首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many animal species across different taxa change their habitat during their development. An ontogenetic habitat shift enables the development of early vulnerable-to-predation stages in a safe “nursery” habitat with reduced predation mortality, whereas less vulnerable stages can exploit a more risky, rich feeding habitat. Therefore, the timing of the habitat shift is crucial for individual fitness. We investigate the effect that size selectivity in mortality in the rich feeding habitat has on the optimal body size at which to shift between habitats using a population model that incorporates density dependence. We show that when mortality risk is more size dependent, it is optimal to switch to the risky habitat at a smaller rather than larger body size, despite that individuals can avoid mortality by staying longer in the nursery habitat and growing to safety in size. When size selectivity in mortality is high, large reproducing individuals are abundant and produce numerous offspring that strongly compete in the nursery habitat. A smaller body size at habitat shift is therefore favored because strong competition reduces growth potential. Our results reveal the interdependence among population structure, density dependence, and life history traits, and highlight the need for integrating ecological feedbacks in the study of life history evolution.  相似文献   

2.
Parents can influence the phenotype of their offspring through various mechanisms, besides the direct effect of heredity. Such parental effects are little explored in parasitic organisms, perhaps because in many parasites, per capita investment into offspring is low. I investigated whether parental identity, beyond direct genetic effects, could explain variation in the performance of the tapeworm Schistocephalus solidus in its first intermediate host, a copepod. I first determined that two breeding worms could be separated from one another after ~48 h of in vitro incubation and that the isolated worms continued producing outcrossed eggs, that is, rates self‐fertilization did not increase after separation. Thus, from a breeding pair, two sets of genetically comparable eggs can be collected that have unambiguous parental identities. In an infection experiment, I found that the development of larval worms tended to vary between the two parental worms within breeding pairs, but infection success and growth rate in copepods did not. Accounting for this parental effect decreased the estimated heritability for development by nearly half. These results suggest that larval performance is not simply a function of a worm's genotype; who mothered or fathered an offspring can also affect offspring fitness, contradicting the perhaps naïve idea that parasites simply produce large quantities of uniformly low‐quality offspring.  相似文献   

3.
Since Smith and Fretwell's seminal article in 1974 on the optimal offspring size, most theory has assumed a trade-off between offspring number and offspring fitness, where larger offspring have better survival or fitness, but with diminishing returns. In this article, we use two ubiquitous biological mechanisms to derive the shape of this trade-off: the offspring's growth rate combined with its size-dependent mortality (predation). For a large parameter region, we obtain the same sigmoid relationship between offspring size and offspring survival as Smith and Fretwell, but we also identify parameter regions where the optimal offspring size is as small or as large as possible. With increasing growth rate, the optimal offspring size is smaller. We then integrate our model with strategies of parental care. Egg guarding that reduces egg mortality favors smaller or larger offspring, depending on how mortality scales with size. For live-bearers, the survival of offspring to birth is a function of maternal survival; if the mother's survival increases with her size, then the model predicts that larger mothers should produce larger offspring. When using parameters for Trinidadian guppies Poecilia reticulata, differences in both growth and size-dependent predation are required to predict observed differences in offspring size between wild populations from high- and low-predation environments.  相似文献   

4.
Predation risk has the ability to greatly influence the behaviour of reproducing individuals. In large long-lived species with low risk of predation for parents, reproductive behaviours often involve caring for offspring (i.e. defending broods from predators) and these behaviours are essential for offspring survival. Our objectives were to test for the presence of natural variation in nest predation pressure in an aquatic environment for a species that provides sole-paternal care, smallmouth bass ( Micropterus dolomieu ), and to determine if natural variation in predation pressure influences parental care behaviour. We used snorkeler observations and a series of metrics to assess predation pressure and parental care behaviour in six lakes within a narrow geographical range. Lakes differed in all predation pressure metrics: number of predators in proximity to nest when males were present, time to predator arrival and number of predators that consumed eggs when males were absent and total number of nests that was preyed upon. Similarly, parental behaviour varied between lakes. Parental smallmouth bass spent more time engaged in anti-predator defences in lakes with high predation pressure, while males from low predator pressure lakes remained close to their nest. Conversely, males from lakes with low and high predation pressure showed a similar willingness to defend their nests during simulated nest predation events. Our results show that natural variation in aquatic nest predation pressure across multiple lakes can be significant and has the ability to influence baseline parental care behaviour. Such variation provides opportunities to study the costs and consequences of parental care and to evaluate how this could influence demography and community interactions in aquatic systems.  相似文献   

