首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sex ratio theory has proved remarkably useful in testing theadaptive nature of animal behavior. A particularly productivearea in this respect is Hamilton's theory of local mate competition(LMC), which has been extended in numerous directions to includegreater biological realism, allowing more detailed tests inspecific organisms. We have presented one such extension, termedasymmetrical LMC, which occurs when egg laying by females ona patch is asynchronous, and emerging males do not disperse,resulting in the extent of LMC on a patch varying over time.Our aim here is to test whether the parasitoid wasp Nasoniavitripennis responds to variation in the degree of asymmetricalLMC. Specifically, we show that females adjust their offspringsex ratios in response to (1) variation in the amount of asynchronyin emergence between broods on a patch and (2) the number andproportion of previously parasitized hosts on the patch. Ourresults provide qualitative support for the predictions of theory,suggesting new levels of complexity in the sex ratio behaviorof this much-studied organism. However, our results do not alwaysprovide quantitative support for theory, suggesting furthercomplexities that must be clarified.  相似文献   

2.
Summary Experimental work of Nadel and Luck (1992) on a chalcidoid wasp provides a confirmation of sex ratio theory under local mate competition.  相似文献   

3.
We constructed a sex allocation model for parasitic wasps to explain the wide variation in their sex ratio, considering the effects of local mate competition, partial dispersal of progeny before mating, and heterogeneity in host quality among patches. We conducted an experiment to compare with the predictions of our model. We considered the following situations. First, the hosts are distributed in discrete patches: a number of female wasps visit and oviposit in each patch. Second, all the progeny do not mate within the natal patch; some of them disperse to take part in population-wide random mating. We calculated ES sex ratios in cases where there are two kinds of patches: good ones and poor ones. We examined the dependency of ES sex ratios on several parameters, i.e., 1) the probability that a daughter mates in her natal patch, 2) the ratio of the female fitness of the good patch to that of the poor patch, 3) the proportion of poor patches, and 4) the number of foundresses in a patch. The result of our experiment showed the same tendency as the calculation in case where the LMC effect is high in each patch. We briefly discuss a possible selection pressure for dispersal of progeny, with special reference to the mating structure of parasitic wasps.  相似文献   

4.
Epidinocarsis lopezi is used as a biological control agent against the cassava mealybug, Phenacoccus manihoti, a serious pest of cassava in Africa. The efficiency of parasitoid mass-rearing is maximized when maximum numbers of healthy female wasps are obtained, since only female parasitoids attack the mealybugs.Highly variable sex ratios are often found in parasitic Hymenoptera. Local mate competition (LMC) is one of the evolutionary models which provide predictions about sex allocation. In this paper we show that E. lopezi does not respond to parasitoid density with a change in sex ratio. We also show that in the field, no local mating structure exists, and that mating is random. Therefore, a shift in sex ratio in response to parasitoid density as predicted by LMC theory would not be adaptive. E. lopezi also does not change its sex allocation when ovipositing in already parasitized hosts. Hence host-size distribution and differential mortality are the only factors that can influence sex ratio in mass-rearings.
Résumé E. lopezi est utilisé dans la lutte biologique contre Phenacoccus manihoti, important ravageur du manioc en Afrique. Puisque seules les femelles du parasitoïde attaquent la cochenille, l'efficacité de l'élevage de masse de l'entomophage sera optimale quand le maximum de femelles saines sera obtenu.Les rapports des sexes des hyménoptères parasites varient très souvent. La compétition sexuelle locale (LMC) constitue l'un des modèles qui fournissent des prédictions de la distribution des sexes. Cette note montre que la proportion des sexes de E. lopezi n'est pas modifiée par la densité du parasitoïde. Par ailleurs, les accouplements s'effectuent au hasard dans la nature et il n'y a pas de structure locale d'accouplement. Par conséquent, le biais, prévu par la théorie du LMC, et introduit par la densité du parasitoïde dans la distribution des sexes, n'a pas de valeur adaptative. E. lopezi ne modifie pas non plus la distribution du sexe de ses descendants quant il pond dans de hôtes déjà parasités. Ainsi, la répartition en taille des hôtes et la mortalité différentielle sont les seuls facteurs qui influent sur la proportion des sexes dans les élevages de masse.
  相似文献   

