首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cenogram is a rank‐ordered body size distribution of non‐predatory terrestrial mammal species within a community. Studies of cenograms for modern faunas have shown that certain quantifiable attributes of cenograms are correlated with environmental variables such as rainfall and vegetation structure. Based on these correlations, cenograms of fossil communities have been used to infer palaeoenvironments and palaeoenvironmental variables. The present study uses cenogram statistics to interpret palaeoenvironmental conditions for eight Cenozoic South American mammal faunas, ranging from Eocene to Pleistocene in age. Body sizes for fossil taxa were taken either from the literature or were estimated using regressions of body size on molar length (or femoral bicondylar width) for modern mammals. Cenogram statistics are calculated for the eight fossil faunas and compared to similar statistics calculated for 16 modern South American mammal faunas, allowing palaeoenvironmental interpretations to be made. The palaeoenvironmental interpretations based on cenogram analyses sometimes support and sometimes contradict interpretations based on herbivore craniodental morphology (e.g. levels of hypsodonty). Simulations of expected errors in body size estimates for fossil taxa suggest that the discrepancies do not result primarily from erroneous body size estimates. It is possible that some of the incongruity in interpretations results from certain non‐analogue attributes of South American faunas during much of the Cenozoic (e.g. the relatively depauperate mammalian predator diversity prior to the Great American Biotic Interchange).  相似文献   

2.
哺乳动物群的演替过程在重建古环境和古气候中具有重要的作用。群落线(cenogram)是将陆生哺乳动物群中非肉食性种类按体重分布顺序排列的一种曲线,并可在图中将肉食性种类单独排序,以便显示动物群的整体组成。通过与现生哺乳动物群的比较,化石动物群的群落线已经被用来推断古环境及其在地质历史时期的变化。基于甘肃临夏盆地晚新生代哺乳动物群的群落线进行古环境重建,时代从晚渐新世直到早更新世。大多数化石种类的体重通过下第一臼齿面积与体重的回归公式来估计,少数种类用其他牙齿或肢骨来估计。大多数体重估计的测量数据来自临夏盆地的化石,少数取自文献。对7个化石动物群分别计算群落线的统计结果,在此基础上进行古环境解释。这些分析揭示了临夏盆地在晚中新世、早上新世和早更新世具有开阔的环境,晚渐新世是半开阔的林地,而中中新世为比较紧密的森林;在晚渐新世和晚中新世早期气候干燥,晚中新世的其他时段以及早上新世和早更新世为半干旱环境,而中中新世时期相当湿润。  相似文献   

3.
Aim The goal of this paper is to examine the relationships between body size, biomic specialization and range size in the African large mammals, which are defined as all the African species corresponding to the orders Primates, Carnivora, Proboscidea, Perissodactyla, Hyracoidea, Tubulidentata, Artiodactyla and Pholidota. Location The study used the large mammal assemblage from Africa. Methods The degree of biomic specialization of African large mammals is investigated using the biomic specialization index (BSI) for each mammal species, based on the number of biomes it inhabits. Range size for each species is measured as the latitudinal extent of the geographical distribution of the species. We have analysed our data using both conventional cross‐species analyses and phylogenetically independent contrasts. Results There is a polygonal relationship between species biomic specialization and body size. While small and large species are biomic specialists, medium‐sized species are distributed along the whole range of biomic specialization. The latitudinal extent–body size relationship is approximately triangular. Small‐bodied species may have either large or small ranges, whereas large‐bodied ones have only large ranges. A positive correlation between latitudinal extent and biomic specialization is evident, although their relationship is better described as triangular. Main conclusions We found a polygonal relationship between species biomic specialization and body size, which agrees with previous arguments that small‐bodied species have more limited dispersal and, therefore, they may come to occupy a lesser proportion of their potential inhabitable biomes. On the other hand, large‐bodied species are constrained to inhabit biomes with a high productivity. A polygonal relationship between species latitudinal extent and body size in African large mammals agrees with previous studies of the relationship between range size and body size in other continents. The independent study of the macroecological pattern in biomic specialization highlights different factors that influence the body size–range size relationship. Although body size is usually implicated as a correlate of both specialization and geographical range size in large mammals, much of the variation in these variables cannot be attributed to size differences but to biome specific factors such as productivity, area, history, etc.  相似文献   

