首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distinct patterns of stratification in the North Channeland stratified region of the western Irish Sea influence theseasonal abundance of phytoplankton. The 3–4 month productionseason in the stratified region was characterized by productionand biomass peaks in the spring (up to 2378 mg C m2 day–1and 178.4 mg chlorophyll m–2) and autumn (up to 1280 mgC m–2 day–1 and 101.9 mg chlorophyll m–2).Phytoplankton in the North Channel exhibited a short, late productionseason with a single summer (June/July) peak in production (4483mg Cm–2 day–1) and biomass (–160.6 mg chlorophyllm–2). These differences have little influence on copepoddynamics. Both regions supported recurrent annual cycles ofcopepod abundance with similar seasonal maxima (182.8–241.8103ind. m–2) and dominant species (Pseudocalanus elongatusand Acartia clausi). Specific rates of population increase inthe spring were 0.071 and 0.048 day1 for the North Channel andstratified region, respectively. Increased copepod abundancein the stratified region coincided with the spring bloom, andwas significantly correlated with chlorophyll standing stock.Increased copepod abundance preceded the summer production peakin the North Channel. This increase was not correlated withchlorophyll standing crop, suggesting that a food resource otherthan phytoplankton may be responsible for the onset of copepodproduction prior to the spring bloom. Hetero-trophic microplanktonas an alternative food source, and advection of copepods fromthe stratified region, are proposed as possible explanationsfor copepod abundance increasing in advance of the summer peakin primary production.  相似文献   

2.
We investigated the seasonal occurrence, wet : dry : carbon: nitrogen weight ratios, population biomass, gastric pouchcontents, and rates of feeding, growth and respiration of thescyphomedusa Aurelia aurita in the central part of the InlandSea of Japan. Aurelia aurita medusae began to appear in January/Februaryas ephyrae, reached annual maximum body size in July/August,and disappeared, presumably due to death, by November. Initialslow growth in early spring was followed by a period of exponentialgrowth (mean growth rate: 0.069 d–1) between April andJuly. In the Ondo Strait, which is characterized by strong tidalmixing, the A. aurita population (mean carbon biomass: 66.0mg C m–3) overwhelmingly dominated the zooplankton-communitybiomass (mean biomass of micro- and mesozooplankton: 23.7 mgC m–3) between May and early August The gastric contentanalysis revealed that A. aurita ate almost all micro- and mesozooplankters,of which small copepods were most important. On the basis ofdigestion time for small copepods (60 min) and their abundancein the gastric pouch of field-collected A. aurita, we determinedthe weight specific feeding rates and clearance rates. The formerincreases linearly with increasing copepod abundance, but thelatter was relatively constant irrespective of the food supply.We also measured the respiration rates of A. aurita and expressedthem as functions of body weight and temperature. These physio-ecologicalparameters enabled us to construct the carbon budget of theA. aurita population typical of early summer in the Ondo Strait.Predicted population-feeding rate (6.07 mg C m–3 d–1)was higher than the population-food requirement for both metabolismand growth (4.55 mg C m–3 d–1), indicating thatfood supply was sufficient to sustain the observed growth rate.This feeding rate was equivalent to 26% of micro- and mesozooplanktonbiomass, a significant impact on zooplankton.  相似文献   

3.
The abundance and biomass of the large heterotrophic dinoflagellateNoctiluca scintillans, together with the changes in its potentialprey items, were monitored in the Seto Inland Sea, Japan, duringsummer 1997 (17 July-11 August). Growth and grazing rates ofNscintillans fed natural plankton populations were also measuredeight and seven times, respectively, during the survey period.The abundance and biomass of N scintillans averaged over thewater column (19 m) were in the range 1–345 cells 1–1(temporalaverage = 93 cell1–1) and 0.1–49.6 µg C l–1(temporalaverage = 13.8 µg C l–1; three times higher thanthat of calanoid copepods during the same period). Noctilucascintillans populations followed the changes in phytoplankton:N.scintillans biomass was increasing during the period of diatomblooms and was at a plateau or decreasing during periods oflow chlorophyll a. The growth rates of N.scintillans (µ)were also consistent with the wax and wane of the N.scintillanspopulation: N.scintillans showed highest growth rates duringdiatom blooms. A simple relationship between µ and chlorophylla concentration was established, and the production of N.scintillanswas estimated using this relationship and the measured biomass.The estimated production averaged over the water column wasin the range >0.1–5.2 µg C l–1 day–1(temporalaverage = 1.4 µg C l–1 day–1; 64% of the productionof calanoid copepods during the same period). Diatom clearancerates by N.scintillans were in the range 0.10–0.35 mlcell–1 day–1, and the phytoplankton population clearanceby N.scintillans was >12% day–1. Thus, although thefeeding pressure of N.scintillans on phytoplankton standingstock was low, N.scintillans was an important member of themesozooplank-ton in terms of biomass and production in the SetoInland Sea during summer.  相似文献   

