首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During 1990–1997, we recorded 122 138 adult butterflies in transect surveys at 125 pine-oak barrens in northern Wisconsin and 106 tallgrass prairies in six midwestern states grouped into three prairie subregions. Before analysis, we classified the butterflies into three ecological subgroups: specialist of native herbaceous vegetation, grassland (widely occurring in native and degraded herbaceous vegetation), and generalist. We analyzed this dataset both by ecological subgroups and as total butterflies, and by relative density and species richness, to investigate how these different ways of ordinating the same dataset might affect the results. In multiple linear regressions, density and richness of total butterflies and the subgroups related significantly to many non-management factors. In comparisons of more vs. less recent burning, all significant results for most recent burning were negative. No significant negative relationships were attributed to the longest period since burning. In comparisons of burning vs. idling, all significant results in prairie favored idling, but in barrens favored burning. In comparisons of burning vs. mechanical cutting, all significant results in prairie favored cutting, but no significant differences occurred in barrens. In regressions including all management types, rotational burning (alone or combined with cutting) was significantly positive most often for generalists and never for specialists. Increasing years since last management was always negative in barrens and the southern prairie subregion but always positive in the two northern prairie subregions. Significant management patterns occurred more often in prairie than barrens, which were less fragmented. Specialists were favored by grazing in one northern prairie subregion (but disfavored in the other), haying, single wildfire (testable in barrens only), and increasing years since last treatment in one northern prairie subregion (but disfavored in barrens). Within subregion and subgroup, significant management results for density and richness never conflicted, but density had more significant results than richness. In no instances were the signs opposite when total butterflies and/or any subgroup(s) significantly related to the same management factor in the same type of regression. But what was significant for one sample was often not for another. Thus, management favorable for specialists and total butterflies did not conflict, but the subgroups had varying degrees of sensitivity, rather than opposite responses. Since the specialist (and total) butterflies did not consistently favor one management type over another among subregions, caution should be used in preserve management, to avoid overreliance on one management type over others.  相似文献   

2.
This paper documents the existence and character of a little known fire‐maintained anthropogenic ecosystem in the southeastern Olympic Peninsula of Washington State, U.S.A. Due to cessation of anthropogenic burning, there is no longer an intact example of this ecosystem. We present evidence from Skokomish oral tradition, historical documents, floral composition, tree‐ring analysis, stand structure, and site potential to describe former savanna structure and function. We believe this system was a mosaic of prairies, savannas, and woodlands in a forest matrix maintained through repeated burning to provide culturally important plants and animals. The overstory was dominated by Douglas‐fir (Pseudotsuga menziesii). Bear grass (Xerophyllum tenax) likely was a dominant understory component of the savannas, woodlands, and prairie edges. These lands grew forests in the absence of anthropogenic burning. Wide spacing of older trees or stumps in former stands and rapid invasion by younger trees in the late 1800s and early 1900s suggest a sudden change in stand structure. Shade‐intolerant prairie species are still present where openings have been maintained but not in surrounding forests. Bark charcoal, fire scars, tree establishment patterns, and oral traditions point to use of fire to maintain this system. A common successional trajectory for all these lands leads to forested vegetation. These findings suggest that frequent application of prescribed burning would be necessary to restore this ecosystem.  相似文献   

3.
4.
Abstract. The response to prescribed burning of plant communities ranging from dry to wet habitats was monitored using permanent plots sampled from 1989 to 1993. Temporal controls for fire effects were provided by matched sets of plots protected from fire by newly constructed fire breaks. Changes in species composition were studied by ordination of strata of trees (> 5 cm DBH), small trees (2–5 cm DBH), large saplings (1–2 cm DBH), and small saplings and seedlings (50–140 cm tall). Results show that changes occurred largely in the small tree stratum, in which xeric species increased in importance. Although there were changes in sapling and seedling strata, no clear direction of change was recognized. Fire had little effect on the tree stratum. Of the seven community types under study, three types, sandhill, upland pine, and upperslope pine-oak, were most strongly affected, as indicated by post-fire change in positions of samples representing these communities in ordination space and reduction in understory species abundance. Samples representing the other four mesic and wet communities showed little or no change in their positions. These short-term results indicate that changes in vegetation resulting from fire were small and were mostly restricted to the dry types in which possible compositional change is expected to occur. This differential effect of fire suggests that the influence of fire is secondary to that of topographical and soil gradients in determining vegetation pattern under current fire regimes. Fire seems to reinforce an overall vegetation gradient controlled by soil in southeastern Texas.  相似文献   

