首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In 1950, Rensch first described that in groups of related species, sexual size dimorphism is more pronounced in larger species. This widespread and fundamental allometric relationship is now commonly referred to as 'Rensch's rule'. However, despite numerous recent studies, we still do not have a general explanation for this allometry. Here we report that patterns of allometry in over 5300 bird species demonstrate that Rensch's rule is driven by a correlated evolutionary change in females to directional sexual selection on males. First, in detailed multivariate analysis, the strength of sexual selection was, by far, the strongest predictor of allometry. This was found to be the case even after controlling for numerous potential confounding factors, such as overall size, degree of ornamentation, phylogenetic history and the range and degree of size dimorphism. Second, in groups where sexual selection is stronger in females, allometry consistently goes in the opposite direction to Rensch's rule. Taken together, these results provide the first clear solution to the long-standing evolutionary problem of allometry for sexual size dimorphism: sexual selection causes size dimorphism to correlate with species size.  相似文献   

2.
We estimated selection on adult body size for two generations in two populations of Aquarius remigis, as part of a long‐term study of the adaptive significance of sexual size dimorphism (SSD). Net adult fitness was estimated from the following components: prereproductive survival, daily reproductive success (mating frequency or fecundity), and reproductive lifespan. Standardized selection gradients were estimated for total length and for thorax, abdomen, genital and mesofemur lengths. Although selection was generally weak and showed significant temporal and spatial heterogeneity, patterns were consistent with SSD. Prereproductive survival was strongly influenced by date of eclosion, but size (thorax and genital lengths in females; total and abdomen lengths in males) played a significant secondary role. Sexual selection favoured smaller males with longer external genitalia in one population. Net adult fitness was not significantly related to body size in females, but was negatively related to size (thorax and total length) in males.  相似文献   

3.
Odonata (dragonflies and damselflies) exhibit a range of sexual size dimorphism (SSD) that includes species with male-biased (males > females) or female-biased SSD (males < females) and species exhibiting nonterritorial or territorial mating strategies. Here, we use phylogenetic comparative analyses to investigate the influence of sexual selection on SSD in both suborders: dragonflies (Anisoptera) and damselflies (Zygoptera). First, we show that damselflies have male-biased SSD, and exhibit an allometric relationship between body size and SSD, that is consistent with Rensch's rule. Second, SSD of dragonflies is not different from unit, and this suborder does not exhibit Rensch's rule. Third, we test the influence of sexual selection on SSD using proxy variables of territorial mating strategy and male agility. Using generalized least squares to account for phylogenetic relationships between species, we show that male-biased SSD increases with territoriality in damselflies, but not in dragonflies. Finally, we show that nonagile territorial odonates exhibit male-biased SSD, whereas male agility is not related to SSD in nonterritorial odonates. These results suggest that sexual selection acting on male sizes influences SSD in Odonata. Taken together, our results, along with avian studies (bustards and shorebirds), suggest that male agility influences SSD, although this influence is modulated by territorial mating strategy and thus the likely advantage of being large. Other evolutionary processes, such as fecundity selection and viability selection, however, need further investigation.  相似文献   

4.
Sexual size dimorphism (SSD), i.e. the difference in sizes of males and females, is a key evolutionary feature that is related to ecology, behaviour and life histories of organisms. Although the basic patterns of SSD are well documented for several major taxa, the processes generating SSD are poorly understood. Domesticated animals offer excellent opportunities for testing predictions of functional explanations of SSD theory because domestic stocks were often selected by humans for particular desirable traits. Here, we analyse SSD in 139 breeds of domestic chickens Gallus gallus domesticus and compare them to their wild relatives (pheasants, partridges and grouse; Phasianidae, 53 species). SSD was male-biased in all chicken breeds, because males were 21.5 ± 0.55% (mean ± SE) heavier than females. The extent of SSD did not differ among breed categories (cock fighting, ornamental and breeds selected for egg and meat production). SSD of chicken breeds was not different from wild pheasants and allies (23.5 ± 3.43%), although the wild ancestor of chickens, the red jungle fowl G. gallus, had more extreme SSD (male 68.8% heavier) than any domesticated breed. Male mass and female mass exhibited positive allometry among pheasants and allies, consistently with the Rensch's rule reported from various taxa. However, body mass scaled isometrically across chicken breeds. The latter results suggest that sex-specific selection on males vs. females is necessary to generate positive allometry, i.e. the Rensch's rule, in wild populations.  相似文献   