4.
Primary production, pigment concentrations and spectral measurementsof downwelling irradiance were made at four stations in fourseasons (spring, summer, autumn, winter) during 1994 in thewaters of the South Aegean Sea (Cretan Sea), Eastern Mediterranean.Rates of production were determined using in Situ incubationtechniques and included measurements at the surface microlayer.Depth-integrated values averaged over season were 5.66 mg Cm–2 h–1 for primary production and the correspondingchlorophyll (Ch1) a and phaeophytin (Phaeo) a values had meansof 4.87 and 1.21 mg m–3 respectively. The assimilationratio remained very low (mean over season: 1.19 mg C mg–2Chl a h–1 as did the Phaeo a/Chl a ratio (mean over season:0.24). The annual production for the area was estimated to yield24.79 g C m–2 year–1. Primary production and Chla estimates showed statistically significant seasonal, spatialand depth variations. The spectral values of the attenuationcoefficient Kd (  相似文献   

5.
The total number of planktonic bacteria in the upper mixed layerof the Bering Sea during the late spring-early summer periodranged between 1 and {small tilde}4 x 106 ml–1 (biomass10–40mg C m–3). In the northern Pacific, along 47–526N,the corresponding characteristics of the bacterioplankton densityin the upper mixed water layer were: total number 1–2x 106 cells ml–1 and biomass 15–46mg C m–3Below the thermocline at 50–100 m, the density of bacterioplanktonrapidly decreased. At 300 m depth, it stabilized at 0.1–0.2x 106 cells ml–1. The integrated biomass of bacterioplanktonin the open Bering Sea ranged between 1.2 and 3.6 g C m–2(wet biomass 6–18 g m–2) Its production per dayvaried from 2 to 23 mg C m–3 days–1 in the upper0–100 m. The numerical abundance of planktonic ciliatesin this layer was estimated to be from 3 to l0 x 103 cells l–1,and in the northern Pacific from 0.4 to 4.5 x 103 l–2.Their populations were dominated by naked forms of Strombidium,Strombilidium and Tontonia. In some shelf areas, up to 40% ofthe total ciliate population was represented by the symbioticciliate Mesodinium rubrum. The data on the integrated biomassof basic groups of planktonic microheterotrophs are also presented,and their importance in the trophic relationships in pelagiccommunities of subarctic seas is discussed.  相似文献   

6.
The dynamics of the phytoplankton community were investigatedin a marine coastal lagoon (Thau, NW Mediterranean) from February1999 to January 2000. Dilution experiments, chlorophyll a (Chla) size-fractionation and primary production measurements wereconducted monthly. Maximum growth and microzooplankton grazingrates were estimated from Chl a biomass fractions to separatepico- from nano- and microphytoplankton and by flow cytometryto distinguish between picoeukaryotes and picocyanobacteria.In spring, the phytoplankton community was dominated by Chaetocerossp. and Skeletonema costatum, which represented most of biomass(B) and primary production (P). Nano- and microphytoplanktongrowth was controlled by nutrient availability and exceededlosses due to microzooplankton grazing (g). Picoeukaryote andcyanobacteria growth was positively correlated with water temperatureand/or irradiance, reaching maximum values in the summer (2.38and 1.44 day–1 for picoeukaryotes and cyanobacteria, respectively).Picophytoplankton accounted for 57% of the biomass-specificprimary productivity (P/B). Picophytoplankton was strongly controlledby protist grazers (g = 0.09–1.66 day–1 for picoeukaryotes,g = 0.25–1.17 day–1 for cyanobacteria), and microzooplanktonconsumption removed 71% of the daily picoplanktonic growth.Picoeukaryotes, which numerically dominate the picoplanktoncommunity, are an important source of organic carbon for theprotistan community and contribute to the carbon flow to highertrophic levels.  相似文献   