4.
There are a number of ecogeographical “rules” that describe patterns of geographical variation among organisms. The island rule predicts that populations of larger mammals on islands evolve smaller mean body size than their mainland counterparts, whereas smaller‐bodied mammals evolve larger size. Bergmann's rule predicts that populations of a species in colder climates (generally at higher latitudes) have larger mean body sizes than conspecifics in warmer climates (at lower latitudes). These two rules are rarely tested together and neither has been rigorously tested in treeshrews, a clade of small‐bodied mammals in their own order (Scandentia) broadly distributed in mainland Southeast Asia and on islands throughout much of the Sunda Shelf. The common treeshrew, Tupaia glis, is an excellent candidate for study and was used to test these two rules simultaneously for the first time in treeshrews. This species is distributed on the Malay Peninsula and several offshore islands east, west, and south of the mainland. Using craniodental dimensions as a proxy for body size, we investigated how island size, distance from the mainland, and maximum sea depth between the mainland and the islands relate to body size of 13 insular T. glis populations while also controlling for latitude and correlation among variables. We found a strong negative effect of latitude on body size in the common treeshrew, indicating the inverse of Bergmann's rule. We did not detect any overall difference in body size between the island and mainland populations. However, there was an effect of island area and maximum sea depth on body size among island populations. Although there is a strong latitudinal effect on body size, neither Bergmann's rule nor the island rule applies to the common treeshrew. The results of our analyses demonstrate the necessity of assessing multiple variables simultaneously in studies of ecogeographical rules.  相似文献   

5.
A dynamic similarity hypothesis for the gaits of quadrupedal mammals   总被引:13,自引:0,他引:13  
The dynamic similarity hypothesis postulates that different mammals move in a dynamically similar fashion whenever they travel at speeds that give them equal values of a dimensionless parameter, the Froude number. Thus, given information about one species, it could be possible to predict for others relationships between size, speed and features of gait such as stride length, duty factor, the phase relationships of the feet and the patterns of force exerted on the ground.
Data for a diverse sample of mammals have been used to test the hypothesis. It is found to be tenable in many cases when comparisons are confined to quadrupedal mammals of the type described by Jenkins (1971) as "cursorial". Most mammals of mass greater than 5 kg are of this type. Although the hypothesis applies less successfully to comparisons between cursorial and non-cursorial mammals it is shown to be a reasonable approximation even for such comparisons and for comparisons between quadrupedal mammals and bipedal mammals and birds.  相似文献   

6.

Aim

Whether intraspecific spatial patterns in body size are generalizable across species remains contentious, as well as the mechanisms underlying these patterns. Here we test several hypotheses explaining within-species body size variation in terrestrial vertebrates including the heat balance, seasonality, resource availability and water conservation hypotheses for ectotherms, and the heat conservation, heat dissipation, starvation resistance and resource availability hypotheses for endotherms.

Location

Global.

Time period

1970–2016.

Major taxa studied

Amphibians, reptiles, birds and mammals.

Methods

We collected 235,905 body size records for 2,229 species (amphibians = 36; reptiles = 81; birds = 1,545; mammals = 567) and performed a phylogenetic meta-analysis of intraspecific correlations between body size and environmental variables. We further tested whether correlations differ between migratory and non-migratory bird and mammal species, and between thermoregulating and thermoconforming ectotherms.

Results

For bird species, smaller intraspecific body size was associated with higher mean and maximum temperatures and lower resource seasonality. Size–environment relationships followed a similar pattern in resident and migratory birds, but the effect of resource availability on body size was slightly positive only for non-migratory birds. For mammals, we found that intraspecific body size was smaller with lower resource availability and seasonality, with this pattern being more evident in sedentary than migratory species. No clear size–environment relationships were found for reptiles and amphibians.

Main conclusions

Within-species body size variation across endotherms is explained by disparate underlying mechanisms for birds and mammals. Heat conservation (Bergmann's rule) and heat dissipation are the dominant processes explaining biogeographic intraspecific body size variation in birds, whereas in mammals, body size clines are mostly explained by the starvation resistance and resource availability hypotheses. Our findings contribute to a better understanding of the mechanisms behind species adaptations to the environment across their geographic distributions.  相似文献   