5.
Sublethal effects of predation constitute an important part of predation effects, which may modulate prey population and community dynamics. In birds, the risk of nest predation may cause a reduction in parental activity in the care of offspring to reduce the chance of being detected by predators. In addition, parents may modify their parental food allocation preferences within the brood in response to predation risk. Our aim in this study was to evaluate the effects of risk of nest predation on parental care and within‐nest food allocation in the European Roller (Coracias garrulus), an asynchronously hatching bird. We manipulated brood predation risk by placing a snake model near the nests that simulates the most common nest predator in the Mediterranean region. Our results show that males but not females increased their provisioning rate when they were exposed to the model and that despite this, nestlings’ body mass decreased in response to this temporary increase in predation risk. We did not find evidence that parents changed their food allocation strategy towards senior or junior nestlings in their nests in response to predation risk. These results show that the European roller modifies parental care in response to their perception of predation risk in the nest and a sex‐specific sensitivity to the threat, which suggests a different perception of offspring reproductive value by parents. Finally, our results show that changes in parental behaviour in response to nest predation risk might have consequences for nestling fitness prospects.  相似文献   

6.
The perception of predation risk could affect prey phenotype both within and between generations (via parental effects). The response to predation risk could involve modifications in physiology, morphology, and behavior and can ultimately affect long‐term fitness. Among the possible modifications mediated by the exposure to predation risk, telomere length could be a proxy for investigating the response to predation risk both within and between generations, as telomeres can be significantly affected by environmental stress. Maternal exposure to the perception of predation risk can affect a variety of offspring traits but the effect on offspring telomere length has never been experimentally tested. Using a live‐bearing fish, the guppy (Poecilia reticulata), we tested if the perceived risk of predation could affect the telomere length of adult females directly and that of their offspring with a balanced experimental setup that allowed us to control for both maternal and paternal contribution. We exposed female guppies to the perception of predation risk during gestation using a combination of both visual and chemical cues and we then measured female telomere length after the exposure period. Maternal effects mediated by the exposure to predation risk were measured on offspring telomere length and body size at birth. Contrary to our predictions, we did not find a significant effect of predation‐exposure neither on female nor on offspring telomere length, but females exposed to predation risk produced smaller offspring at birth. We discuss the possible explanations for our findings and advocate for further research on telomere dynamics in ectotherms.  相似文献   

7.
ABSTRACT The effects of colony size on individual fitness and its components were investigated in artificially established and natural colonies of the social spider Anelosimus eximius (Araneae: Theridiidae). In the tropical rain forest understory at a site in eastern Ecuador, females in colonies containing between 23-107 females had india significantly higher lifetime reproductive success than females in smaller colonies. Among larger colonies, this trend apparently reversed. This overall fitness function was a result of the conflicting effects of colony size on different components of fitness. In particular, the probability of offspring survival to maturity increased with colony size while the probability of a female reproducing within the colonies decreased with colony size. Average clutch size increased with colony size when few or no wasp parasitoids were present in the egg sacs. With a high incidence of egg sac parasitoids, this effect disappeared because larger colonies were more likely to be infected. The product of the three fitness components measured-probability of female reproduction, average clutch size, and offspring survival-produced a function that is consistent with direct estimates of the average female lifetime reproductive success obtained by dividing the total number of offspring maturing in a colony by the number of females in the parental generation. Selection, therefore, should favor group living and itermediate colony sizes in this social spider.  相似文献   