5.
Fire regimes have a major influence on biodiversity in many ecosystems around the globe, yet our understanding of the longer‐term response of fauna is typically poor. We sampled bats with ultrasonic detectors in three different years in dry sclerophyll forests of south‐eastern Australia in a long‐term, management‐scale experiment. Frequent low‐intensity burning (every 2 or 4 years plus unburnt) and logging (with 33% retention of the original unlogged tree basal area) were manipulated to assess their effects on bats. We found that both the fire regime and regrowth after logging influenced the local bat community. The routine burning treatment (burnt every 4 years) in unlogged forest was consistently related to higher total bat activity (2–3 times) and species richness when compared to unburnt controls and logging treatments. Foraging activity was more variable, but it was typically lowest in Unlogged Unburnt Controls. These patterns were evident at both the detector site scale and the block scale and were probably due to a reduction in understorey stem density with burning, especially in unlogged forest. Bat activity was significantly lower across the entire study area (including controls) in 1 year, when sampling occurred within 6 months of burning. When pooled across burning treatments, unlogged forest supported higher bat activity (1.5 times) and species richness than logged forest (12‐ to 17‐year‐old regrowth), again most likely because of a negative association with high stem density in regrowth after logging. We conclude that low‐intensity burning had positive benefits for echolocating bats, most notably in unlogged forest. However, careful planning is required to generate heterogeneous vegetation patterns that are likely to be most suitable for a range of taxa.  相似文献   

6.
Abstract. A southern ridge sandhill site in central Florida, USA, was burned in 1989, 1991, and 1995 after 63 years of fire‐suppression to simulate a pre‐settlement fire regime. Fire changed species abundance and vegetation structure but caused only minimal changes in species turnover and diversity. There was a general trend for an increase in the cover of herbs following fire but this was a statistically significant effect for only one species, Liatris tenuifolia var. tenuifolia. Aristida beyrichiana increased, litter cover and litter depth were significantly reduced, and ground lichens were eliminated in response to burning. Scrub oaks and palmettos in the ground cover and small shrub layers (height ≤ 1 m) either increased or did not respond to burning, reflecting strong post‐fire resprouting. Diversity in the ground cover and small shrub layers were not affected by fire. Scrub oaks and palmettos in the large shrub and overstorey layers (height > 1 m) were reduced in density, basal area, and longest canopy measurements in response to fire. Species diversity also decreased within these layers following fire. Some Pinus elliottii var. densa survived fire, but their density was reduced. All Pinus clausa were eliminated by fire. Periodic burning can suppress the dominance of shrubs (Quercus spp.) while increasing the cover of grasses and herbs in southern ridge sandhill vegetation.  相似文献   

7.
Fire is an important tool in the conservation and restoration of tallgrass prairie ecosystems. We investigated how both the vegetation composition and butterfly community of tallgrass prairie remnants changed in relation to the elapsed time (in months) since prescribed fire. Butterfly richness and butterfly abundance were positively correlated with the time since burn. Habitat-specialist butterfly richness recovery time was greater than 70 months post-fire and habitat-specialist butterfly abundance recovery time was approximately 50 months post-fire. Thus, recovery times for butterfly populations after prescribed fires in our study were potentially longer than those previously reported. We used Path Analysis to evaluate the relative contributions of the direct effect of time since fire and the indirect effects of time since fire through changes in vegetation composition on butterfly abundance. Path models highlighted the importance of the indirect effects of fire on habitat features, such as increases in the cover of bare ground. Because fire return intervals on managed prairie remnants are often less than 5 years, information on recovery times for habitat-specialist insect species are of great importance.  相似文献   

