 0.8 × 104 McisCa2+, respectively. Thisdependence of the channel on high[Ca2+]cissuggests that it may become active under1) physiological conditions whereCa2+ levels are high, e.g., duringcardiac and skeletal muscle contractions, and2) pathological conditions that leadto a Ca2+ overload, e.g., ischemicheart and muscle fatigue. The channel could modify a cascade ofphysiological functions that are dependent on theCa2+-activatedK+ channels, e.g., vasodilationand salt secretion.

  相似文献   

11.
The presentstudy was performed to characterize thrombin-stimulated phospholipaseA2(PLA2) activity and theresultant release of lysophospholipids from endothelial cells. Themajority of PLA2 activity inendothelial cells was membrane associated,Ca2+ independent, and arachidonateselective. Incubation with thrombin increased membrane-associatedPLA2 activity using bothplasmenylcholine and alkylacyl glycerophosphocholine substrates in theabsence of Ca2+, with no increasein activity observed with phosphatidylcholine substrate. The increasedPLA2 activity was accompanied byarachidonic acid and lysoplasmenylcholine (LPlasC) release fromendothelial cells into the surrounding medium. Thrombin-induced changeswere duplicated by stimulation with the thrombin-receptor-directed peptide SFLLRNPNDKYEPF. Pretreatment with theCa2+-independentPLA2 inhibitor bromoenol lactoneblocked thrombin-stimulated increases inPLA2 activity, arachidonic acid,and LPlasC release. Stimulation of protein kinase C (PKC) increasedbasal PLA2 activity and LPlasCproduction. Thrombin-stimulatedPLA2 activity and LPlasC production were enhanced with PKC activation and completely prevented with PKC downregulation. Thus thrombin treatment of endothelial cellsactivates a PKC-activated, membrane-associated,Ca2+-independentPLA2 that selectively hydrolyzesarachidonylated, ether-linked phospholipid substrates, resulting inLPlasC and arachidonic acid release.

  相似文献   

12.
Hypotonic exposure provokes the mobilization of arachidonic acid, production of ROS, and a transient increase in taurine release in Ehrlich Lettre cells. The taurine release is potentiated by H2O2 and the tyrosine phosphatase inhibitor vanadate and reduced by the phospholipase A2 (PLA2) inhibitors bromoenol lactone (BEL) and manoalide, the 5-lipoxygenase (5-LO) inhibitor ETH-615139, the NADPH oxidase inhibitor diphenyl iodonium (DPI), and antioxidants. Thus, swelling-induced taurine efflux in Ehrlich Lettre cells involves Ca2+-independent (iPLA2)/secretory PLA2 (sPLA2) plus 5-LO activity and modulation by ROS. Vanadate and H2O2 stimulate arachidonic acid mobilization and vanadate potentiates ROS production in Ehrlich Lettre cells and NIH3T3 fibroblasts under hypotonic conditions. However, vanadate-induced potentiation of the volume-sensitive taurine efflux is, in both cell types, impaired in the presence of BEL and DPI and following restoration of the cell volume. Thus, potentiation of the volume-sensitive taurine efflux pathway following inhibition of tyrosine phosphatase activity reflects increased arachidonic acid mobilization and ROS production for downstream signaling. Vanadate delays the inactivation of volume-sensitive taurine efflux in NIH3T3 cells, and this delay is impaired in the presence of DPI. Vanadate has no effect on the inactivation of swelling-induced taurine efflux in Ehrlich Lettre cells. It is suggested that increased tyrosine phosphorylation of regulatory components of NADPH oxidase leads to increased ROS production and a subsequent delay in inactivation of the volume-sensitive taurine efflux pathway and that NADPH oxidase or antioxidative capacity differ between NIH3T3 and Ehrlich Lettre cells. organic osmolytes; reactive oxygen species; vanadate; H2O2; tyrosine phosphatases; arachidonic acid mobilization  相似文献   