8.
1. Adaptive maternal programming occurs when mothers alter their offspring's phenotype in response to environmental information such that it improves offspring fitness. When a mother's environment is predictive of the conditions her offspring are likely to encounter, such transgenerational plasticity enables offspring to be better-prepared for this particular environment. However, maternal effects can also have deleterious effects on fitness.2. Here, we test whether female threespined stickleback fish exposed to predation risk adaptively prepare their offspring to cope with predators. We either exposed gravid females to a model predator or not, and compared their offspring's antipredator behaviour and survival when alone with a live predator. Importantly, we measured offspring behaviour and survival in the face of the same type of predator that threatened their mothers (Northern pike).3. We did not find evidence for adaptive maternal programming; offspring of predator-exposed mothers were less likely to orient to the predator than offspring from unexposed mothers. In our predation assay, orienting to the predator was an effective antipredator behaviour and those that oriented, survived for longer.4. In addition, offspring from predator-exposed mothers were caught more quickly by the predator on average than offspring from unexposed mothers. The difference in antipredator behaviour between the maternal predator-exposure treatments offers a potential behavioural mechanism contributing to the difference in survival between maternal treatments.5. However, the strength and direction of the maternal effect on offspring survival depended on offspring size. Specifically, the larger the offspring from predator-exposed mothers, the more vulnerable they were to predation compared to offspring from unexposed mothers.6. Our results suggest that the predation risk perceived by mothers can have long-term behavioural and fitness consequences for offspring in response to the same predator. These stress-mediated maternal effects can have nonadaptive consequences for offspring when they find themselves alone with a predator. In addition, complex interactions between such maternal effects and offspring traits such as size can influence our conclusions about the adaptive nature of maternal effects.  相似文献   

9.
Most theoretical treatments of the evolutionary ecology of offspring size assume a simple and direct effect of investment per offspring on offspring fitness. In this paper I experimentally determine the relationship between seed mass and several main fitness components of the oak Quercus ilex, to estimate phenotypic selection acting on seed mass during the early life cycle and to discover any potential selective conflicts occurring between different stages from dispersal to establishment. I found a positive effect of acorn size on most fitness components related to seedling establishment. Large size increased germination rate and seedling survival, accelerated germination timing, and enhanced seedling growth. Nevertheless, there was also a direct negative effect of acorn size on survival to predation, because large acorns were highly preferred by the main postdispersal seed predators at the study site, wild boars and wood mice. Because of the low probability of escape from predation, the fitness of large acorns estimated on this component was significantly lower than the fitness of smaller acorns. Therefore, seed size affected fitness in two different ways, yielding opposing and conflicting selective forces. These findings suggest that the general assumption that offspring fitness is a fixed positive function of seed size needs to be reconsidered for some systems. The existence of conflicting selection might explain the occurrence of an optimal seed size in some plant species without invoking a seed number-size trade-off.  相似文献   

10.
Inbreeding depression occurs when individuals who are closely related mate and produce offspring with reduced fitness. Although inbreeding depression is a genetic phenomenon, the magnitude of inbreeding depression can be influenced by environmental conditions and parental effects. In this study, we tested whether size-based parental effects influence the magnitude of inbreeding depression in an insect with elaborate and obligate parental care (the burying beetle, Nicrophorus orbicollis). We found that larger parents produced larger offspring. However, larval mass was also influenced by the interaction between parental body size and larval inbreeding status: when parents were small, inbred larvae were smaller than outbred larvae, but when parents were large this pattern was reversed. In contrast, survival from larval dispersal to adult emergence showed inbreeding depression that was unaffected by parental body size. Our results suggest that size-based parental effects can generate variation in the magnitude of inbreeding depression. Further work is needed to dissect the mechanisms through which this might occur and to better understand why parental size influences inbreeding depression in some traits but not others.  相似文献   