8.
Question: Does the development of Brachystegia‐Julbernardia (miombo) woodland after felling, and under a variable fire regime, occur via a serai stage of fire‐tolerant species? Location: Four sites in central Zambia, Africa. Methods: Trees in replicate plots were clear‐cut and stumps and resprouts enumerated. Species recruited into the tree layer (> 2.0 m tall) were monitored for 11 years (1991–2001) and fire occurrence and herbaceous biomass assessed annually to determine fuel loads. Results: Fire frequency was variable at the study sites and fuel loads were generally too low to suppress woodland regeneration after felling. However, at one site a change from low to high fire frequency arrested woodland development and triggered a regression towards a ‘fire‐trap’ vegetation type in which a few fire‐tolerant species survived. There was no evidence to support the hypothesis that miombo woodland regeneration is facilitated by a sere of fire‐tolerant species. All regrowth after felling was from resprouting plants present before felling. Trees with a previous history of felling sprouted more vigorously than trees that had not been felled before. Species richness in the tree layer increased with time since felling because resprout species had different height growth rates. Conclusion: The resilience of miombo trees after clear‐felling is largely due to their capacity to regenerate vegetatively from resprouts and stumps after release from frequent fires. Coppicing is therefore recommended as a suitable management technique for miombo woodland in central southern Africa.  相似文献   

9.
Fire frequency has significant effects on the biota of tallgrass prairie, including mammals, vascular plants and birds. Recent concern has been expressed that widespread annual burning, sometimes in combination with heavy livestock grazing, negatively impacts the biota of remaining prairie remnants. A common management recommendation, intended to address this problem, is to create a landscape with a mosaic of different burn regimes. Pitfall trapping was used to investigate the impacts of fire pattern on the diversity and species composition of ground beetles (Coleoptera: Carabidae) at Konza Prairie Biological Station in eastern Kansas, USA. Trapping was conducted over three seasons in landscape units burned on average every 1, 4, or 20 years, and in a fourth season across the available range of vegetative structure to assess the variability of the community within the study system. In the fifth season communities were also followed immediately after two fire events to detect within-season effects of fire and to study short-term patterns of post-disturbance community assembly. Fire frequency had comparatively minimal effects on ground beetle diversity measures, and most numerically common species were observed widely across habitat and management types. Fire frequency effects were manifested primarily in changes in abundance of common species. Colonization of burned areas apparently did not occur from juxtaposed non-burned areas, but from underground or from long distances. While these results suggest that widespread annual burning of tallgrass prairie remnants may not have dramatic effects on prairie ground beetles, we urge caution regarding the application of these results to other taxa within tallgrass prairie.  相似文献   

10.
Abstract. Through an experiment in three prairie vegetation types in western Oregon, USA the effect of prescribed fire on the timing and rates of seedling emergence and mortality was examined. Seeds of common exotic and native prairie species were sown into burned and unburned plots in late September, 1995. Emerged seedlings were censussed the following winter, early spring and late spring. Results indicated that spring population levels could not be forecast by fall seedling flushes, as winter survival was important in seedling establishment. The bulk of emergence for all grass and annual forb species occurred in the fall, followed by low to severe winter mortality. Perennial forbs were more variable in emergence times but, once emerged, perennial forb seedlings were likely to become established. Burning caused a statistically significant increase in seedling accumulation through emergence and survival in 11 of 23 cases. Burning improved seedling winter survival for most grass and short‐lived forb species and increased emergence of perennial forb species. These patterns were most conspicuous on the two sites dominated by exotic species, where burning significantly improved the accumulation of seedlings from most native species tested. Thus, prescribed burning might be a useful restoration tool in these communities. In contrast, two of the three species increased by burning in the native bunchgrass site were exotic pest plants, suggesting that fire should be prescribed with caution.  相似文献   

11.
Fire does not alter vegetation in infertile prairie   总被引:1,自引:0,他引:1  
Knops JM 《Oecologia》2006,150(3):477-483
The paradigm in prairie ecology is that fire is one of the key factors determining vegetation composition. Fire can impact grassland ecosystems in various ways, including changing plant species composition and inducing nitrogen loss. I found that 17 years of different burning frequencies in infertile grassland had only a minor impact on the vegetation composition and diversity. The only major impact from increasing the frequency of fires was a decrease of Poa pratensis abundance. However, other plant species did not respond to the change in Poa abundance. This result contrasts with previous studies in savannas and more productive grasslands, where the balance between trees, grasses, and the elimination of the litter layer can result in large vegetation changes. However, in this system primary productivity was low, litter did not accumulate and no major vegetation shifts occurred. Thus, the long-term vegetation impacts of burning in an infertile, low-productivity prairie were minimal.  相似文献   