5.
6.
The size variation between males and females of a species is a phenomenon known as sexual size dimorphism (SSD). The observed patterns of variation in SSD among species has led to the formulation of Rensch's rule, which establishes that, in species showing a male size bias, SSD increases with an increase in the body size of the species. However, for species in which there is a female size bias, the SSD would decrease when the body size of the species increases. In the present study, we examined the variation in body size and SSD of 33 species of canids from estimates of body mass and body length. We studied its relationship with life‐history characteristics and tested Rensch's rule using phylogenetic generalized least squares and phylogenetic reduced major axis regressions, respectively. We observed the existence of correlation between body mass and body length, although the SSDs from these estimators are uncorrelated. SSD did not show the pattern predicted by Rensch's rule. SSD also did not show any correlation with life‐history traits. It is likely that the low SSD observed in canids is related to the monogamy observed in the family, which is a rare situation in mammals.  相似文献   

7.
Rensch's rule states that degree of sexual dimorphism increases with body size in species with larger males, and decreases with body size in those with larger females. To test this rule, we assessed the pattern of sexual size dimorphism in tinamous using a comparative analysis of independent contrasts. Tinamous are a monophyletic group of primitive birds comprising at least 47 ground dwelling species with prominent or exclusive paternal care of eggs and offspring. Although the size of females exceeded that of males in most considered species, we found an isometric relationship between males and females, instead of the negative allometric one predicted by Rensch's rule. Previous studies in Strigiformes and Falconiformes found positive allometric and isometric relationships respectively, and, considering these findings with our results, we conclude that Rensch's rule is not supported by birds with exclusively female-biased sexual dimorphism in size.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 519–527  相似文献   

8.
The magnitude and direction of sexual size dimorphism (SSD) may vary considerably within and among taxa, and the primary causes of such variation have not been thoroughly elucidated. For example, the effect of abiotic factors is frequently attributed to explain intra‐ and interspecific variation in SSD. Rensch's rule, which states that males vary more in size than females when body size increases, has rarely been tested in bats. Therefore, whether bats follow Rensch's rule remains unclear, particularly when females are larger than males. We investigated whether four bat species presented SSD, as well as whether their body sizes varied within each sex across localities, testing the hypothesis that intraspecific SSD varies substantially depending of sampling localities. We finally examined whether bats followed Rensch's rule by simultaneously using intraspecific and interspecific approaches. Although SSD was not observed for most bat species within each locality, the females of three of the four captured species exhibited differences in body size between particular localities. Usually the females varied more in size than did males across localities, mostly exhibiting a female‐biased SSD. Significant differences in SSD were observed (i.e. mean values of the sexual dimorphism index), even though Rensch's rule was not followed.  相似文献   

9.
Animal sperm show remarkable diversity in both morphology and molecular composition. Here we provide the first report of intense intrinsic fluorescence in an animal sperm. The sperm from a semi‐aquatic insect, the water strider, Aquarius remigis, contains an intrinsically fluorescent molecule with properties consistent with those of flavin adenine dinucleotide (FAD), which appears first in the acrosomal vesicle of round spermatids and persists in the acrosome throughout spermiogenesis. Fluorescence recovery after photobleaching reveals that the fluorescent molecule exhibits unrestricted mobility in the acrosomal vesicle of round spermatids but is completely immobile in the acrosome of mature sperm. Fluorescence polarization microscopy shows a net alignment of the fluorescent molecules in the acrosome of the mature sperm but not in the acrosomal vesicle of round spermatids. These results suggest that acrosomal molecules are rearranged in the elongating acrosome and FAD is incorporated into the acrosomal matrix during its formation. Further, we followed the fate of the acrosomal matrix in fertilization utilizing the intrinsic fluorescence. The fluorescent acrosomal matrix was observed inside the fertilized egg and remained structurally intact even after gastrulation started. This observation suggests that FAD is not released from the acrosomal matrix during the fertilization process or early development and supports an idea that FAD is involved in the formation of the acrosomal matrix. The intrinsic fluorescence of the A. remigis acrosome will be a useful marker for following spermatogenesis and fertilization. J. Cell. Physiol. 226: 999–1006, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
We addressed the general hypothesis that life history differences among eastern populations of the North American water strider, Aquarius remigis (Heteroptera: Gerridae), along a north-south gradient are manifestations of genetic differentiation due to natural selection. We raised offspring of two field-caught populations from each of three latitudes in a common laboratory environment at 20° C and two photoperiods. Nearly all Quebec (PQ) individuals (ca. 46° N) entered diapause to reproduce the following spring (univoltine life cycle), while intermediate proportions of New York (NY; ca. 43° N) and New Jersey (NJ; ca. 41° N) individuals reproduced directly, producing a second generation (bivoltine life cycle). PQ females were smaller, developed faster, and laid smaller eggs than NY and NJ individuals; NY and NJ populations differed little in these variables. NY females had longer life spans than either PQ or NJ females, but lower oviposition rates. Total reproductive output did not differ across latitudes. Photoperiod affected body length, development time, and reproductive pathway, resulting in a latitude by environmental interaction. PQ individuals reproduced directly under 15L : 9D (summer) conditions only, while the NY and NJ populations exhibited more direct reproduction under 13L : 11D (spring or fall) conditions. Some life history characters of the NY and NJ populations displayed the higher variability indicative of phenological transition zones. These results indicate local adaptation of populations to long-term climatic patterns. Water striders appear to adapt to longer seasons by extending development, growing larger, and breeding directly. Larger body size and extended or rapid development are associated with bivoltinism and increase in egg size, but not necessarily with higher fecundity or oviposition rate. The phenological transition zone appears to be unrelated to a transition zone a little further south established by allozyme data and morphology, as all populations studied here could be electrophoretically identified as northern "type".  相似文献   