11.
Life-history theory predicts that parents produce the number of offspring that maximizes their fitness. In birds, natural selection on parental decisions regarding clutch size may act during egg laying, incubation or nestling phase. To study the fitness consequences of clutch size during the incubation phase, we manipulated the clutch sizes during this phase only in three breeding seasons and measured the fitness consequences on the short and the long term. Clutch enlargement did not affect the offspring fitness of the manipulated first clutches, but fledging probability of the subsequent clutch in the same season was reduced. Parents incubating enlarged first clutches provided adequate care for the offspring of their first clutches during the nestling phase, but paid the price when caring for the offspring of their second clutch. Parents that incubated enlarged first clutches had lower local survival in the 2 years when the population had a relatively high production of second clutches, but not in the third year when there was a very low production of second clutches. During these 2 years, the costs of incubation were strong enough to change positive selection, as established by brood size manipulations in this study population, into stabilizing selection through the negative effect of incubation on parental fitness.  相似文献   

12.
Geographical variation in offspring size effects across generations   总被引:2,自引:0,他引:2  
Dustin J. Marshall 《Oikos》2005,108(3):602-608
Offspring size is thought to strongly affect offspring fitness and many studies have shown strong offspring size/fitness relationships in marine and terrestrial organisms. This relationship is strongly mitigated by local environmental conditions and the optimal offspring size that mothers should produce will vary among different environments. It is assumed that offspring size will consistently affect the same traits among populations but this assumption has not been tested. Here I use a common garden experiment to examine the effects of offspring size on subsequent performance for the marine bryozoan Bugula neritina using larvae from two very different populations. The local conditions at one population (Williamstown) favour early reproduction whereas the other population (Pt. Wilson) favours early growth. Despite being placed in the same habitat, the effects of parental larval size were extremely variable and crossed generations. For larvae from Williamstown, parental larval size positively affected initial colony growth and larval size in the next generation. For larvae from the other population, parental larval size positively affected colony fecundity and negatively affected larval size in the next generation. Traditionally, exogenous factors have been viewed as the sole source of variation in offspring size/fitness relationship but these results show that endogenous factors (maternal source population) can also cause variation in this crucial relationship. It appears offspring size effects can be highly variable among populations and organisms can adapt to local conditions without changing the size of their offspring.  相似文献   

13.
Parents can increase the fitness of their offspring by allocating nutrients to eggs and/or providing care for eggs and offspring. Although we have a good understanding of the adaptive significance of both egg size and parental care, remarkably little is known about the co-evolution of these two mechanisms for increasing offspring fitness. Here, we report a parental removal experiment on the burying beetle Nicrophorus vespilloides in which we test whether post-hatching parental care masks the effect of egg size on offspring fitness. As predicted, we found that the parent's presence or absence had a strong main effect on larval body mass, whereas there was no detectable effect of egg size. Furthermore, egg size had a strong and positive effect on offspring body mass in the parent's absence, whereas it had no effect on offspring body mass in the parent's presence. These results support the suggestion that the stronger effect of post-hatching parental care on offspring growth masks the weaker effect of egg size. We found no correlation between the number and size of eggs. However, there was a negative correlation between larval body mass and brood size in the parent's presence, but not in its absence. These findings suggest that the trade-off between number and size of offspring is shifted from the egg stage towards the end of the parental care period and that post-hatching parental care somehow moderates this trade-off.  相似文献   

14.
Reproductive senescence is the decrease of reproductive performance with increasing age and can potentially include trans‐generational effects as the offspring produced by old parents might have a lower fitness than those produced by young parents. This negative effect may be caused either by the age of the father, mother or the interaction between the ages of both parents. Using the common woodlouse Armadillidium vulgare, an indeterminate grower, as a biological model, we tested for the existence of a deleterious effect of parental age on fitness components. Contrary to previous findings reported from vertebrate studies, old parents produced both a higher number and larger offspring than young parents. However, their offspring had lower fitness components (by surviving less, producing a smaller number of clutches or not reproducing at all) than offspring born to young parents. Our findings strongly support the existence of trans‐generational senescence in woodlice and contradict the belief that old individuals in indeterminate growers contribute the most to recruitment and correspond thereby to the key life stage for population dynamics. Our work also provides rare evidence that the trans‐generational effect of senescence can be stronger than direct reproductive senescence in indeterminate growers.  相似文献   