5.
In many species, mating takes place in temporary patches where only a small number of females produce offspring. In this situation Local Mate Competition (LMC) theory predicts that the optimal sex ratio (defined as proportion males) should become increasingly female biased as the number of females contributing offspring to a patch decreases. However, in a large number of these species, some mating is also likely to occur away from the natal patch (termed partial LMC). In this case the degree of LMC is reduced, and theory predicts a relatively less female biased sex ratio. We tested these two predictions with field data from 17 species of New World non-pollinating fig wasps representing three genera. We present a model which suggests that the average number of females ovipositing in a fruit (i.e. patch) is positively correlated with the proportion of fruit of a given tree species in which that species of wasp occurs. Across species, the overall sex ratio was positively correlated with the proportion of fruit in which that species occurs. Furthermore, the males of some species are wingless, and in these species all mating must take place before females disperse from their natal fruit. In contrast, the males of other species are winged, and in these species mating may also take place away from the natal fruit. Species with winged males had less female biased sex ratios than species with wingless males that occurred in a similar proportion of fruit. Finally, the correlation between sex ratio and the proportion of fruit in which a species occurs was also observed within species when comparing between the fruit crops of different trees. This suggests that individual females facultatively adjust the sex ratio of their offspring in response to variable LMC.  相似文献   

6.
The aim of this study was to test the predictions of local mate competition (LMC), host quality (HQ) and operational sex ratio (OSR) models, using a non-arrhenotokous parasitic mite, Hemisarcoptes coccophagus (Astigmata: Hemisarcoptidae). The life-history pattern of this mite meets the assumptions of these sex allocation models. Mating group size (LMC model), HQ and OSR affected the sex allocation of H. coccophagus females. Only young mite females adjusted the sex ratio of their progenies according to the predictions of LMC and HQ models; the sex allocation of old females was contrary to these predictions. We explain these patterns by the dynamic nature of the mite's population structure. When parents are young, their population distribution is patchy and progeny matings are local; hence sex allocation is in accordance with LMC theory. When parents become older, their populations shift towards panmixis; factors which had operated previously no longer exist. Consequently, females adjust the sex ratio of late progenies so that it can compensate for the earlier sex allocation, in order to make their total sex ratio unbiased, as expected in panmictic populations. Our data, expressed as the cumulative sex ratio, support this hypothesis.  相似文献   

7.
Sex ratio manipulation by ovipositing females was surveyed in 3 solitary ectoparastic wasp species,Dinarmus basalis (Pteromalidae),Anisopteromalus calanrae (Pteromalidae), andHeterospilus prosopidis (Braconidae), that parasitize azuki bean weevil (Callosobruchus chinensis (L) (Coleoptera: Buruchidae)) larvae within azuki beans (Vigna angularis). Variables were local mate competition (LMC) and host quality (HQ). We used host age as a measure of host quality (from 9-to 16-day-old hosts), changed the number of ovipositing females to control the level of local mate competition (1 female and 10 females), and examined oviposition patterns of the wasps. The offspring sex ratios (proportion of females) of the 3 wasp species respond qualitatively same to HQ and LMC. The common qualitative tendency among the 3 species is an increase of sex ratios increase with host age. In the process of changing the sex ratio (9–13-day-old) 3 wasp species respond only to HQ. In the hosts that end development in size (14–16-day-old) wasps respond to LMC. The response of sex ratio change to LMC in the old host ageclasses are different among the 3 species. In the situation that there exists LMC (10 females) sex ratios are the same among the 3 wasps. However, the sex ratios in no LMC (single female) are heterogeneous among the 3 wasps.  相似文献   

8.
Female-biased sex ratio in local mate competition has been well studied both theoretically and experimentally. However, some experimental data show more female-biased sex ratios than the theoretical predictions by Hamilton [1967. Science 156, 477-488] and its descendants. Here we consider the following two effects: (1) lethal male-male combat and (2) time-dependent control (or schedule) of sex ratio. The former is denoted by a male mortality being an increasing function of the number of males. The optimal schedule is analytically obtained as an evolutionarily stable strategy (ESS) by using Pontrjagin's maximum principle. As a result, an ESS is a schedule where only males are produced first, then the proportion of females are gradually increased, and finally only females are produced. Total sex ratio (sex ratio averaged over the whole reproduction period) is more female-biased than the Hamilton's result if and only if the two effects work together. The bias is stronger when lethal male combat is severer or a reproduction period is longer. When male-male combat is very severe, the sex ratio can be extraordinary female-biased (less than 5%). The model assumptions and the results generally agree with experimental data on Melittobia wasps in which extraordinary female-biased sex ratio is observed. Our study might provide a new basis for the evolution of female-biased sex ratios in local mate competition.  相似文献   