12.
The concurrent discussions of landscape scale restoration among restoration ecologists, and of historic disturbance pattern as a guideline for forest management among forest scientists, offer a unique opportunity for collaboration between these traditionally separated fields. The objective of this study was to review the environmental history, early restoration projects, and current plans to restore landscape patterns at broader scales in the 450,000 ha northwest Wisconsin Pine Barrens. The Pine Barrens offer an example of a landscape shaped by fire in the past. In northwestern Wisconsin historically the barrens were a mosaic of open prairie, savanna, and pine forests on very poor, sandy soils. The surrounding region of better soils was otherwise heavily forested. Six restoration sites have been managed since the middle of this century using prescribed burns to maintain the open, barrens habitat. However, these sites are not extensive enough to mimic the shifting mosaic of large open patches previously created by fire. Extensive clear‐cuts may be used as a substitute for these large fire patches so that presettlement landscape patterns are more closely approximated in the current landscape. We suggest that such silvicultural treatments can be suitable to restore certain aspects of presettlement landscapes, such as landscape pattern and open habitat for species such as grassland birds. We are aware that the effects of fire and clear‐cuts differ in many aspects and additional management tools, such as prescribed burning after harvesting, may assist in further approximating the effect of natural disturbance. However, the restoration of landscape pattern using clear‐cuts may provide an important context for smaller isolated restoration sites even without the subsequent application of fire, in this formerly more open landscape.  相似文献   

13.
An area of eucalypt forest on a rocky ridge, at the Solar Village near Darwin, protected from fire for 10 years, was compared with surrounding irregularly and regularly burnt vegetation. Vegetation patterns were influenced by fire history and aspect. Species richness was highest where the fire regime was moderate, and lowest in the fire-protected bush. The vegetation response at the Solar Village contrasted with another experiment, conducted at Munmalary in northern Australia, where fire was excluded from eucalypt forest and woodland. Very low numbers of facultative monsoon forest species seem favoured with fire protection at the Solar Village. Almost all common tree and shrub species moved into the mid canopy with fire protection, compared to Munmalary where most tree species did not leave the ground layer. The difference in the response of these two places is attributed to the interaction between site and fire influences and it is suggested that structural mutability of these forests increases on stressful sites, although the actual mechanics of the site/fire interactions remains unclear. There is no evidence to support an interactive model which predicts that relief from fire and favourable soil moisture conditions allows the accession of broadleaved shrubs into the mid storey.  相似文献   

14.
Periodic fire, grazing, and a variable climate are considered the most important drivers of tallgrass prairie ecosystems, having large impacts on the component species and on ecosystem structure and function. We used long-term experiments at Konza Prairie Biological Station to explore the underlying demographic mechanisms responsible for tallgrass prairie responses to two key ecological drivers: fire and grazing. Our data indicate that belowground bud banks (populations of meristems associated with rhizomes or other perennating organs) mediate tallgrass prairie plant response. Fire and grazing altered rates of belowground bud natality, tiller emergence from the bud bank, and both short-term (fire cycle) and long-term (>15 year) changes in bud bank density. Annual burning increased grass bud banks by 25% and decreased forb bud banks by 125% compared to burning every 4 years. Grazing increased the rate of emergence from the grass bud bank resulting in increased grass stem densities while decreasing grass bud banks compared to ungrazed prairie. By contrast, grazing increased both bud and stem density of forbs in annually burned prairie but grazing had no effect on forb bud or stem density in the 4-year burn frequency treatment. Lastly, the size of the reserve grass bud bank is an excellent predictor of long-term ANPP in tallgrass prairie and also of short-term interannual variation in ANPP associated with fire cycles, supporting our hypothesis that ANPP is strongly regulated by belowground demographic processes. Meristem limitation due to management practices such as different fire frequencies or grazing regimes may constrain tallgrass prairie responses to interannual changes in resource availability. An important consequence is that grasslands with a large bud bank may be the most responsive to future climatic change or other global change phenomena such as nutrient enrichment, and may be most resistant to exotic species invasions.  相似文献   