7.
Habitat structure across multiple spatial and temporal scales has been proposed as a key driver of body size distributions for associated communities. Thus, understanding the relationship between habitat and body size is fundamental to developing predictions regarding the influence of habitat change on animal communities. Much of the work assessing the relationship between habitat structure and body size distributions has focused on terrestrial taxa with determinate growth, and has primarily analysed discontinuities (gaps) in the distribution of species mean sizes (species size relationships or SSRs). The suitability of this approach for taxa with indeterminate growth has yet to be determined. We provide a cross‐ecosystem comparison of bird (determinate growth) and fish (indeterminate growth) body mass distributions using four independent data sets. We evaluate three size distribution indices: SSRs, species size–density relationships (SSDRs) and individual size–density relationships (ISDRs), and two types of analysis: looking for either discontinuities or abundance patterns and multi‐modality in the distributions. To assess the respective suitability of these three indices and two analytical approaches for understanding habitat–size relationships in different ecosystems, we compare their ability to differentiate bird or fish communities found within contrasting habitat conditions. All three indices of body size distribution are useful for examining the relationship between cross‐scale patterns of habitat structure and size for species with determinate growth, such as birds. In contrast, for species with indeterminate growth such as fish, the relationship between habitat structure and body size may be masked when using mean summary metrics, and thus individual‐level data (ISDRs) are more useful. Furthermore, ISDRs, which have traditionally been used to study aquatic systems, present a potentially useful common currency for comparing body size distributions across terrestrial and aquatic ecosystems.  相似文献   

8.
We examined cell size correlations between tissues, and cell size to body mass relationships in passerine birds, amphibians and mammals. The size correlated highly between all cell types in birds and amphibians; mammalian tissues clustered by size correlation in three tissue groups. Erythrocyte size correlated well with the volume of other cell types in birds and amphibians, but poorly in mammals. In birds, body mass correlated positively with the size of all cell types including erythrocytes, and in mammals only with the sizes of some cell types. Size of mammalian erythrocytes correlated with body mass only within the most taxonomically uniform group of species (rodents and lagomorphs). Cell volume increased with body mass of birds and mammals to less than 0.3 power, indicating that body size evolved mostly by changes in cell number. Our evidence suggests that epigenetic mechanisms determining cell size relationships in tissues are conservative in birds and amphibians, but less stringent in mammals. The patterns of cell size to body mass relationships we obtained challenge some key assumptions of fractal and cellular models used by allometric theory to explain mass-scaling of metabolism. We suggest that the assumptions in both models are not universal, and that such models need reformulation.  相似文献   

9.
  1. Migration is ubiquitous among animals and has evolved repeatedly and independently. Comparative studies of the evolutionary origins of migration in birds are widespread, but are lacking in mammals. Mammalian species have greater variation in functional traits that may be relevant for migration. Interspecific variation in migration behaviour is often attributed to mode of locomotion (i.e. running, swimming, and flying) and body size, but traits associated with the evolutionary precursor hypothesis, including geographic distribution, habitat, and diet, could also be important predictors of migration in mammals. Furthermore, mammals vary in thermoregulatory strategies and include many heterothermic species, providing an alternative strategy to avoid seasonal resource depletion.
  2. We tested the evolutionary precursor hypothesis for the evolution of migration in mammals and tested predictions linking migration to locomotion, body size, geographic distribution, habitat, diet, and thermoregulation. We compiled a dataset of 722 species from 27 mammalian orders and conducted a series of analyses using phylogenetically informed models.
  3. Swimming and flying mammals were more likely to migrate than running mammals, and larger species were more likely to migrate than smaller ones. However, heterothermy was common among small running mammals that were unlikely to migrate. High-latitude swimming and flying mammals were more likely to migrate than high-latitude running mammals (where heterothermy was common), and most migratory running mammals were herbivorous. Running mammals and frugivorous bats with high thermoregulatory scope (greater capacity for heterothermy) were less likely to migrate, while insectivorous bats with high thermoregulatory scope were more likely to migrate.
  4. Our results indicate a broad range of factors that influence migration, depending on locomotion, body size, and thermoregulation. Our analysis of migration in mammals provided insight into some of the general rules of migration, and we highlight opportunities for future investigations of exceptions to these rules, ultimately leading to a comprehensive understanding of the evolution of migration.
  相似文献   

10.
Understanding the neurobiology of social behaviour in mammals has been considerably advanced by the findings from two species of vole, one of which is monogamous and pair bonds whereas the other species is promiscuous and fails to form any long-lasting social relationships. The combination of neurobehavioural studies and molecular genetics has determined behavioural differences between the two species linked to the neural distribution of vasopressin 1A receptor in the male brain. More importantly, vasopressin 1A receptor gene transfer including the upstream regulatory sequence has enhanced male social affiliation in a non-monogamous species. Male affiliative bonding depends upon release of both vasopressin and dopamine in the ventral striatum enhancing the reward value of odour cues that signal identity.  相似文献   

