首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lysyl oxidase catalyzes the final known enzymatic step required for collagen and elastin cross-linking in the biosynthesis of normal mature functional insoluble extracellular matrices. In addition, lysyl oxidase has been identified as a possible tumor suppressor. Lysyl oxidase activity in biological samples is traditionally and most reliably assessed by tritium release end-point assays using radiolabeled collagen or elastin substrates involving laborious vacuum distillation of the released tritiated water. In addition, a less sensitive fluorometric method exists that employs nonpeptidyl amine lysyl oxidase substrates and measures hydrogen peroxide production with horseradish peroxidase coupled to homovanillate oxidation. The present study describes a more sensitive fluorescent assay for lysyl oxidase activity that utilizes 1,5-diaminopentane as substrate, and released hydrogen peroxide is detected using Amplex red in horseradish peroxidase-coupled reactions. This method allows the detection of 40 ng of enzyme per 2 ml assay at 37 degrees C and is 7.5 times more sensitive than the currently available fluorometric assay for enzyme activity. This method eliminates the interference that occurs in some biological samples and can be successfully used to detect lysyl oxidase activity in cell culture experiments.  相似文献   

2.
Existing protein tagging and detection methods are powerful but have drawbacks. Split protein tags can perturb protein solubility or may not work in living cells. Green fluorescent protein (GFP) fusions can misfold or exhibit altered processing. Fluorogenic biarsenical FLaSH or ReASH substrates overcome many of these limitations but require a polycysteine tag motif, a reducing environment and cell transfection or permeabilization. An ideal protein tag would be genetically encoded, would work both in vivo and in vitro, would provide a sensitive analytical signal and would not require external chemical reagents or substrates. One way to accomplish this might be with a split GFP, but the GFP fragments reported thus far are large and fold poorly, require chemical ligation or fused interacting partners to force their association, or require coexpression or co-refolding to produce detectable folded and fluorescent GFP. We have engineered soluble, self-associating fragments of GFP that can be used to tag and detect either soluble or insoluble proteins in living cells or cell lysates. The split GFP system is simple and does not change fusion protein solubility.  相似文献   

3.
Recent advances in the field of non-invasive optical imaging have included the development of contrast agents that report on the activity of enzymatic targets associated with disease pathology. In particular, proteases have proven to be ideal targets for development of optical sensors for cancer. Recently developed contrast agents for protease activity include both small peptides and large polymer-based quenched fluorescent substrates as well as fluorescently labeled activity based probes (ABPs). While substrates produce a fluorescent signal as a result of processing by a protease, ABPs are retained at the site of proteolysis due to formation of a permanent covalent bond with the active site catalytic residue. Both methods have potential advantages and disadvantages yet a careful comparison of substrates and ABPs has not been performed. Here we present the results of a direct comparison of commercially available protease substrates with several recently described fluorescent ABPs in a mouse model of cancer. The results demonstrate that fluorescent ABPs show more rapid and selective uptake into tumors as well as overall brighter signals compared to substrate probes. These data suggest that the lack of signal amplification for an ABP is offset by the increased kinetics of tissue uptake and prolonged retention of the probes once bound to a protease target. Furthermore, fluorescent ABPs can be used as imaging reagents with similar or better results as the commercially available protease substrates.  相似文献   

4.
Chemical cytometry refers to the use of high-sensitivity analytical tools to characterize single cells. These tools include mass spectrometry, electrochemistry and capillary separation methods. This review focuses on the use of capillary electrophoresis coupled with high-sensitivity detection to characterize single cells. In survey experiments, biogenic amines and proteins have been characterized in single cells. In directed experiments, fluorescent substrates are used to monitor the activity of sets of enzymes, either within a family or along an enzymatic cascade. When combined with classical cytometry tools, it is now possible to monitor several cellular components in single cells as a function of cell cycle, which provides insight into the evolution of cellular composition as cells prepare for division.  相似文献   

5.
The fluorescent probe 8-anilinonaphtalene-1-sulfonate (ANS) binds at the active site of the Naja melanoleuca snake venom phospholipase A2, thus protecting the enzyme against active-site-directed chemical modification. Both hydrophobic and electrostatic interactions are involved in the binding. At pH 7.5, a binding constant of 100 microM was determined, which improved twofold upon addition of the enzymatic cofactor Ca2+. The pH dependence of the ANS binding in the absence and presence of Ca2+ ions showed a perturbation of a group with a pKa value of 5.2, which could be assigned to the carboxylate group of the Ca2+-binding ligand Asp49 at the active site of the protein. Monomeric concentrations of the substrate analog n-decylphosphocholine displace ANS from the protein, indicating again that both ligands bind at the active site. Binding studies with several modified N. melanoleuca enzymes showed that a loss of enzymatic activity on aggregated substrates was correlated with a loss of affinity for the active site bound ANS molecule. It is suggested therefore, that the fluorescent ANS probe can detect structural rearrangements at the active site, which are important for enzymatic activity.  相似文献   