15.
Ecosystems managed with contrasting fire regimes provide insight into the responses of vegetation and soil. Heathland, woodland and forest ecosystems along a gradient of resource availability were burnt over four decades in approximately 3- or 5-year intervals or were unburnt for 45–47 years (heathland, woodland), or experienced infrequent wildfires (forest: 14 years since the last fire). We hypothesized that, relative to unburnt or infrequent fires, frequent burning would favour herbaceous species over woody species and resprouting over obligate seeder species, and reduce understorey vegetation height, and topsoil carbon and nitrogen content. Our hypothesis was partially supported in that herbaceous plant density was higher in frequently burnt vegetation; however, woody plant density was also higher in frequently burnt areas relative to unburnt/infrequently burnt areas, across all ecosystems. In heathland, omission of frequent fire resulted in the dominance of fern Gleichenia dicarpa and subsequent competitive exclusion of understorey species and lower species diversity. As hypothesized, frequent burning in woodland and forest increased the density of facultative resprouters and significantly reduced soil organic carbon levels relative to unburnt sites. Our findings confirm that regular burning conserves understorey diversity and maintains an understorey of lower statured herbaceous plants, although demonstrates the potential trade-off of frequent burning with lower topsoil carbon levels in the woodland and forest. Some ecosystem specific responses to varied fire frequencies were observed, reflecting differences in species composition and fire response traits between ecosystems. Overall, unburnt vegetation resulted in the dominance of some species over others and the different vegetation types were able to withstand relatively high-frequency fire without the loss of biodiversity, mainly due to high environmental productivity and short juvenile periods.  相似文献   

16.
Fire is both inevitable and necessary for maintaining the structure and functioning of mesic savannas. Without disturbances such as fire and herbivory, tree cover can increase at the expense of grass cover and over time dominate mesic savannas. Consequently, repeated burning is widely used to suppress tree recruitment and control bush encroachment. However, the effect of regular burning on invasion by alien plant species is little understood. Here, vegetation data from a long-term fire experiment, which began in 1953 in a mesic Zimbabwean savanna, were used to test whether the frequency of burning promoted alien plant invasion. The fire treatments consisted of late season fires, lit at 1-, 2-, 3-, and 4-year intervals, and these regularly burnt plots were compared with unburnt plots. Results show that over half a century of frequent burning promoted the invasion by alien plants relative to areas where fire was excluded. More alien plant species became established in plots that had a higher frequency of burning. The proportion of alien species in the species assemblage was highest in the annually burnt plots followed by plots burnt biennially. Alien plant invasion was lowest in plots protected from fire but did not differ significantly between plots burnt triennially and quadrennially. Further, the abundance of five alien forbs increased significantly as the interval (in years) between fires became shorter. On average, the density of these alien forbs in annually burnt plots was at least ten times as high as the density of unburnt plots. Plant diversity was also altered by long-term burning. Total plant species richness was significantly lower in the unburnt plots compared to regularly burnt plots. These findings suggest that frequent burning of mesic savannas enhances invasion by alien plants, with short intervals between fires favouring alien forbs. Therefore, reducing the frequency of burning may be a key to minimising the risk of alien plant spread into mesic savannas, which is important because invasive plants pose a threat to native biodiversity and may alter savanna functioning.  相似文献   

17.
Dry woodlands frequently experience fire, and the heterogeneous spatial patterning of vegetation cover and fire behavior in these systems can lead to interspersed burned and unburned patches of different vegetation cover types. Biogeochemical processes may differ due to fire and vegetation cover influences on biotic and abiotic conditions, but these persistent influences of fire in the months or years following fire are not as well understood as the immediate impacts of fire. In particular, leaf litter decomposition, a process controlling nutrient availability and soil organic matter accumulation, is poorly understood in drylands but may be sensitive to vegetation cover and fire history. Decomposition is responsive to changes in abiotic drivers or interactions between abiotic conditions and biotic drivers, suggesting that decomposition rates may differ with vegetation cover and fire. The objective of this study was to assess the role of vegetation cover and fire on leaf litter decomposition in a semi-arid pinyon-juniper woodland in southern New Mexico, USA, where prescribed fire is used to combat increasing woody cover. A spatially heterogeneous prescribed burn led to closely co-located but discrete burned and unburned patches of all three dominant vegetation cover types (grass, shrub, tree). Decomposition rates of leaf litter from two species were measured in mesh litterbags deployed in factorial combination of the three vegetation cover types and two fire treatments (burned and unburned patches). For both litter types, decomposition was lower for unburned trees than for unburned grass or shrubs, perhaps due to greater soil–litter mixing and solar radiation away from tree canopies. Fire enhanced litter mass loss under trees, making decomposition rates similarly rapid in burned patches of all three vegetation cover types. Understanding decomposition dynamics in spatially heterogeneous vegetation cover of dry woodlands is critical for understanding biogeochemical process responses to fire in these systems.  相似文献   