15.
Life-history theory predicts that older females will increase reproductive effort through increased fecundity. Unless offspring survival is density dependent or female size constrains offspring size, theory does not predict variation in offspring size. However, empirical data suggest that females of differing age or condition produce offspring of different sizes. We used a dynamic state-variable model to determine when variable offspring sizes can be explained by an interaction between female age, female state and survival costs of reproduction. We found that when costs depend on fecundity, young females with surplus state increase offspring size and reduce number to minimize fitness penalties. When costs depend on total reproductive effort, only older females increase offspring size. Young females produce small offspring, because decreasing offspring size is less expensive than number, as fitness from offspring investment is nonlinear. Finally, allocation patterns are relatively stable when older females are better at acquiring food and are therefore in better condition. Our approach revealed an interaction between female state, age and survival costs, providing a novel explanation for observed variation in reproductive traits.  相似文献   

16.
Rollinson N  Hutchings JA 《Oecologia》2011,166(4):889-898
Positive associations between maternal investment per offspring and maternal body size have been explained as adaptive responses by females to predictable, body size-specific maternal influences on the offspring’s environment. As a larger per-offspring investment increases maternal fitness when the quality of the offspring environment is low, optimal egg size may increase with maternal body size if larger mothers create relatively poor environments for their eggs or offspring. Here, we manipulate egg size and rearing environments (gravel size, nest depth) of Atlantic salmon (Salmo salar) in a 2 × 2 × 2 factorial experiment. We find that the incubation environment typical of large and small mothers can exert predictable effects on offspring phenotypes, but the nature of these effects provides little support to the prediction that smaller eggs are better suited to nest environments created by smaller females (and vice versa). Our data indicate that the magnitude and direction of phenotypic differences between small and large offspring vary among maternal nest environments, underscoring the point that removal of offspring from the environmental context in which they are provisioned in the wild can bias experimentally derived associations between offspring size and metrics of offspring fitness. The present study also contributes to a growing literature which suggests that the fitness consequences of egg size variation are often more pronounced during the early juvenile stage, as opposed to the egg or larval stage.  相似文献   

17.
Reproductive environments are variable and the resources available for reproduction are finite. If reliable cues about the environment exist, mothers can alter offspring phenotype in a way that increases both offspring and maternal fitness (‘anticipatory maternal effects’—AMEs). Strategic use of AMEs is likely to be important in chemically defended species, where the risk of offspring predation may be modulated by maternal investment in offspring toxin level, albeit at some cost to mothers. Whether mothers adjust offspring toxin levels in response to variation in predation risk is, however, unknown, but is likely to be important when assessing the response of chemically defended species to the recent and pervasive changes in the global predator landscape, driven by the spread of invasive species. Using the chemically defended two-spot ladybird, Adalia bipunctata, we investigated reproductive investment, including egg toxin level, under conditions that varied in the degree of simulated offspring predation risk from larval harlequin ladybirds, Harmonia axyridis. H. axyridis is a highly voracious alien invasive species in the UK and a significant intraguild predator of A. bipunctata. Females laid fewer, larger egg clusters, under conditions of simulated predation risk (P+) than when predator cues were absent (P-), but there was no difference in toxin level between the two treatments. Among P- females, when mean cluster size increased there were concomitant increases in both the mass and toxin concentration of eggs, however when P+ females increased cluster size there was no corresponding increase in egg toxin level. We conclude that, in the face of offspring predation risk, females either withheld toxins or were physiologically constrained, leading to a trade-off between cluster size and egg toxin level. Our results provide the first demonstration that the risk of offspring predation by a novel invasive predator can influence maternal investment in toxins within their offspring.  相似文献   

