首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies on birds have shown that offspring begging and parental provisioning covary at the phenotypic level, which is thought to reflect genetic correlations. However, prenatal maternal factors, like yolk testosterone, may also facilitate parent-offspring coadaptation via their effects on offspring begging and development. In fact, maternal effects are thought to adjust offspring phenotype to the environmental conditions they will experience after birth, which are in turn strongly dependent on the levels of parental provisioning. Using cross-fostering experiments in canaries, we tested the role of maternal effects on parent-offspring coadaptation from two different approaches. First, we analyzed whether females deposit yolk testosterone in relation to their own or their partner's prospective parental provisioning, measured as the rate of parental feeding to foster nestlings. Second, we investigated whether females deposit yolk testosterone in relation to costs they incurred when raising a previous brood, as this likely impinges on their capacity to provide parental care in the near future. However, from the results of both experiments we have no evidence that canary females deposit yolk testosterone in order to match offspring begging to the levels of care they and/or their partners provide. We therefore found no evidence that yolk testosterone facilitates parent-offspring coadaptation. In addition, our results suggest that the functional consequences of yolk testosterone deposition may relate to hatching asynchrony since it primarily varied with egg laying order.  相似文献   

2.
Families with parental care show a parent–offspring conflict over the amount of parental investment. To date, the resolution of this conflict was modeled as being driven by either purely within‐brood or between‐brood competition. In reality the partitioning of parental resources within‐ versus between‐broods is an evolving life history trait, which can be affected by parent–offspring interactions. This coevolutionary feedback between life history and family interactions may influence the evolutionary process and outcome of parent–offspring coadaptation. We used a genetic framework for a simulation model where we allowed parental parity to coevolve with traits that determine parental investment. The model included unlinked loci for clutch size, parental sensitivity, baseline provisioning, and offspring begging. The simulation showed that tight coadaptation of parent and offspring traits only occurred in iteroparous outcomes whereas semelparous outcomes were characterized by weak coadaptation. When genetic variation in clutch size was unrestricted in the ancestral population, semelparity and maximal begging with poor coadaptation evolved throughout. Conversely, when genetic variation was limited to iteroparous conditions, and/or when parental sensitivity was treated as an evolutionarily fixed sensory bias, coadapted outcomes were more likely. Our findings show the influence of a feedback between parity, coadaptation, and conflict on the evolution of parent–offspring interactions.  相似文献   

3.

Background

In species across taxa, offspring have means to influence parental investment (PI). PI thus evolves as an interacting phenotype and indirect genetic effects may strongly affect the co-evolutionary dynamics of offspring and parental behaviors. Evolutionary theory focused on explaining how exaggerated offspring solicitation can be understood as resolution of parent-offspring conflict, but the evolutionary origin and diversification of different forms of family interactions remains unclear.

Methodology/Principal Findings

In contrast to previous theory that largely uses a static approach to predict how “offspring individuals” and “parental individuals” should interact given conflict over PI, we present a dynamic theoretical framework of antagonistic selection on the PI individuals obtain/take as offspring and the PI they provide as parents to maximize individual lifetime reproductive success; we analyze a deterministic and a stochastic version of this dynamic framework. We show that a zone for equivalent co-adaptation outcomes exists in which stable levels of PI can evolve and be maintained despite fast strategy transitions and ongoing co-evolutionary dynamics. Under antagonistic co-adaptation, cost-free solicitation can evolve as an adaptation to emerging preferences in parents.

Conclusions/Significance

We show that antagonistic selection across the offspring and parental life-stage of individuals favors co-adapted offspring and parental behavior within a zone of equivalent outcomes. This antagonistic parent-offspring co-adaptation does not require solicitation to be costly, allows for rapid divergence and evolutionary novelty and potentially explains the origin and diversification of the observed provisioning forms in family life.  相似文献   