13.
14.
We have observed that phospholipase A2 (PLA2) activation and arachidonate (AA) release are essential for monocyte/macrophage adherence and spreading. In this study, we addressed the relationship between AA release and cell adherence/spreading in murine resident peritoneal macrophages, and the roles of specific PLA2s in these processes. The PLA2-specific inhibitors, (E)-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyran-2-one (BEL, specific for the Ca2+-independent PLA2 (iPLA2)) and methyl arachidonoyl fluorophosphonate (MAFP, specific for the Ca2+-dependent phospholipase (cPLA2)) inhibited AA release and cell spreading in a correlated fashion but only modestly decreased cell adherence. Cell spreading was normalized by the addition of AA to PLA2-inhibited cells. AA release during spreading was also inhibited by Ca2+ depletion or protein kinase C (PKC) inhibition, and was accompanied by increased (but transient) phosphorylation of cPLA2. Inhibition of macrophage spreading, however, only partially inhibited AA release. Moreover, constitutive AA release was seen in fully spread macrophages which was inhibited by BEL, but not MAFP or Ca2+ depletion. BEL also reversed the phenotype of fully spread cells. These data suggest that macrophage spreading requires the release of AA by the iPLA2 (which appears to be constitutively active) and cPLA2 (which appears to be stimulated by adherence/spreading). Maintenance of macrophage spreading, in contrast, appears to be principally dependent on the iPLA2.  相似文献   

15.
We found that the amyloid peptide A(1-42) is capable of interacting with membrane and forming heterogeneous ion channels in the absence of any added Cu2+ or biological redox agents that have been reported to mediate A(1-42) toxicity. The A(1-42)-formed cation channel was inhibited by Cu2+ in cis solution ([Cu2+]cis) in a voltage- and concentration-dependent manner between 0 and 250 µM. The [Cu2+]cis-induced channel inhibition is fully reversible at low concentrations between 50 and 100 µM [Cu2+]cis and partially reversible at 250 µM [Cu2+]cis. The inhibitory effects of [Cu2+]cis between 50 and 250 µM on the channel could not be reversed with addition of Cu2+-chelating agent clioquinol (CQ) at concentrations between 64 and 384 µM applied to the cis chamber. The effects of 200-250 µM [Cu2+]cis on the burst and intraburst kinetic parameters were not fully reversible with either wash or 128 µM [CQ]cis. The kinetic analysis of the data indicate that Cu2+-induced inhibition was mediated via both desensitization and an open channel block mechanism and that Cu2+ binds to the histidine residues located at the mouth of the channel. It is proposed that the Cu2+-binding site of the A(1-42)-formed channels is modulated with Cu2+ in a similar way to those of channels formed with the prion protein fragment PrP(106-126), suggesting a possible common mechanism for Cu2+ modulation of A and PrP channel proteins linked to neurodegenerative diseases. neurodegenerative diseases; transitional metals; ion channel pathologies; membrane injuries; calcium homeostasis  相似文献   

16.
Phospholipase A2 (PLA2) enzymes are the upstream regulators of the eicosanoid pathway liberating free arachidonic acid from the sn-2 position of membrane phospholipids. Free intracellular arachidonic acid serves as a substrate for the eicosanoid biosynthetic enzymes including cyclooxygenases, lipoxygenases, and cytochrome P450s that lead to inflammation. The Group IVA cytosolic (cPLA2), Group VIA calcium-independent (iPLA2), and Group V secreted (sPLA2) are three well-characterized human enzymes that have been implicated in eicosanoid formation. In this review, we will introduce and summarize the regulation of catalytic activity and cellular localization, structural characteristics, interfacial activation and kinetics, substrate specificity, inhibitor binding and interactions, and the downstream implications for eicosanoid biosynthesis of these three important PLA2 enzymes.  相似文献   

17.
Group VIA calcium-independent phospholipase A2 (GVIA iPLA2) has recently emerged as an important pharmaceutical target. Selective and potent GVIA iPLA2 inhibitors can be used to study its role in various neurological disorders. In the current work, we explore the significance of the introduction of a substituent in previously reported potent GVIA iPLA2 inhibitors. 1,1,1,2,2-Pentafluoro-7-(4-methoxyphenyl)heptan-3-one (GK187) is the most potent and selective GVIA iPLA2 inhibitor ever reported with a XI(50) value of 0.0001, and with no significant inhibition against GIVA cPLA2 or GV sPLA2. We also compare the inhibition of two difluoromethyl ketones on GVIA iPLA2, GIVA cPLA2, and GV sPLA2.  相似文献   