6.
After stimulation of guinea pigs with estradiol to increase their Kurloff cell number, spleen imprints were prepared in order to detect non-specific acid phosphatase (AcPase) activity by light microscopic cytochemistry using naphthol AS-BI phosphate as substrate and pararosanilin or fast garnet GBC as coupler. For ultracytochemistry, Kurloff cells were prepared from spleens by filtration through a homogeneizer screen followed by repeated centrifugation. AcPase and trimetaphosphatase activities were tested using beta-glycerophosphate, cytidine-5'-monophosphate and inorganic trimetaphosphate as substrates. Significant enzymatic activities were demonstrated with all the substrates used in the cytoplasmic inclusion body of the Kurloff cells.  相似文献   

7.
Jenny L Howell  Ray Truant 《BioTechniques》2002,32(1):80-2, 84, 86-7
In eukaryotes, protein trafficking to and from the nucleus, or shuttling, has been demonstrated to be an important function for proteins that have vital roles in one or both subcellular compartments. Current techniques of detecting protein nuclear shuttling are extremely labor intensive and only statically visualize evidence of shuttling. Fluorescence recovery after photobleaching (FRAP), or fluorescence microphotolysis, has proven to be an effective method of analyzing protein dynamics in live cells, especially when coupled to GFP technology. Here, we describe a relatively simple in vivo protein nuclear shuttling assay that utilizes red fluorescent and green fluorescent protein fusions as substrates for FRAP using a laser confocal microscope. This technique is less time consuming than established shuttle assays, is internally controlled, and visualizes nucleocytoplasmic shuttling in living cells of the same species and cell type. This technique can be potentially used to detect the ability of any nuclear protein to shuttle from the nucleus to any other subcellular compartment for any eukaryotic species in which GFP or dsRed1 fusion protein can be expressed.  相似文献   

8.
It has recently been demonstrated that dried cells of Saccharomyces cerevisiae were able to produce alcohols and aldehydes in a solid/gas reactor with in situ cofactor regeneration. Since diffusion of gaseous substrates may be limited by the membrane and cell wall, cell disruption by sonication was used to improve oxidoreduction with ethanol and butyraldehyde as substrates. Results showed that partial cell disruption enhances the maximum conversion yield with the best results obtained after 2 min of sonication. Beyond this time, the ADH activity decreased. Better stability was observed in the pellet obtained after centrifugation indicating the importance of cell environment for enzyme stability. Tests on purified mitochondria showed that the ADH activity in cells was mainly cytoplasmic. The addition of oxidized cofactor did not change either the activity or the stability of the catalyst in a gaseous medium. The effect of water activity was studied on material obtained after 2 min of disruption and a reduction of critical water activity needed for revealing enzymatic activity was observed. With increasing aw, the enzyme was active at aw=0.3 while a water activity of 0.4 was required before disruption. Nevertheless, the best compromise between activity and stability was obtained in both cases for a water activity of 0.57.  相似文献   

9.
Invasive and metastatic cells, as well as endothelial cells, must cross basement membranes (BMs) in order to disseminate or to form new blood vessels. The chemoinvasion assay using the reconstituted BM Matrigel in Boyden blind-well chambers is a very rapid, easy, inexpensive and flexible test that can be used to quantify the invasive potential of most cell types; it can be applied to detect the migratory activity associated with matrix degradation and can also be adapted to study the selective degrading activity on different matrix substrates. Transwell inserts can also be used. Once the optimal experimental conditions are empirically determined for specific cellular models, the chemoinvasion assay can be used for the screening of inhibitors of invasiveness and angiogenesis, or to select for invasive cellular populations. This protocol can be completed in 9 h.  相似文献   