11.
Allometric trends in the degree of sexual dimorphism with body size have long fascinated evolutionary biologists. Many male-biased clades display more prominent sexual dimorphism in larger taxa (Rensch's rule), with most examples documenting this pattern for body size dimorphism. Although sexual dimorphism in traits other than body size is equally functionally relevant, characterizing allometric patterns of sexual dimorphism in such traits is hampered by lack of an analytical framework that can accommodate multivariate phenotypes. In this article, we derive a multivariate equivalency for investigating trends in sexual dimorphism—relative to overall body size—across taxa and provide a generalized test to determine whether such allometric patterns correspond with Rensch's rule. For univariate linear traits such as body size, our approach yields equivalent results to those from standard procedures, but our test is also capable of detecting trends in multivariate datasets such as shape. Computer simulations reveal that the method displays appropriate statistical properties, and an empirical example in Mediterranean lizards provides the first demonstration of Rensch's rule in a multivariate phenotype (head shape). Our generalized procedure substantially extends the analytical toolkit for investigating macroevolutionary patterns of sexual dimorphism and seeking a better understanding of the processes that underlie them.  相似文献   

12.
1. The stream water strider Aquarius remigis shows a latitudinal pattern of variation in voltinism. In general, populations with shorter growing seasons (e.g. in eastern Canada) tend to be univoltine (animals that reach adulthood in the summer overwinter before reproducing in the following spring), whereas populations with somewhat longer growing seasons (e.g. in the north-eastern United States) tend to be bivoltine. 2. This pattern was broken at our study site in the south-eastern United States (Kentucky) where A. remigis had a long growing season, but was almost always univoltine. In summer 1993, however, adult A. remigis in central Kentucky displayed a bivoltine reproductive cycle; i.e. individuals in some pools began breeding shortly after maturing to the adult stage. 3. A field survey documented a negative relationship between local water strider density and reproductive activity in prediapause adults. A laboratory experiment manipulating food availability and density, revealed that animals held at low density with high food levels displayed greater mating activity and egg production than did their counterparts at higher density or lower food levels. 4. A laboratory experiment also showed that high water strider density resulted in a greater frequency of very short pair durations (< 10 min). 5. Although the observed effects of density and food availability on mating activity of prediapause adults seem intuitively reasonable, they differ from the patterns observed in overwintered adults. The difference in reproduction patterns might be due to differences in selective pressures on prediapause vs. post-diapause adults.  相似文献   

13.
Sexual size dimorphism is assumed to be adaptive and is expected to evolve in response to a difference in the net selection pressures on the sexes. Although a demonstration of sexual selection is neither necessary nor sufficient to explain the evolution of sexual size dimorphism, sexual selection is generally assumed to be a major evolutionary force. If contemporary sexual selection is important in the evolution and maintenance of sexual size dimorphism then we expect to see concordance between patterns of sexual selection and patterns of sexual dimorphism. We examined sexual selection in the wild, acting on male body size, and components of body size, in the waterstrider Aquarius remigis, as part of a long term study examining net selection pressures on the two sexes in this species. Selection was estimated on both a daily and annual basis. Since our measure of fitness (mating success) was behavioral, we estimated reliabilities to determine if males perform consistently. Reliabilities were measured as ? statistics and range from fair to perfect agreement with substantial agreement overall. We found significant univariate sexual selection favoring larger total length in the first year of our study but not in the second. Multivariate analysis of components of body size revealed that sexual selection for larger males was not acting directly on total length but on genital length. Sexual selection for larger male body size was opposed by direct selection favoring smaller midfemoral lengths. While males of this species are smaller than females, they have longer genital segments and wider forefemora. Patterns of contemporary sexual selection and sexual size dimorphism agree only for genital length. For total length, and all other components of body size examined, contemporary sexual selection was either nonsignificant or opposed the pattern of size dimporhism. Thus, while the net pressures of contemporary selection for the species may still act to maintain sexual size dimorphism, sexual selection alone does not.  相似文献   