18.
We used a long‐term fire experiment in south‐east Queensland, Australia, to determine the effects of frequent prescribed burning and fire exclusion on understorey vegetation (<7.5 m) richness and density in Eucalyptus pilularis forest. Our study provided a point in time assessment of the standing vegetation and soil‐stored vegetation at two experimental sites with treatments of biennial burning, quadrennial burning since 1971–1972 and no burning since 1969. Vegetation composition, density and richness of certain plant groups in the standing and soil‐stored vegetation were influenced by fire treatments. The density of resprouting plants <3 m in height was higher in the biennially burnt treatment than in the unburnt treatment, but resprouters 3–7.5 m in height were absent from the biennial burning treatment. Obligate seeder richness and density in the standing vegetation was not significantly influenced by the fire treatments, but richness of this plant group in the seed bank was higher in the quadrennial treatment at one site and in the long unburnt treatment at the other site. Long unburnt treatments had an understorey of rainforest species, while biennial burning at one site and quadrennial burning at the other site were associated with greater standing grass density relative to the unburnt treatment. This difference in vegetation composition due to fire regime potentially influences the flammability of the standing understorey vegetation. Significant interactions between fire regime and site, apparent in the standing and soil‐stored vegetation, demonstrate the high degree of natural variability in vegetation community responses to fire regimes.  相似文献   

19.
Fire and herbivores alter vegetation structure and function. Future fire activity is predicted to increase, and quantifying changes in vegetation communities arising from post‐fire herbivory is needed to better manage natural environments. We investigated the effects of post‐fire herbivory on understory plant communities in a coastal eucalypt forest in southeastern Australia. We quantified herbivore activity, understory plant diversity, and dominant plant morphology following a wildfire in 2017 using two sizes of exclosures. Statistical analysis incorporated the effect of exclusion treatments, time since fire, and the effect of a previous prescribed burn. Exclusion treatments altered herbivore activity, but time since fire did not. Herbivory reduced plant species richness, diversity, and evenness and promoted the dominance of the most abundant plants within the understory. Increasing time since fire reduced community diversity and evenness and influenced morphological changes to the dominant understory plant species, increasing size and dead material while decreasing abundance. We found the legacy effects of a previous prescribed burn had no effect on herbivores or vegetation within our study. Foraging by large herbivores resulted in a depauperate vegetation community. As post‐fire herbivory can alter vegetation communities, we postulate that management burning practices may exacerbate herbivore impacts. Future fire management strategies to minimize herbivore‐mediated alterations to understory vegetation could include aggregating management burns into larger fire sizes or linking fire management with herbivore management. Restricting herbivore access following fire (planned or otherwise) can encourage a more diverse and species‐rich understory plant community. Future research should aim to determine how vegetation change from post‐fire herbivory contributes to future fire risk.  相似文献   

20.
Rock barrens support rare plant species but may be threatened by forest expansion. We determined the extent of forest expansion onto open coastal barrens and identified environmental correlates of dynamic versus persistent barrens in Nova Scotia, Canada. We used aerial photos to quantify the amount of forest expansion over the last 70 years at five coastal barrens sites and GIS to derive topographic and other environmental predictors to differentiate persistent coastal barrens compared with persistent forests or barrens that succeed to forests. Linear discriminant and classification tree analyses identified the variables associated with each class of habitat. Coastal barrens decreased by an average of 7.9% (from 4.2 to 24.6% depending on the site) in the last 70 years due to forest expansion. The best predictors of persistent barrens were elevation and distance to coast. Environmental factors such as topographical heterogeneity and evidence of fire varied among sites. Climatic and edaphic conditions near the coast and in exposed inland areas may protect coastal barrens vegetation from forest expansion. Evidence of fire was not found at all barrens sites, thus at least some of the persistent open barrens are likely maintained by shallow soils, salt spray, and wind exposure. All three classes of habitat had distinct vegetation, and the only rare species was found in a persistent barren. Management of human activities in such landscapes should take into account the dynamic nature of barrens vegetation, while prioritizing conservation efforts in persistent barrens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号