4.
The family is an arena for conflicts between offspring, mothers and fathers that need resolving to promote the evolution of parental care and the maintenance of family life. Co-adaptation is known to contribute to the resolution of parent-offspring conflict over parental care by selecting for combinations of offspring demand and parental supply that match to maximize the fitness of family members. However, multiple paternity and differences in the level of care provided by mothers and fathers can generate antagonistic selection on offspring demand (mediated, for example, by genomic imprinting) and possibly hamper co-adaptation. While parent-offspring co-adaptation and parental antagonism are commonly considered two major processes in the evolution of family life, their co-occurrence and the evolutionary consequences of their joint action are poorly understood. Here, we demonstrate the simultaneous and entangled effects of these two processes on outcomes of family interactions, using a series of breeding experiments in the European earwig, Forficula auricularia, an insect species with uniparental female care. As predicted from parental antagonism, we show that paternally inherited effects expressed in offspring influence both maternal care and maternal investment in future reproduction. However, and as expected from the entangled effects of parental antagonism and co-adaptation, these effects critically depended on postnatal interactions with caring females and maternally inherited effects expressed in offspring. Our results demonstrate that parent-offspring co-adaptation and parental antagonism are entangled key drivers in the evolution of family life that cannot be fully understood in isolation.  相似文献   

5.
Very few studies have examined parent-offspring interactions from a quantitative genetic perspective. We used a cross-fostering design and measured genetic correlations and components of social selection arising from two parental and two offspring behaviors in the burying beetle Nicrophorus vespilloides. Genetic correlations were assessed by examining behavior of relatives independent of common social influences. We found positive genetic correlations between all pairs of behaviors, including between parent and offspring behaviors. Patterns of selection were assessed by standardized performance and selection gradients. Parental provisioning had positive effects on offspring performance and fitness, while remaining near the larvae without feeding them had negative effects. Begging had positive effects on offspring performance and fitness, while increased competition among siblings had negative effects. Coadaptations between parenting and offspring behavior appear to be maintained by genetic correlations and functional trade-offs; parents that feed their offspring more also spend more time in the area where they can forage for themselves. Families with high levels of begging have high levels of sibling competition. Integrating information from genetics and selection thus provides a general explanation for why variation persists in seemingly beneficial traits expressed in parent-offspring interactions and illustrates why it is important to measure functionally related suites of behaviors.  相似文献   

6.
The coevolution of parental investment and offspring solicitation is driven by partly different evolutionary interests of genes expressed in parents and their offspring. In species with biparental care, the outcome of this conflict may be influenced by the sexual conflict over parental investment. Models for the resolution of such family conflicts have made so far untested assumptions about genetic variation and covariation in the parental resource provisioning response and the level of offspring solicitation. Using a combination of cross-fostering and begging playback experiments, we show that, in the great tit (Parus major), (i) the begging call intensity of nestlings depends on their common origin, suggesting genetic variation for this begging display, (ii) only mothers respond to begging calls by increased food provisioning, and (iii) the size of the parental response is positively related to the begging call intensity of nestlings in the maternal but not paternal line. This study indicates that genetic covariation, its differential expression in the maternal and paternal lines and/or early environmental and parental effects need to be taken into account when predicting the phenotypic outcome of the conflict over investment between genes expressed in each parent and the offspring.  相似文献   

7.
Offspring are selected to demand more resources than what is optimal for their parents to provide, which results in a complex and dynamic interplay during parental care. Parent–offspring communication often involves conspicuous begging by the offspring which triggers a parental response, typically the transfer of food. So begging and parental provisioning reciprocally influence each other and are therefore expected to coevolve. There is indeed empirical evidence for covariation of offspring begging and parental provisioning at the phenotypic level. However, whether this reflects genetic correlations of mean levels of behaviors or a covariation of the slopes of offspring demand and parental supply functions (= behavioral plasticity) is not known. The latter has gone rather unnoticed—despite the obvious dynamics of parent–offspring communication. In this study, we measured parental provisioning and begging behavior at two different hunger levels using canaries (Serinus canaria) as a model species. This enabled us to simultaneously study the plastic responses of the parents and the offspring to changes in offspring need. We first tested whether parent and offspring behaviors covary phenotypically. Then, using a covariance partitioning approach, we estimated whether the covariance predominantly occurred at a between‐nest level (i.e., indicating a fixed strategy) or at a within‐nest level (i.e., reflecting a flexible strategy). We found positive phenotypic covariation of offspring begging and parental provisioning, confirming previous evidence. Yet, this phenotypic covariation was mainly driven by a covariance at the within‐nest level. That is parental and offspring behaviors covary because of a plastic behavioral coadjustment, indicating that behavioral plasticity could be a main driver of parent–offspring coadaptation.  相似文献   