9.
Parasitoid sex ratios are influenced by mating systems, whether complete inbreeding, partial inbreeding, complete inbreeding avoidance, or production of all-male broods by unmated females. Population genetic theory demonstrates that inbreeding is possible in haplodiploids because the purging of deleterious and lethal mutations through haploid males reduces inbreeding depression. However, this purging does not act quickly for deleterious mutations or female-limited traits (e.g., fecundity, host searching, sex ratio). The relationship between sex ratio, inbreeding, and inbreeding depression has not been explored in depth in parasitoids. The gregarious egg parasitoid, Trichogramma pretiosum Riley, collected from Riverside, CA (USA) produced a female-biased sex ratio of 0.24 (proportion of males). Six generations of sibling mating in the laboratory uncovered considerable inbreeding depression (∼ 20%) in fecundity and sex ratio. A population genetic study (based upon allozymes) showed the population was inbred (F it = 0.246), which corresponds to 56.6% sib-mating. However, average relatedness among females emerging from the same host egg was only 0.646, which is less than expected (0.75) if ovipositing females mate randomly. This lower relatedness could arise from inbreeding avoidance, multiple mating by females, or superparasitism. A review of the literature in general shows relatively low inbreeding depression in haplodiploid species, but indicates that inbreeding depression can be as high as that found in Drosophila. Finally, mating systems and inbreeding depression are thought to evolve in concert (in plants), but similar dynamic models of the joint evolution of sex ratio, mating systems, and inbreeding depression have not been developed for parasitoid wasps. Received: November 13, 1998 /Accepted: January 8, 1999  相似文献   

10.
A model is constructed to study the effects of local mate competition and multiple mating on the optimum allocation of resources between the male and female reproductive brood in social hymenopteran colonies from the ‘points of view’ of the queen (parental manipulation theory) as well as the workers (kin selection theory). Competition between pairs of alleles specifying different sex investment ratios is investigated in a game theoretic frame work. All other things being equal, local mate competition shifts the sex allocation ratio in favour of females both under queen and worker control. While multiple mating has no effect on the queen’s optimum investment ratio, it leads to a relatively male biased investment ratio under worker control. Under queen control a true Evolutionarily Stable Strategy(ess) does not exist but the ‘best’ strategy is merely immune from extinction. A trueess exists under worker control in colonies with singly mated queens but there is an asymmetry between the dominant and recessive alleles so that for some values of sex ratio a recessive allele goes to fixation but a dominant allele with the same properties fails to do so. Under multiple mating, again, a trueess does not exist but a frequency dependent region emerges. The best strategy here is one that is guaranteed fixation against any competing allele with a lower relative frequency. Our results emphasize the need to determine levels of local mate competition and multiple mating before drawing any conclusions regarding the outcome of queen-worker conflict in social hymenoptera. Multiple mating followed by sperm mixing, both of which are known to occur in social hymenoptera, lower average genetic relatedness between workers and their reproductive sisters. This not only shifts the optimum sex ratio from the workers’ ‘point of view’ in favour of males but also poses problems for the kin selection theory. We show that kin recognition resulting in the ability to invest in full but not in half sisters reverts the sex ratio back to that in the case of single mating and thus completely overcomes the hurdles for the operation of kin selection.  相似文献   