18.
The accumulation of radiolabeled arachidonicacid (AA), immunoblot analysis of subcellular fractions, andimmunofluorescence tagging of proteins in intact cells were used toexamine the coupling of ANG II receptors with the activity and locationof a cytosolic phospholipase A2(cPLA2) in vascular smoothmuscle cells (VSMC). ANG II induced the accumulation of AA, whichpeaked by 10 min and was downregulated by 20 min. A large proportion ofthe AA released in response to ANG II was due to the activation of a Ca2+-dependent lipase coupled toan AT1 receptor. However,regulation of Ca2+ availabilityfailed to completely block AA release, and a small but significantreduction in ANG II-mediated AA release was observed in the presence ofan AT2 antagonist. These findings,coupled with a 25% reduction in the ANG II-induced AA release by aninhibitor specific for aCa2+-independentPLA2, are consistent with thepresence and activation of aCa2+-independentPLA2. In contrast, immunoblotanalysis and immunofluorescence detection showed that the ANGII-mediated translocation of cPLA2 to a membrane fraction was exclusivelyAT1 dependent and regulated byCa2+ availability. Furthermore,the nucleus was the membrane target. We conclude that ANG II regulatesthe Ca2+-dependent activation andtranslocation of cPLA2 through anAT1 receptor and that this eventis targeted at the nucleus in VSMC.

  相似文献   

19.
Thrombin stimulation of rabbit ventricularmyocytes increases membrane-associated, Ca2+-independentphospholipase A2 (iPLA2) activity, resulting inaccelerated hydrolysis of membrane plasmalogen phospholipids andincreased production of arachidonic acid and lysoplasmenylcholine. This study was designed to investigate the signal transduction pathways involved in activation of membrane-associated iPLA2.Incubation of isolated membrane fractions suspended inCa2+-free buffer with thrombin or phorbol 12-myristate13-acetate resulted in a two- to threefold increase iniPLA2 activity. Prior treatment with the PKC inhibitorGF-109203X blocked iPLA2 activation by thrombin. These datasuggest that a novel PKC isoform present in the membrane fractionmodulates iPLA2 activity. Immunoblot analysis revealed asignificant portion of PKC- present in the membrane fraction, but noother membrane-associated novel PKC isoform was detected by thismethod. These data indicate that activation of membrane-associatediPLA2 is mediated by a membrane-associated novel PKCisoform in thrombin-stimulated rabbit ventricular myocytes.

  相似文献   

20.
The role of PKC in the regulation of store-operated Ca2+ entry (SOCE) is rather controversial. Here, we used Ca2+-imaging, biochemical, pharmacological, and molecular techniques to test if Ca2+-independent PLA2β (iPLA2β), one of the transducers of the signal from depleted stores to plasma membrane channels, may be a target for the complex regulation of SOCE by PKC and diacylglycerol (DAG) in rabbit aortic smooth muscle cells (SMCs). We found that the inhibition of PKC with chelerythrine resulted in significant inhibition of thapsigargin (TG)-induced SOCE in proliferating SMCs. Activation of PKC by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol (OAG) caused a significant depletion of intracellular Ca2+ stores and triggered Ca2+ influx that was similar to TG-induced SOCE. OAG and TG both produced a PKC-dependent activation of iPLA2β and Ca2+ entry that were absent in SMCs in which iPLA2β was inhibited by a specific chiral enantiomer of bromoenol lactone (S-BEL). Moreover, we found that PKC regulates TG- and OAG-induced Ca2+ entry only in proliferating SMCs, which correlates with the expression of the specific PKC- isoform. Molecular downregulation of PKC- impaired TG- and OAG-induced Ca2+ influx in proliferating SMCs but had no effect in confluent SMCs. Our results demonstrate that DAG (or OAG) can affect SOCE via multiple mechanisms, which may involve the depletion of Ca2+ stores as well as direct PKC--dependent activation of iPLA2β, resulting in a complex regulation of SOCE in proliferating and confluent SMCs. protein kinase C-; Ca2+-independent phospholipase A2; diacylglycerol; smooth muscle cells  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号