8.
Parental care involves elaborate behavioural interactions between parents and their offspring, with offspring stimulating their parents via begging to provision resources. Thus, begging has direct fitness benefits as it enhances offspring growth and survival. It is nevertheless subject to a complex evolutionary trajectory, because begging may serve as a means for the offspring to manipulate parents in the context of evolutionary conflicts of interest. Furthermore, it has been hypothesized that begging is coadapted and potentially genetically correlated with parental care traits as a result of social selection. Further experiments on the causal processes that shape the evolution of begging are therefore essential. We applied bidirectional artificial selection on begging behaviour, using canaries (Serinus canaria) as a model species. We measured the response to selection, the consequences for offspring development, changes in parental care traits, here the rate of parental provisioning, as well as the effects on reproductive success. After three generations of selection, offspring differed in begging behaviour according to our artificial selection regime: nestlings of the high begging line begged significantly more than nestlings of the low begging line. Intriguingly, begging less benefitted the nestlings, as reflected by on average significantly higher growth rates, and increased reproductive success in terms of a higher number of fledglings in the low selected line. Begging could thus represent an exaggerated trait, possibly because parent–offspring conflict enhanced the selection on begging. We did not find evidence that we co‐selected on parental provisioning, which may be due to the lack of power, but may also suggest that the evolution of begging is probably not constrained by a genetic correlation between parental provisioning and offspring begging.  相似文献   

9.
Consistent inter‐individual variation in behaviour over time and across contexts has been reported for a wide variety of animals, a phenomenon commonly referred to as personality. As behavioural patterns develop inside families, rearing conditions could have lasting effects on the expression of adult personality. In species with parental care, conflicts among family members impose selection on parental and offspring behaviour through coadaptation. Here, we argue that the interplay between the evolution of personality traits (i.e. boldness, exploration, activity, aggressiveness and sociability) expressed outside the family context and the specialized behaviours expressed inside families (i.e. offspring begging behaviour and parental response to offspring solicitations) can have important evolutionary consequences. Personality differences between parents may relate to the typically observed variation in the way they respond to offspring demand, and dependent offspring may already express personality differences, which may relate to the way they communicate with their parents and siblings. However, there has been little research on how personality relates to parental and offspring behaviours. Future research should thus focus on how and why personality may be related to the specialized parent and offspring behaviour that evolved as adaptations to family life.  相似文献   

10.
Close interactions between mother and offspring are said to result in a coevolution of parental and offspring genotypes such that offspring are adapted in their solicitation behaviour to obtain maternal provisioning that maximizes their fitness. Few empirical studies have been conducted in this field and it remains unclear whether maternal provisioning and offspring weight gain are influenced by the same set of maternal and offspring phenotypic and genotypic factors. Using a cross-foster, split-litter design in mice, we found that overall maternal provisioning and offspring weight gain are significantly correlated but are affected by a different set of parameters, except for the effect of maternal bodyweight. While the level of maternal provisioning was influenced by both offspring and foster mother genotype, offspring weight gain was only affected by the number of males in the mixed litter. We suggest that this disparity may hint at the inefficiency of offspring solicitation behaviour or effects of sibling competition.  相似文献   

11.
The evolution of the complex and dynamic behavioural interactions between caring parents and their dependent offspring is a major area of research in behavioural ecology and quantitative genetics. While behavioural ecologists examine the evolution of interactions between parents and offspring in the light of parent-offspring conflict and its resolution, quantitative geneticists explore the evolution of such interactions in the light of parent-offspring co-adaptation due to combined effects of parental and offspring behaviours on fitness. To date, there is little interaction or integration between these two fields. Here, we first review the merits and limitations of each of these two approaches and show that they provide important complementary insights into the evolution of strategies for offspring begging and parental resource provisioning. We then outline how central ideas from behavioural ecology and quantitative genetics can be combined within a framework based on the concept of behavioural reaction norms, which provides a common basis for behavioural ecologists and quantitative geneticists to study the evolution of parent-offspring interactions. Finally, we discuss how the behavioural reaction norm approach can be used to advance our understanding of parent-offspring conflict by combining information about the genetic basis of traits from quantitative genetics with key insights regarding the adaptive function and dynamic nature of parental and offspring behaviours from behavioural ecology.  相似文献   