10.
Carboxypeptidase E (CPE) is a carboxypeptidase B-like enzyme involved in the biosynthesis of numerous peptide hormones and neurotransmitters. A sensitive assay for CPE and other carboxypeptidase B-like enzymes has been developed using 125I-acetyl-Tyr-Ala-Arg (125I-AcYAR) as the substrate. This peptide is poorly soluble in ethyl acetate whereas the product of carboxypeptidase B-like enzymatic activity (125I-AcYA) can be quantitatively extracted with this solvent, allowing the rapid separation of product from substrate. This radiometric assay can detect less than 1 pg of either CPE or carboxypeptidase B. For CPE, the assay with 125I-AcYAR is approximately 1000 times more sensitive than a fluorescent assay using dansyl-Phe-Ala-Arg (dans-FAR), and 6000 times more sensitive than a spectrophotometric assay using hippuryl-Arg (hipp-R). CPE hydrolyzes the three substrates with Kcat values of 16 s-1 for AcYAR, 13 s-1 for dans-FAR, and 8.5 s-1 for hipp-R. The Km values for CPE with AcYAR (28 microM) and dans-FAR (34 microM) are similar, and are much lower than the Km with hipp-R (400 microM). Thus, the primary reason for the increased sensitivity of the 125I-AcYAR assay over the fluorescent assay is not a result of kinetic differences but is due to the detection limit of iodinated product (10(-15) mol), compared to the fluorescent product (5 x 10(-11) mol). Applications of this rapid and sensitive radiometric assay to detect CPE in cultured cells and in subcellular fractions of the pituitary are described.  相似文献   

11.
The human beta-secretase, BACE, plays a key role in the generation of pathogenic amyloid beta-peptide (Abeta) in Alzheimer's disease and has been identified as an ideal target for therapy. Previous studies reported the monitoring of BACE activity in vitro utilizing chemical synthesized sensors. Here we describe the first genetically encoded FRET probe that can detect BACE activity in vivo. The FRET probe was constructed with the BACE substrate site (BSS) and two mutated green fluorescent proteins. In living cell, the FRET probe was directed to the secretory pathway and anchored on the cell surface to measure BACE enzymatic activity. The results show that the FRET probe can be cleaved by BACE effectively in vivo, suggesting that the probe can be used for real-time monitoring of BACE activity. This assay provides a novel platform for BACE inhibitor screening in vivo.  相似文献   

12.
Flavin adenine dinucleotide (FAD) is a key metabolite in cellular energy conversion. Flavin can also bind with some enzymes in the metabolic pathway and the binding sites may be changed due to the disease progression. Thus, there is interest on studying its expression level, distribution, and redox state within the cells. FAD is naturally fluorescent, but it has a modest extinction coefficient and quantum yield. Hence the intrinsic emission from FAD is generally too weak to be isolated distinctly from the cellular backgrounds in fluorescence cell imaging. In this article, the metal nanostructures on the glass coverslips were used as substrates to measure FAD in cells. Particulate silver films were fabricated with an optical resonance near the absorption and the emission wavelengths of FAD which can lead to efficient coupling interactions. As a result, the emission intensity and quantum yield by FAD were greatly increased and the lifetime was dramatically shortened resulting in less interference from the longer lived cellular background. This feature may overcome the technical limits that hinder the direct observation of intrinsically fluorescent coenzymes in the cells by fluorescence microscopy. Fluorescence cell imaging on the metallic particle substrates may provide a non-invasive strategy for collecting the information of coenzymes in cells.  相似文献   

13.
It has recently been demonstrated that dried cells of Saccharomyces cerevisiae were able to produce alcohols and aldehydes in a solid/gas reactor with in situ cofactor regeneration. Since diffusion of gaseous substrates may be limited by the membrane and cell wall, cell disruption by sonication was used to improve oxidoreduction with ethanol and butyraldehyde as substrates. Results showed that partial cell disruption enhances the maximum conversion yield with the best results obtained after 2 min of sonication. Beyond this time, the ADH activity decreased. Better stability was observed in the pellet obtained after centrifugation indicating the importance of cell environment for enzyme stability. Tests on purified mitochondria showed that the ADH activity in cells was mainly cytoplasmic. The addition of oxidized cofactor did not change either the activity or the stability of the catalyst in a gaseous medium. The effect of water activity was studied on material obtained after 2 min of disruption and a reduction of critical water activity needed for revealing enzymatic activity was observed. With increasing aw, the enzyme was active at aw=0.3 while a water activity of 0.4 was required before disruption. Nevertheless, the best compromise between activity and stability was obtained in both cases for a water activity of 0.57.  相似文献   