11.
The parasitoid wasp genus Achrysocharoides (Eulophidae) is unusual in that many of its species lay male and female eggs in single-sex clutches. The average clutch size of female broods is always greater than that of male broods, and in some species male clutch size is always one. We constructed models that predicted that severely egg-limited wasps should produce equal numbers of male and female eggs while severely host-limited wasps should produce equal numbers of male and female broods (and hence an overall female-biased sex ratio). Theory is developed to predict clutch size and sex ratio across the complete spectrum of host and egg limitation. A comparison of 19 surveys of clutch composition in seven species of Achrysocharoides showed a general pattern of equal numbers of male and female broods with a female-biased sex ratio (suggesting host limitation) although with considerable heterogeneity amongst collections and with a number of cases of unexpectedly low frequencies of male broods. Using a previous estimate of the relationship between fitness and size in the field, we predicted the maximally productive (Lack) clutch size for female broods of Achrysocharoides zwoelferi to be three. Of clutches observed in nature, 95% were equal to or smaller in size than the predicted Lack clutch size. When we manipulated local host density in the field, and as predicted by our models, clutch size and the proportion of female broods of A. zwoelferi decreased as hosts became more common, but the absolute frequency of male clutches was lower than expected. Copyright 1998 The Association for the Study of Animal Behaviour.  相似文献   

12.
Local mate competition (LMC) may involve some amount of inbreeding between siblings. Because sib-mating is generally accompanied by inbreeding depression, natural selection may favor a reduced rate of sib-mating, possibly affecting the evolution of sex ratio and reproductive group size. The present study theoretically investigated the evolution of these traits under LMC in the presence of inbreeding depression. When the reproductive group size evolves, the determination mechanism of sex ratio is important because the timescale of the sex ratio response to reproductive group size can affect the evolutionary process. We consider a spectrum of sex ratio determination mechanisms from purely unconditional to purely conditional, including intermediate modes with various relative strengths of unconditional and conditional effects. This analysis revealed that both the evolutionarily stable reproductive group size and ratio of males increase with higher inbreeding depression and with a larger relative strength of an unconditional effect in sex ratio determination. Unexpectedly, when the sex ratio is controlled purely conditionally, the reproductive group size cannot exceed three even under the severest level of inbreeding depression (i.e., lethal effect). The present study reveals the conditions for LMC to evolve through the analysis of the joint evolution of reproductive group size and sex ratio.  相似文献   

13.
14.
In panmictic populations, optimal sex allocation is, under theassumptions of Fisher's model, not influenced by the probabilityof offspring developmental mortality, or by differences in mortalitybetween the sexes. In contrast, when mating opportunities areconfined to siblings, developmental mortality can influenceoptimal sex allocation. Many animal species have both localmating and developmental mortality. We show that when developmentalmortality is random for individual offspring, optimal sex allocationis influenced by mortality among males but not among females.Male mortality increases the allocation to males, but this shouldnever be male biased, even under extreme male mortality. Thisresult applies both when mothers are able to control the sexof individual offspring precisely, and when sex is allocatedwith binomial probability. The influence of mortality becomesprogressively larger when the variance of the distribution ofmortality over clutches diminishes. The reduction in fitnessis greater than the proportion of mortality, especially at smallclutch sizes, and mortality reduces the advantage of producingprecise sex ratios, and of local mate competition in general.  相似文献   

15.
16.
Abstract.
  • 1 We test the hypothesis that a solitary parasitoid wasp may gain in fitness if she lays more eggs in a host.
  • 2 Using heterospecific superparasitism (=multiparasitism) between the solitary aphid parasitoids, Aphidius smithi Sharma & Subba Rao and Ephedrus californicus Baker, we show that (i) a superparasitizing female's chance that her offspring will survive competition is an increasing function of egg density, and (ii) survival among same-aged larvae is independent of the oviposition sequence.
  • 3 These findings on asymmetric larval competition provide indirect evidence that supports two fundamental, but untested, assumptions underlying models of adaptive superparasitism between conspecific wasps.
  相似文献   

17.
Abstract How does the process of life‐history evolution interplay with population dynamics? Almost all models that have addressed this question assume that any combination of phenotypic traits uniquely determine the ecological population state. Here we show that if multiple ecological equilibria can exist, the evolution of a trait that relates to competitive performance can undergo adaptive reversals that drive cyclic alternation between population equilibria. The occurrence of evolutionary reversals requires neither environmentally driven changes in selective forces nor the coevolution of interactions with other species. The mechanism inducing evolutionary reversals is twofold. First, there exist phenotypes near which mutants can invade and yet fail to become fixed; although these mutants are eventually eliminated, their transitory growth causes the resident population to switch to an alternative ecological equilibrium. Second, asymmetrical competition causes the direction of selection to revert between high and low density. When ecological conditions for evolutionary reversals are not satisfied, the population evolves toward a steady state of either low or high abundance, depending on the degree of competitive asymmetry and environmental parameters. A sharp evolutionary transition between evolutionary stasis and evolutionary reversals and cycling can occur in response to a smooth change in ecological parameters, and this may have implications for our understanding of size‐abundance patterns.  相似文献   