14.
15.
16.
It is commonly argued that sexual size dimorphism (SSD) in lizards has evolved in response to two primary, nonexclusive processes: (1) sexual selection for large male size, which confers an advantage in intrasexual mate competition (intrasexual selection hypothesis), and (2) natural selection for large female size, which confers a fecundity advantage (fecundity advantage hypothesis). However, outside of several well-studied lizard genera, the empirical support for these hypotheses has not been examined with appropriate phylogenetic control. We conducted a comparative phylogenetic analysis to test these hypotheses using literature data from 497 lizard populations representing 302 species and 18 families. As predicted by the intrasexual selection hypothesis, male aggression and territoriality are correlated with SSD, but evolutionary shifts in these categorical variables each explain less than 2% of the inferred evolutionary change in SSD. We found stronger correlations between SSD and continuous estimates of intrasexual selection such as male to female home range ratio and female home range size. These results are consistent with the criticism that categorical variables may obscure much of the actual variation in intrasexual selection intensity needed to explain patterns in SSD. In accordance with the fecundity advantage hypothesis, SSD is correlated with clutch size, reproductive frequency, and reproductive mode (but not fecundity slope, reduced major axis estimator of fecundity slope, length of reproductive season, or latitude). However, evolutionary shifts in clutch size explain less than 8% of the associated change in SSD, which also varies significantly in the absence of evolutionary shifts in reproductive frequency and mode. A multiple regression model retained territoriality and clutch size as significant predictors of SSD, but only 16% of the variation in SSD is explained using these variables. Intrasexual selection for large male size and fecundity selection for large female size have undoubtedly helped to shape patterns of SSD across lizards, but the comparative data at present provide only weak support for these hypotheses as general explanations for SSD in this group. Future work would benefit from the consideration of alternatives to these traditional evolutionary hypotheses, and the elucidation of proximate mechanisms influencing growth and SSD within populations.  相似文献   

17.
18.
While congruent evidence indicates that sexual selection is the most likely selective force explaining the rapid divergence of male genital morphology in insects, the mechanisms involved in this process remain unclear. In particular, little attention has been paid to precopulatory sexual selection. We examine sexual selection for mating success on male genital components in six populations of Aquarius remigis, a water strider characterized by unique genital morphology. Multivariate selection analysis confirms previous findings that precopulatory sexual selection favours longer external genitalia, and provides new evidence that this selection acts independently on external genital components. In contrast, the size of the major internal genital sclerite is not correlated with mating success. Thus, precopulatory sexual selection acts strongly on the size of the external genitalia, but not on the intromittent organ itself. These results highlight the multiple functions of genital organs and the importance of both precopulatory and post-copulatory sexual selection in shaping the remarkable diversity of male genitalia in insects.  相似文献   

19.
Genitalia are among the most variable of morphological traits, and recent research suggests that this variability may be the result of sexual selection. For example, large bacula may undergo post‐copulatory selection by females as a signal of male size and age. This should lead to positive allometry in baculum size. In addition to hyperallometry, sexually selected traits that undergo strong directional selection should exhibit high phenotypic variation. Nonetheless, in species in which pre‐copulatory selection predominates over post‐copulatory selection (such as those with male‐biased sexual size dimorphism), baculum allometry may be isometric or exhibit negative allometry. We tested this hypothesis using data collected from two highly dimorphic species of the Mustelidae, the American marten (Martes americana) and the fisher (Martes pennanti). Allometric relationships were weak, with only 4.5–10.1% of the variation in baculum length explained by body length. Because of this weak relationship, there was a large discrepancy in slope estimates derived from ordinary least squares and reduced major axis regression models. We conclude that stabilizing selection rather than sexual selection is the evolutionary force shaping variation in baculum length because allometric slopes were less than one (using the ordinary least squares regression model), a very low proportion of variance in baculum length was explained by body length, and there was low phenotypic variability in baculum length relative to other traits. We hypothesize that this pattern occurs because post‐copulatory selection plays a smaller role than pre‐copulatory selection (manifested as male‐biased sexual size dimorphism). We suggest a broader analysis of baculum allometry and sexual size dimorphism in the Mustelidae, and other taxonomic groups, coupled with a comparative analysis and with phylogenetic contrasts to test our hypothesis. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 955–963.  相似文献   

20.
This report describes the behaviour of a previously uncharacterised mating tactic amongst male water striders (Aquarius remigis Say, 1832), involving the physical break up of existing mating pairs. Using data from four separate laboratory observations on the water strider mating system, we show that this behaviour represents roughly 12.6% of all mating attempts by males. Furthermore, we demonstrate that males are successful in breaking up the existing mating pair in 15.6% of the cases, resulting in secure matings with the disrupted female 6.2% of time. We suspect that mate disruption may serve as an alternative means for acquiring mates by males with low mating success using conventional behaviours. Further research should be performed to determine the prevalence of this behaviour in various natural populations and the specific contexts in which this behaviour occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号