11.
An optimum body size for mammals? Comparative evidence from bats   总被引:9,自引:0,他引:9  
1. The distribution of body sizes among mammalian species has been modelled by Brown, Marquet & Taper (1993), who suggest that reproductive power (the rate at which energy from the environment is channelled into offspring production) is maximized at a size of 100 g, and the observed size distribution among species reflects the way reproductive power depends on size. The model makes a testable prediction about life-history allometries: namely, that components of reproductive power should not scale linearly with body size but should change sign at the optimum size.
2. A large set of life-history data from a single clade of small mammals, the bats (Order: Chiroptera), was analysed to test this key prediction. The analyses in this study offer no support for the idea that allometries of reproductive power change sign in bats, either at 100 g or at any other size. Furthermore the life-history allometries of bats, which are mostly below the 100 g optimum, were broadly the same as in mammalian taxa larger than the optimum size.
3. These findings together contradict a key prediction of Brown et al. 's (1993) model to explain the skewed body size distribution across mammalian species.  相似文献   

12.
Aim  We searched for relationships between latitude and both the geographic range size and host specificity of fleas parasitic on small mammals. This provided a test for the hypothesis that specialization is lower, and thus niche breadth is wider, in high-latitude species than in their counterparts at lower latitudes.
Location  We used data on the host specificity and geographic range size of 120 Palaearctic flea species (Siphonaptera) parasitic on small mammals (Soricomorpha, Lagomorpha and Rodentia). Data on host specificity were taken from 33 regions, whereas data on geographic ranges covered the entire distribution of the 120 species.
Methods  Our analyses controlled for the potentially confounding effects of phylogenetic relationships among flea species by means of the independent-contrasts method. We used regressions and structural equation modelling to determine whether the latitudinal position of the geographic range of a flea covaried with either the size of its range or its host specificity. The latter was measured as the number of host species used, as well as by an index providing the average (and variance in) taxonomic distinctness among the host species used by a flea.
Results  Geographic range size was positively correlated with the position of the centre of the range; in other words, fleas with more northerly distributions had larger geographic ranges. Although the number of host species used by a flea did not vary with latitude, both the mean taxonomic distinctness among host species used and its variance increased significantly towards higher latitudes.
Main conclusions  The results indicate that niche breadth in fleas, measured in terms of both its spatial (geographic range size) and biological (host specificity) components, increases at higher latitudes. These findings are compatible with the predictions of recent hypotheses about latitudinal gradients.  相似文献   

13.
The present study attempts to characterize the environmental conditions that prevailed along the western shores of the Central Paratethys and its hinterland during the early middle Miocene at the same time t primates reached their peak in species diversity in Central Europe. Based on faunal structure (using cenograms), paleotemperature reconstruction (using cricetid diversity), and dietary reconstruction of ruminants (using molar micro-wear analyses), four faunal assemblages are used to characterize the regional environmental context. The cenograms for Göriach and Devínska Novà Ves Zapfe's fissure site support the presence of mosaic environments with open areas under rather humid conditions. This is also supported by the dental micro-wear analyses of ruminants. The species of Palaeomerycidae were most probably the only predominant browsers. Surprisingly, the three cervids, Dicrocerus, Heteroprox, and Euprox, were highly involved in grazing. Pseudoeotragus seegrabensis was likely a generalist and the two specimens assigned to the second bovid, Eotragus clavatus, were browsers. The two species of tragulids plot between fruit browsers and generalists. Moreover, paleotemperatures based on cricetid diversity estimate mean annual temperature at about 18 °C with potential high seasonal variations. These data support the predominance of mosaic landscapes along the western shores of the Central Paratethys and its hinterland during the Miocene Climatic Optimum as primates reach a peak in species diversity. This result lends credence to the hypothesis that environmental heterogeneity favours radiation among mammals, and that the specific environmental context of the Central Paratethys western border might explain the high diversity of the middle Miocene primates.  相似文献   