18.
Parasites can cause a broad range of sublethal fitness effects across a wide variety of host taxa. However, a host’s efforts to compensate for possible parasite-induced fitness effects are less well-known. Parental effects may beneficially alter the offspring phenotype if parental environments sufficiently predict the offspring environment. Parasitism is a common stressor across generations; therefore, parental infestation could reliably predict the likelihood of infestation for offspring. However, little is known about relationships between parasitism and transgenerational phenotypic plasticity. Thus, we investigated how maternal and grandmaternal infestation with fleas (Xenopsylla ramesis) affected offspring quality and quantity in a desert rodent (Meriones crassus). We used a fully-crossed design with control and infested treatments to examine litter size, pup body mass at birth, and pup mass gain before weaning for combinations of maternal and grandmaternal infestation status. No effect of treatment on litter size or pup body mass at birth was found. However, maternal and grandmaternal infestation status significantly affected pre-weaning body mass gain, a proxy for the rate of maturation, in male pups. Pups gained significantly more weight before weaning if maternal and grandmaternal infestation statuses matched, regardless of the treatment. Thus, pups whose mothers and grandmothers experienced similar risks of parasitism, either both non-parasitized or both infested, would reach sexual maturity more quickly than those pups whose mothers’ infestation status did not match that of their grandmothers. These results support the contention that parents can receive external cues such as the risk of parasitism, that prompt them to alter offspring provisioning. Therefore, parasites could be a mediator of environmentally-induced maternal effects and could affect host reproductive fitness across multiple generations.  相似文献   

19.
The Allee effect, a reduction of individual fitness at low population density that can lead to sudden and unannounced extinctions, has been shown to come about through a number of mechanisms, usually associated with group behavior or mate search. Recent papers show that it may arise through size-selective predation, without explicit assumptions relating individual fitness to population density. It arises from the shift that a predator induces in the population stage distribution of its prey. We study the parameter conditions that lead to such an emergent Allee effect. The emergent Allee effect occurs under fairly broad conditions. We show that stage-specific predation can also induce bistability between alternative states where both prey and predator are present. A perturbation analysis on the equilibria shows that all equilibria are highly robust to changes in predator density. Our work shows that when size-specific interactions are taken into account, bistabilities and catastrophic collapses are possible even in purely exploitative food webs, which has substantial implications for questions related to food web theory and conservation issues.  相似文献   

20.
Parental care increases parental fitness through improved offspring condition and survival but comes at a cost for the caretaker(s). To increase life‐time fitness, caring parents are, therefore, expected to adjust their reproductive investment to current environmental conditions and parental capacities. The latter is thought to be signaled via ornamental traits of the bearer. We here investigated whether pre‐ and/or posthatching investment of blue tit (Cyanistes caeruleus) parents was related to ornamental plumage traits (UV crown coloration and carotenoid‐based plumage coloration) expressed by either the individual itself (i.e. “good parent hypothesis”) or its partner (i.e. “differential allocation hypothesis”). Our results show that neither prehatching (that is clutch size and offspring begging intensity) nor posthatching parental investment (provisioning rate, offspring body condition at fledging) was related to an individual's UV crown coloration or to that of its partner. Similar observations were made for carotenoid‐based plumage coloration, except for a consistent positive relationship between offspring begging intensity and maternal carotenoid‐based plumage coloration. This sex‐specific pattern likely reflects a maternal effect mediated via maternally derived egg substances, given that the relationship persisted when offspring were cross‐fostered. This suggests that females adjust their offspring's phenotype toward own phenotype, which may facilitate in particular mother‐offspring co‐adaptation. Overall, our results contribute to the current state of evidence that structural or pigment‐based plumage coloration of blue tits are inconsistently correlated with central life‐history traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号