12.
Conflicts over the delivery and sharing of food among family members are expected to lead to evolution of exaggerated offspring begging for food. Coevolution between offspring begging intensity and parent response depends on the genetic architecture of the traits involved. Given a genetic correlation between offspring begging intensity and parental response, there may be fast and arbitrary divergence in these behaviours between populations. However, there is limited knowledge about the genetic basis of offspring solicitation and parental response and whether these traits are genetically correlated. In this study, we performed a partial cross-fostering experiment of young between pied and collared flycatchers (Ficedula hypoleuca and Ficedula albicollis) and recorded the behaviour of individual offspring and their (foster)parents. We found that nestling collared flycatchers reached a higher phenotypic quality, estimated both as mass at fledging and as intensity of their T-lymphocyte-mediated immune response when raised by heterospecific foster parents. However, although collared flycatchers begged relatively more intensively, we found no evidence of corresponding higher resistance (i.e. lower feeding rate) of adult collared flycatchers than of adult pied flycatchers. Thus, the difference in offspring begging intensity between the two species seems not to be a result of a difference in escalation of the parent-offspring conflict. Instead, the species' divergence in exaggeration of offspring begging intensity 'honestly' matches a difference between the species in offspring need. This interpretation is strengthened by the fact that the difference in begging intensity between the two species increased as the season progressed, coinciding with the higher sensitivity of nestling collared flycatchers to the seasonal decline in food availability. Thus, the behavioural differentiation appears to be a direct consequence of a life-history differentiation (offspring growth patterns).  相似文献   

13.
Subsocial burrower bugs (Heteroptera: Cydnidae) provide unique opportunities to investigate evolutionary ecological questions regarding parental provisioning and family dynamics. Observations and marked nutlet‐setting experiments in the field showed that Adomerus triguttulus females progressively delivered mint nutlets into nests harbouring nymphs under the litter. More than one female often attended nymphs, but not eggs, in a nest in the field. The number of nymphs aggregating in a nest with a single female was usually smaller than that in a nest with two females, suggesting the joining of different families and facultative joint parental care. There was a positive correlation between the number of nutlets delivered and the number of nymphs in a nest. The number of attendant females also affected the amount of provisioning; more nutlets were found for second‐instar broods with more females. The effect of brood size on provisioning was confirmed for families under laboratory rearing. Maternal provisioning also varied with the developmental stage of offspring; second‐instar broods received more nutlets than first‐instar broods, with a temporal decrease in provisioning during the moulting of nymphs. Considering the growing evidence of food solicitation signals of young in subsocial insects, the observed finely tuned supply of food by the female could be induced by begging signals from the nymphs.  相似文献   

14.
Tschirren B  Fitze PS  Richner H 《Oecologia》2005,143(3):477-482
While elaborate carotenoid-based traits in adult birds may have evolved as honest signals of individual quality in the context of sexual selection or other social interactions, the function of carotenoid-based colours in juveniles is less well understood. We investigated the hypothesis that carotenoid-based nestling colouration has evolved in response to parental preference of intensely coloured offspring during food provisioning. In a field experiment, we manipulated nestling plumage colouration by a carotenoid-supplementation and analysed the parental food provisioning behaviour before feather appearance and at the end of the nestling stage. Carotenoids per se did not influence the nestlings begging behaviour or parental feeding decisions and we found no evidence that carotenoid-based colouration in nestling great tits has a signalling function in parent-offspring interactions. Parents did not discriminate between intensely coloured and control offspring in their food provisioning and in accordance with this finding intensely coloured nestlings were not heavier or larger at the end of the nestling stage. Alternative explanations for the evolution of carotenoid-based colours in nestling birds are discussed.  相似文献   