18.
We present a simple, general model of how the optimal levelof intra-group aggression should vary in different social contexts.A key component of this model is the value of the recipientof aggression to a potential aggressor (i.e., the ratio of expectedlong-term group productivity with the recipient present to theexpected group productivity with the recipient absent). Therecipient's value measures its contribution to group reproductivesuccess. We demonstrate theoretically that if aggression increasesthe aggressor's share of the group's expected total reproductiveoutput, but at the same time decreases the magnitude of thisoverall reproductive output, then the optimal level of aggressiontoward a recipient will decrease with increasing recipient'svalue. This proof establishes a rigorous theoretical connectionbetween the level of aggression within a group and the benefitsof belonging to such a group and can be tested by experimentallymanipulating the values of group members to each other. We test,and thus illustrate the utility of, this model by examiningaggression within experimentally-manipulated foundress associationsof social wasps. We show that the value of co-foundresses toeach other in the social wasp Polistes fuscatus lies in theirability to provide insurance against colony failure caused bythe loss of all tending foundresses. Removals of worker-destinedeggs and pupae, which increase the value of co-foundresses,both lead to significant reductions in aggression by the dominantfoundress, despite the fact that the immediate, selfish benefitsof competitive aggression should increase when empty brood cellsare present Removal of reproductive-destined eggs, which doesnot affect co-foundress value, but increases the benefits ofselfish aggression, causes a significant increase in aggressionby beta foundresses. Finally, wing reduction of subordinateco-foundresses significantly increases aggression by dominantfoundresses, as expected since the subordinate's value is reduced.Our results indicate that foundress aggression is sensitiveto the value of future cooperation, as predicted by the optimalaggression model. The model may apply widely to both invertebrateand vertebrate societies  相似文献   

19.
Dispersal behavior directly influences the level of inbreeding, but the effect of inbreeding avoidance on dispersal is less well studied. The parasitoid wasp Nasonia vitripennis (Walker) (Hymenoptera: Chalcidoidea: Pteromalidae) is known to mate exclusively on the natal patch, and females are the only dispersing sex. A previous study has shown that foundresses on a patch are typically unrelated, implying that females disperse for a considerable distance from their natal patch after mating. We investigated dispersal of N. vitripennis on two scales. On a local scale we used a mark-release-recapture experiment, and on the larger scale we investigated isolation by distance using a population genetic approach. We found that N. vitripennis females are long-distance dispersers, capable of covering at least 2 km in 48 h. Populations within a range of 100 km showed no substructure, but larger distances or major geographical barriers restricted gene flow and led to significant population structure. The results provide a basis for future research on dispersal of parasitoids and are discussed in the context of dispersal abilities and inbreeding avoidance in Nasonia .  相似文献   

20.
Cooperative breeding often involves reproductive dominance hierarchies. Such hierarchies have been proposed to form and to be maintained through an equitable skew in reproduction for both dominants and subordinates. The general form of skew models also predicts that cooperation can be stable only if cooperation greatly increases group reproductive success or subordinates are greatly constrained in their reproductive prospects relative to dominants. Neither, however, seems to be generally present in the colony initiation phase of temperate polistine wasps, although the behaviors of individuals within such groups are often consistent with skew model predictions. This apparent contradiction can be resolved in the context of a special case of the skew models that incorporate mother-offspring conflicts over sex ratios. Data suggest that all the needed preconditions are present for cooperating foundresses to gain an added benefit through producing male-biased investment ratios. Therefore, the special case model predicts that cooperation can evolve in Hymenoptera with both the observed high skews and reduced per capita group productivity. Further predictions of the special case model (e.g., mixed populations of single and multifoundresses) are also supported. Because the special case model is applicable only to haplodiploids, this may explain why cooperation in vertebrates rarely occurs without significant ecological or physiological constraints. Finally, comparisons to other social Hymenoptera taxa suggest that factors stabilizing cooperation between colony-initiating females may simultaneously constrain the evolution of morphologically specialized worker castes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号