14.
Whole-mount detection methods are quick, inexpensive and offer the possibility of studying the temporal and spatial patterns of gene expression in a morphological context. These methods have been used widely to detect messenger RNAs and to measure enzymatic activity of reporter genes, such as beta-galactosidase or beta-glucuronidase. Taking advantage of the fact that NADH generated during the oxidation of formaldehyde by class III alcohol dehydrogenase can reduce the compound nitroblue tetrazolium to form a blue precipitate, we have developed a new method to detect class III alcohol dehydrogenase activity in situ in whole Arabidopsis plants. This reaction has been used earlier for in situ electrophoresis detection and for histochemical analysis in animal tissue sections. With a few modifications, it can be used in whole Arabidopsis plants or excised plant tissues to allow a rapid analysis of class III ADH activity during development or in response to elicitors. The method might be extended to other dehydrogenases by using specific substrates.  相似文献   

15.
We report the development of simple fluorogenic probes that report on the activity of both bacterial and mammalian uracil–DNA glycosylase (UDG) enzymes. The probes are built from short, modified single-stranded oligonucleotides containing natural and unnatural bases. The combination of multiple fluorescent pyrene and/or quinacridone nucleobases yields fluorescence at 480 and 540 nm (excitation 340 nm), with large Stokes shifts of 140–200 nm, considerably greater than previous probes. They are strongly quenched by uracil bases incorporated into the sequence, and they yield light-up signals of up to 40-fold, or ratiometric signals with ratio changes of 82-fold, on enzymatic removal of these quenching uracils. We find that the probes are efficient reporters of bacterial UDG, human UNG2, and human SMUG1 enzymes in vitro, yielding complete signals in minutes. Further experiments establish that a probe can be used to image UDG activity by laser confocal microscopy in bacterial cells and in a human cell line, and that signals from a probe signalling UDG activity in human cells can be quantified by flow cytometry. Such probes may prove generally useful both in basic studies of these enzymes and in biomedical applications as well.  相似文献   

16.
Previous studies have shown that the urokinase-type plasminogen activator receptor (uPAR) is localized to the adherence sites of leukocytes and tumor cells suggesting that pericellular proteolysis may accompany focal activation of adherence. To assess for focused pericellular proteolytic activity, we prepared two-dimensional substrates coated with FITC-casein or Bodipy FL-BSA. These molecules are poorly fluorescent, but become highly fluorescent after proteolytic degradation. Fluorescent peptide products were observed at adherence sites of stationary human neutrophils and at lamellipodia of polarized neutrophils. During cell migration, multiple regions of proteolysis appeared sequentially beneath the cell. Similarly, proteolytic action was restricted to adherence sites of resting HT1080 tumor cells but localized to the invadopodia of active cells. Using an extracellular fluorescence quenching method, we demonstrate that these fluorescent peptide products are extracellular. The uPA/uPAR system played an important role in the observed proteolytic activation. Plasminogen activator inhibitor-1 significantly reduced focal proteolysis. Sites of focal proteolysis matched the membrane distribution of uPAR. When uPA was dissociated from uPAR by acid washing, substantially reduced pericellular proteolysis was found. uPAR-negative T47D tumor cells did not express significant levels of substrate proteolysis. However, transfectant clones expressing uPAR (for example, T47D-26) displayed high levels of fluorescence indicating proteolysis at adherence sites. To provide further evidence for the role of the uPA/uPAR system in pericellular proteolysis, peritoneal macrophages from uPA knock-out (uPA–/–) and control (uPA+/+) mice were studied. Pericellular proteolysis was dramatically reduced in uPA-negative peritoneal macrophages. Thus, we have: (1) developed a novel methodology to detect pericellular proteolytic function, (2) demonstrated focused activation of proteolytic enzymatic activity in several cell types, (3) demonstrated its usefulness in real-time studies of cell migration, and (4) showed that the uPA/uPAR system is an important contributor to focal pericellular proteolysis.  相似文献   

17.
A method to detect an enzymatic reaction in a single living cell using an atomic force microscope equipped with an ultra-thin needle (a nanoneedle) and a fluorescent probe molecule was developed. The nanoneedle enables the low-invasive delivery of molecules attached onto its surface directly into a single cell. We hypothesized that an enzymatic reaction in a cell could be profiled by monitoring a probe immobilized on a nanoneedle introduced into the cell. In this study, a new probe substrate (NHGcas546) for caspase-3 activity based on fluorescent resonance energy transfer (FRET) was constructed and fixed on a nanoneedle. The NHGcas546-modified nanoneedle was inserted into apoptotic cells, in which caspase-3 is activated after apoptosis induction, and a change in the emission spectrum of the immobilized probe could be observed on the surface of the nanoneedle. Thus, we have developed a successful practical method for detecting a biological phenomenon in a single cell. We call the method MOlecular MEter with Nanoneedle Technology (MOMENT).  相似文献   