14.
The origins of sexual dimorphism in body size in ungulates   总被引:4,自引:0,他引:4  
Jarman (1974) proposed a series of relationships between habitat use, food dispersion, and social behavior and hypothesized a series of evolutionary steps leading to sexual dimorphism in body size through sexual selection in African antelope species. The hypothesis states that sexual size dimorphism evolved in a three-step process. Initially, ancestral monomorphic and monogamous ungulate species occupying closed habitats radiated into open grassland habitats. Polygynous mating systems then rapidly evolved in response to the aggregation of males and females, perhaps in relation to the clumped distribution of food resources in open habitats. Subsequently, size dimorphism evolved in those species occupying open habitats, but not in species that remained in closed habitats or retained monogamy. This hypothesis has played an important role in explaining the origins of sexual dimorphism in mammals. However, the temporal sequence of the events that Jarman proposed has never been demonstrated. Here we use a phylogeny of extant ungulate species, along with maximum-likelihood statistical techniques, to provide a test of Jarman's hypothesis.  相似文献   

15.
Predator-prey body mass relationships are a vital part of food webs across ecosystems and provide key information for predicting the susceptibility of carnivore populations to extinction. Despite this, there has been limited research on the minimum and maximum prey size of mammalian carnivores. Without information on large-scale patterns of prey mass, we limit our understanding of predation pressure, trophic cascades and susceptibility of carnivores to decreasing prey populations. The majority of studies that examine predator-prey body mass relationships focus on either a single or a subset of mammalian species, which limits the strength of our models as well as their broader application. We examine the relationship between predator body mass and the minimum, maximum and range of their prey''s body mass across 108 mammalian carnivores, from weasels to baleen whales (Carnivora and Cetacea). We test whether mammals show a positive relationship between prey and predator body mass, as in reptiles and birds, as well as examine how environment (aquatic and terrestrial) and phylogenetic relatedness play a role in this relationship. We found that phylogenetic relatedness is a strong driver of predator-prey mass patterns in carnivorous mammals and accounts for a higher proportion of variance compared with the biological drivers of body mass and environment. We show a positive predator-prey body mass pattern for terrestrial mammals as found in reptiles and birds, but no relationship for aquatic mammals. Our results will benefit our understanding of trophic interactions, the susceptibility of carnivores to population declines and the role of carnivores within ecosystems.  相似文献   

16.
Aim Our aim was to investigate how the environment, species characteristics and historical factors at the subcontinental scale affect patterns of diversity. We used the assembly of the Yellowstone biota over the past 10,000 years as a natural experiment for investigating the processes that generate a modern non‐volant mammal species pool. Location The data represent species from throughout North America with special attention to the non‐volant mammals of Yellowstone National Park, USA. Methods We used digitized range maps to determine biogeographical affinity for all non‐volant mammals in the Rocky Mountains, Deserts and Great Plains biogeographical regions of North America. This biogeographical affinity, along with taxonomic order and body size class, was used to test whether non‐random patterns exist in the assemblage of Yellowstone non‐volant mammals. These characteristics were also used to investigate the strength of non‐random processes, such as habitat or taxon filtering, on particular groups of species or individual species. Results Our results indicated that the Yellowstone fauna is composed of a non‐random subset of mammals from specific body size classes and with particular biogeographical affinities. Analyses by taxonomic order found significantly more Carnivora from the Rocky Mountains region and significantly fewer Rodentia from the Deserts region than expected from random assembly. Analyses using body size classes revealed deviations from expectations, including several significant differences between the frequency distribution of regional body sizes and the distribution of those species found within Yellowstone. Main conclusions Our novel approach explores processes affecting species pool assembly in the Yellowstone region and elsewhere, and particularly identifies unique properties of species that may contribute to non‐random assembly. Focusing on the mechanisms generating diversity, not just current diversity patterns, will assist the design of conservation strategies given future environmental change scenarios.  相似文献   

17.
The critical weight range (CWR) hypothesis for Australian mammals states that extinctions and declines have been concentrated in species with body mass between 35 g and 5.5 kg. The biological basis for this hypothesis is that species of intermediate size are disproportionately impacted by introduced predators. The CWR hypothesis has received support from several statistical studies over the past decade, although the evidence is weaker or non‐existent for certain groups such as mesic‐zone mammals and arboreal mammals. In this study, we employ an information‐theoretic model selection approach to gain further insights into the relationship between body mass and extinction risk in Australian mammals. We find evidence, consistent with the CWR hypothesis, that extinction risk peaks at intermediate body masses for marsupials, rodents and ground‐dwelling species, but not for arboreal species. In contrast to previous studies, we find that the CWR describes extinction patterns in the mesic zone as well as the arid zone. In the mesic zone, there is also a weaker tendency for large species above the CWR to be more vulnerable, consistent with extinction patterns on other continents. We find that a more biological plausible Gaussian distribution consistently fits the data better than the polynomial models that have been used in previous studies. Our results justify conservation programmes targeted at species within the CWR across Australia.  相似文献   