15.
Cryptic genetic variation plays an important role in the emergence of disease and evolutionary responses to environmental change. Focusing on parental care behavior, we discuss three mechanisms by which behavior can affect the accumulation and release of cryptic genetic variation. We illustrate how these hypotheses might be tested with preliminary data from Onthophagus dung beetles, which provide indirect parental care by provisioning their offspring with dung and sheltering them underground. The environmental stress hypothesis states that parental care reduces selection intensity on novel mutations when increased parental care results in a less stressful offspring environment. A review of recent literature, coupled with an irradiation experiment in beetles, suggests this mechanism may operate in some situations, but depends on the types of mutations under consideration. The relaxed selection hypothesis states that genes expressed in low care environments should be under weakened selection because their phenotypic manifestations are exposed to selection less frequently, and thus are prone to mutation accumulation. If parental care is reduced, for instance due to population-wide environmental changes, such cryptic variation may exert phenotypic effects, becoming exposed to selection. There is substantial theory in support of this hypothesis, and comparisons between beetle populations that differ in parental care behavior further support this idea. Finally, the compensation hypothesis states that organisms with direct parental care may be able to respond to cues or signals from offspring and compensate for genetic variants. We highlight the extensive discussion of this hypothesis with respect to medical care and genetic load in humans and explore invertebrate systems that may constitute powerful models for further inquiry. In summary, several mechanisms exist by which care behavior may shape the accumulation and release of cryptic genetic variation, thereby affecting the potential emergence of diseases and the rate and direction of evolutionary responses to novel environments.  相似文献   

16.
Parental food provisioning and offspring begging influence each other reciprocally. This makes both traits agents and targets of selection, which may ultimately lead to co‐adaptation. The latter may reflect co‐adapted parent and offspring genotypes or could be due to maternal effects. Maternal effects are in turn likely to facilitate in particular mother‐offspring co‐adaptation, further emphasized by the possibility that mothers are sometimes found to be more responsive to offspring need. However, parents may not only differ in their sensitivity, but often play different roles in postnatal care. This potentially impinges on the access to information about offspring need. We here manipulated the information on offspring need as perceived by parents by playing back begging calls at a constant frequency in the nest‐box of blue tits (Cyanistes caeruleus). We measured the parental response in provisioning to our treatment, paying particular attention to sex differences in parental roles and whether such differences alter the perception of the intensity of our manipulation. This enabled us to investigate whether an information asymmetry about offspring need exists between parents and how such an asymmetry relates to co‐adaptation between parental provisioning and offspring begging. Our results show that parents indeed differed in the frequency how often they perceived the playback due to the fact that females spent more time with their offspring in the nest box. Correcting for the effective exposure of an adult to the playback, the parental response in provisioning covaried more strongly (positive) with offspring begging intensity, independent of the parental sex, indicating coadaptation on the phenotypic level. Females were not more sensitive to experimentally increased offspring need than males, but they were exposed to more broadcasted begging calls. Therefore, sex differences in access to information about offspring need, due to different parental roles, have the potential to impinge on family conflicts and their resolution.  相似文献   

17.
Heritability of parental effort in a passerine bird   总被引:4,自引:0,他引:4  
Abstract The study of the evolution of parental care is central to our understanding of social systems, sexual selection, and interindividual conflict, yet we know virtually nothing about the genetic architecture of parental care traits in natural populations. In this paper, we use data from a long term field study of a passerine bird, the long-tailed tit ( Aegithalos caudatus ), to examine the heritability of the rate at which parents feed offspring. This measure of effort is positively related to offspring survival, is repeatable within individuals, and does not appear to be confounded by environmental effects. Using both parent-offspring regression, and an animal model approach, with a pedigree derived from ringing data, we show that our measure of effort has a significant heritable component.  相似文献   

18.
In mammals, altricial birds and some invertebrates, parents care for their offspring by providing them with food and protection until independence. Although parental food provisioning is often essential for offspring survival and growth, very little is known about the conditions favouring the evolutionary innovation of this key component of care. Here, we develop a mathematical model for the evolution of parental food provisioning. We find that this evolutionary innovation is favoured when the efficiency of parental food provisioning is high relative to the efficiency of offspring self-feeding and/or parental guarding. We also explore the coevolution between food provisioning and other components of parental care, as well as offspring behaviour. We find that the evolution of food provisioning prompts evolutionary changes in other components of care by allowing parents to choose safer nest sites, and that it promotes the evolution of sibling competition, which in turn further drives the evolution of parental food provisioning. This mutual reinforcement of parental care and sibling competition suggests that evolution of parental food provisioning should show a unidirectional trend from no parental food provisioning to full parental food provisioning.  相似文献   