18.
Carboxylesterases hydrolyze many pharmaceuticals and agrochemicals and have broad substrate selectivity, requiring a suite of substrates to measure hydrolytic profiles. To develop new esterase substrates, a series of alpha-cyanoesters that yield fluorescent products upon hydrolysis was evaluated for use in carboxylesterase assays. The use of these substrates as surrogates for Type II pyrethroid hydrolysis was tested. The results suggest that these novel analogs are appropriate for the development of high-throughput assays for pyrethroid hydrolase activity. A set of human liver microsomes was then used to determine the ability of these substrates to report esterase activity across a small population. Results were compared against standard esterase substrates. A number of the esterase substrates showed correlations, demonstrating the broad substrate selectivity of these enzymes. However, for several of the substrates, no correlations in hydrolysis rates were observed, suggesting that multiple carboxylesterase isozymes are responsible for the array of substrate hydrolytic activity. These new substrates were then compared against alpha-naphthyl acetate and 4-methylumbelliferyl acetate for their ability to detect hydrolytic activity in both one- and two-dimensional native electrophoresis gels. Cyano-2-naphthylmethyl butanoate was found to visualize more activity than either commercial substrate. These applications demonstrate the utility of these new substrates as both general and pyrethroid-selective reporters of esterase activity.  相似文献   

19.
The association and dissociation of protein-protein complexes play an important role in various processes in living cells. The disruption of protein-protein interactions is observed in various pathologies. The study of the nature of these interactions will contribute to a better understanding of the molecular basis of the pathogenesis of the disease and the development of new approaches to therapy. Now there is a set of methods that allow one to reveal and analyze the interaction of proteins in vitro. However, more accurate data can be obtained by studying protein-protein interactions in vivo. One of a few prospective methods is based on the effect of the complementation of fragments of reporter proteins. These reporter systems are based on the change in the fluorescent properties or enzymatic activity of the proteins that can be measured using colorimetric, fluorescent, or other substrates. The principle of the complementation is widely used to analyze protein interactions, to determine of order of interaction of protein partners in different signaling pathways, as well as in high-performance screening studies for detecting and mapping previously unknown protein-protein interactions. The possibilities of existing complementation reporter systems allow one to solve problems that are far beyond the simple registration of the interactions of two or more proteins.  相似文献   

20.
Plant lignocellulose constitutes an abundant and sustainable source of polysaccharides that can be converted into biofuels. However, the enzymatic digestion of native plant cell walls is inefficient, presenting a considerable barrier to cost-effective biofuel production. In addition to the insolubility of cellulose and hemicellulose, the tight association of lignin with these polysaccharides intensifies the problem of cell wall recalcitrance. To determine the extent to which lignin influences the enzymatic digestion of cellulose, specifically in secondary walls that contain the majority of cellulose and lignin in plants, we used a model system consisting of cultured xylem cells from Zinnia elegans . Rather than using purified cell wall substrates or plant tissue, we have applied this system to study cell wall degradation because it predominantly consists of homogeneous populations of single cells exhibiting large deposits of lignocellulose. We depleted lignin in these cells by treating with an oxidative chemical or by inhibiting lignin biosynthesis, and then examined the resulting cellulose digestibility and accessibility using a fluorescent cellulose-binding probe. Following cellulase digestion, we measured a significant decrease in relative cellulose content in lignin-depleted cells, whereas cells with intact lignin remained essentially unaltered. We also observed a significant increase in probe binding after lignin depletion, indicating that decreased lignin levels improve cellulose accessibility. These results indicate that lignin depletion considerably enhances the digestibility of cellulose in the cell wall by increasing the susceptibility of cellulose to enzymatic attack. Although other wall components are likely to contribute, our quantitative study exploits cultured Zinnia xylem cells to demonstrate the dominant influence of lignin on the enzymatic digestion of the cell wall. This system is simple enough for quantitative image analysis, but realistic enough to capture the natural complexity of lignocellulose in the plant cell wall. Consequently, these cells represent a suitable model for analyzing native lignocellulose degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号