18.
Predator–prey relationships play a key role in the evolution and ecology of carnivores. An understanding of predator–prey relationships and how this differs across species and environments provides information on how carnivorous strategies have evolved and how they may change in response to environmental change. We aim to determine how mammals overcame the challenges of living within the marine environment; specifically, how this altered predator–prey body mass relationships relative to terrestrial mammals. Using predator and prey mass data collected from the literature, we applied phylogenetic piecewise regressions to investigate the relationship between predator and prey size across carnivorous mammals (51 terrestrial and 56 marine mammals). We demonstrate that carnivorous mammals have four broad dietary groups: small marine carnivores (< 11 000 kg) and small terrestrial carnivores (< 11 kg) feed on prey less than 5 kg and 2 kg, respectively. On average, large marine carnivores (> 11 000 kg) feed on prey equal to 0.01% of the carnivore's body size, compared to 45% or greater in large terrestrial carnivores (> 11 kg). We propose that differences in prey availability, and the relative ease of processing large prey in the terrestrial environment and small prey in marine environment, have led to the evolution of these novel foraging behaviours. Our results provide important insights into the selection pressures that may have been faced by early marine mammals and ultimately led to the evolution of a range of feeding strategies and predatory behaviours.  相似文献   

19.
Connecting species richness, abundance and body size in deep-sea gastropods   总被引:1,自引:0,他引:1  
Aim This paper examines species richness, abundance, and body size in deep‐sea gastropods and how they vary over depth, which is a strong correlate of nutrient input. Previous studies have documented the empirical relationships among these properties in terrestrial and coastal ecosystems, but a full understanding of how these patterns arise has yet to be obtained. Examining the relationships among macroecological variables is a logical progression in deep‐sea ecology, where patterns of body size, diversity, and abundance have been quantified separately but not linked together. Location 196–5042 m depth in the western North Atlantic. Method Individuals analysed represent all Vetigastropoda and Caenogastropoda (Class Gastropoda) with intact shells, excluding Ptenoglossa, collected by the Woods Hole Benthic Sampling Program (3424 individuals representing 80 species). Biovolume was measured for every individual separately (i.e. allowing the same species to occupy multiple size classes) and divided into log2 body size bins. Analyses were conducted for all gastropods together and separated into orders and depth regions (representing different nutrient inputs). A kernel smoothing technique, Kolmogorov‐Smirnov test of fit, and OLS and RMA were used to characterize the patterns. Results Overall, the relationship between the number of individuals and species is right skewed. There is also a positive linear relationship between the number of individuals and the number of species, which is independent of body size. Variation among these relationships is seen among the three depth regions. At depths inferred to correspond with intermediate nutrient input levels, species are accumulated faster given the number of individuals and shift from a right‐skewed to a log‐normal distribution. Conclusion A strong link between body size, abundance, and species richness appears to be ubiquitous over a variety of taxa and environments, including the deep sea. However, the nature of these relationships is affected by the productivity regime and scale at which they are examined.  相似文献   

20.
The theory of regulation in animal populations is fundamental to understanding the dynamics of populations, the causes of mortality and how natural selection shapes the life history of species. In mammals, the great range in body size allows us to see how allometric relationships affect the mode of regulation. Resource limitation is the fundamental cause of regulation. Top-down limitation through predators is determined by four factors: (i). body size; (ii). the diversity of predators and prey in the system; (iii). whether prey are resident or migratory; and (iv). the presence of alternative prey for predators. Body size in mammals has two important consequences. First, mammals, particularly large species, can act as keystones that determine the diversity of an ecosystem. I show how keystone processes can, in principle, be measured using the example of the wildebeest in the Serengeti ecosystem. Second, mammals act as ecological landscapers by altering vegetation succession. Mammals alter physical structure, ecological function and species diversity in most terrestrial biomes. In general, there is a close interaction between allometry, population regulation, life history and ecosystem dynamics. These relationships are relevant to applied aspects of conservation and pest management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号