19.
The pattern of parental investment (PI) seen in nature is a product of the simultaneous resolution of conflicts of interest between the members of a family. How these conflicts are resolved depends upon the mating system, the genetic mechanism, on whether extra PI affects current or future offspring, and the behavioural mechanisms underlying supply and demand of PI. Until recently very little empirical work has been done to underpin these key determinants of conflict resolution. This review examines recent empirical progress in understanding both (1) how conflict is resolved and (2) its evolutionary consequences. How offspring demand interacts with parental supply of resources determines how conflict is resolved. Two extremes are: passive parental choice of competing offspring, relating to offspring control of resource allocation, and active parental choice relating to parental control. Although most previous empirical work has tended to conclude or assume that parents primarily control resource allocation decisions, recent studies explicitly examining predictions from theoretical analyses have shown that offspring control of resource allocation is more important than previously realised. The amount of PI supplied at resolution depends not on who controls food allocation, however, but on the nature of the supply and demand mechanisms. These have yet to be established experimentally, but a recent regression model illustrates how this could be achieved in the field. Determination of the effect of supply on demand (ESD) and the effect of demand on supply (EDS) mechanisms is critical to parent–offspring conflict theory, which has not been adequately tested empirically. There is an underlying, and until recently untested, assumption of models of intrafamilial conflict that there is genetic variation for both offspring demand and parental supply behaviours, so that the behaviours can coevolve. Recent studies on great tits, burrower bugs and mice all found evidence for genetic variation in supply and demand behaviours, but the predicted negative correlation between genes expressed in mothers and their offspring (i.e. parent–offspring coevolution), was found only for burrower bugs. The lack of a negative relationship for great tits and mice may have been a consequence of antagonistic coevolution between the sexes (sexual conflict). These studies illustrate the importance of the underlying genetics and mating system in determining conflict resolution, and point to the need for new models (especially of interbrood competition) taking differences in the genetics and the co-evolution of the ESD and EDS mechanisms into account. We also discuss the importance of the comparative approach in determining evolutionary consequences of conflicts, and use the recent work on growth costs of begging to illustrate the difficulties of measuring costs of conflict in an evolutionary currency. The recent growth in empirical work on conflicts in families illustrates an increasing, and increasingly productive, integration between theoreticians and empiricists.  相似文献   

20.
We have earlier analysed ESSs for the amount of parental investment (PI) that offspring are expected to solicit from their parents, given that parents acquiesce to offspring demands. The present paper considers evolutionary retaliation by the parent for species where only one parent provides PI. Two genetic loci are envisaged: one (the ‘conflictor’ locus) determines the extent of offspring solicitation; the other (the ‘suppressor’ locus) determines how parents retaliate. Solicitation is assumed to carry a cost which may affect a particular offspring uniquely if time and energy are the major costs, or may affect all offspring in a brood equally if the main cost is predation risk. Two kinds of parental retaliation are possible. Parents may supply PI in proportion to offspring demands, or may ignore solicitation altogether and give a fixed PI. Analytical models of conflict in which the parent supplies PI in proportion to solicitation yield pure ESSs with PI at a compromise level between parent and offspring interests. These are termed ‘pro rata’ ESSs. Where solicitation costs are high, an ‘offspring wins’ ESS (offspring get all they ‘want’) is possible especially for forms of conflict that affect future sibs, and a ‘parent wins’ ESS (parent supplies its optimum) is possible especially for conflict that affects contemporary sibs. When parental retaliation takes the form of ignoring offspring solicitation, this can lead to a ‘parent wins’ ESS if costs of ignoring solicitation are negligible, but where parental insensitivity carries costs, the result is an unresolvable evolutionary chase with cycling frequencies of alleles coding for parent and offspring strategies. ‘Pro rata’ ESSs cannot be invaded by ‘ignore solicitation’ mutants but ‘pro rata’ mutants can often invade at certain stages in ‘ignore solicitation’ limit cycles. We therefore conclude that the probable evolutionary end product for most species will be the ‘pro rata’ ESS in which the parent supplies more PI than would be optimal in the absence of conflict, but less PI than would be an ESS for the offspring in the absence of parental retaliation. Such ESSs will be characterized by solicitation costs; offspring will ‘ask’ for more PI than they get. In nature, under similar conditions, highest conflict will occur when both parents sustain equally the effects of conflict, or when conflict affects contemporary rather than future sibs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号