7.
Seasonal variations in diversity and biomass of tintinnids (Ciliophora:Tintinnida) were investigated at two fixed stations in the innerpart of the Bahía Blanca Estuary (38°42' S, 61°50'W) during an annual cycle. The variations were analysed in relationto surface temperature, salinity, transparency, solar radiationand chlorophyll a (Chl a)concentration. Biomass was calculatedin terms of biovolume and carbon units. Diversity was estimatedas the number of species and the Shannon Index (H', ln based).Density of tintinnids ranged from 100 to 7800 individuals L–1H' ranged from 0 to 1.81. The biomass varied from 0.3 to 127.78x 106 µm3 L–1 (0.02–39.4 µg C L–1).Density was significantly related to temperature, solar radiationand Secchi distance (P < 0.01); diversity was significantlyrelated to temperature (P < 0.01) and solar radiation (P< 0.05). Biomass was significantly related only to temperature(P < 0.01) in one of the stations. According to principalcomponents analysis (PCA) tintinnids exhibited a segregationof three groups: winter, spring–summer and autumn forthe most internal station and winter, spring and summer–autumnfor the most external station. H' values were lower than thoseobserved in other coastal systems found at about the same latitudein the northern hemisphere.  相似文献   

8.
Seasonal and vertical fluctuations of zooplankton species composition,biomass, and production were monitored by weekly sampling duringa two year period in one eutrophic pond in Central Finland.The study was one part of a more comprehensive study programto investigate the effects of warm water effluents from onesmall thermal power plant (35 MW) on the pond ecosystem. Becauseof the circulation of the pond water through the pumps in thepower plant the crustacean populations were very sparse in planktonduring the seasons the power plant was in operation (late Augustto May). During that time rotifers were dominant and some speciesreached very high densities (e.g., Keratella cochlearis s.l.ca. 15 000 ind. l–1 in sping). In summer months Asplanchnapriodonta, Ceriodaphnia quadrangula, Bosmina longirostris, Mesocyclopsleuckarti and Thermocyclops oithonoides were dominant. A totalof 96 planktonic and meroplanktonic taxa were identified (26ciliates, 46 rotifers, 21 cladocerans and 3 copepods). The dryweight biomass of total zooplankton was 10 mg m–3 in wintermonths, 10–100 mg m–3 in spring and 300–1000mg m–3 in summer. The total yearly production of zooplanktonwas 8552 mg dry wt m–3 a–1 in 1979 and 8440 mg drywt m–3 a–1 in 1980, from which the proportion ofrotifers was 33–39%, cladocerans 52–58% and copepods8.6 –9.4%. The winter production was 0.2–0.5% ofthe total yearly production, that of spring and autumn togetherwas 8.1–10.4% and the remainder (89–91%) was summerproduction.  相似文献   

9.
Time series of phytoplankton biomass and taxonomic compositionhave been obtained for the 3 years 1992, 1993 and 1994 in thenorthern part of the Southern Ocean (station Kerfix, 5040'S,6825;E) Autotrophic biomass was low throughout the year (<0.2mg m–3 except during a short period in summer when a maximumof 1.2 mg chlorophyll (Chl) a m– was reached. During winter,the integrated biomass was low (<10 mg m–2) and associatedwith deeply mixed water, whereas the high summer biomass (>20mg m–2) was associated with increased water column stability.During summer blooms, the >10 µ;m size fraction contributed60% to total integrated biomass. Large autotrophic dinoflagellates,mainly Prorocentrum spp., were associated with the summer phytoplankton maxima and accounted for >80% of the total autotrophcarbon biomass. In November and December, the presence of thelarge heterotrophic dinoflagellates Protoperidinium spp. andGyro dinium spp. contributed a high proportion of total carbonbiomass. During winter, the <10 µm size fraction contributed80% of total Chi a biomass with domination of the picoplanktonsize fraction. The natural assemblage included mainly nakedflagellates such as species of the Prasinophyceae, Cryptophyceaeand Prymnesiophyceae. During spring, picocyanobacteria occurredin sub-surface water with a maximum abundance in September of106 cells 1–1  相似文献   

10.
Pseudocalanus species are important contributors to the secondaryproduction of the northern hemisphere mid- to high-latitudeoceans. In the coastal Gulf of Alaska, Pseudocalanus are presentyear round and are represented by three species. In 2001, Pseudocalanusmimus was the dominant Pseudocalanus species on the shelf duringspring and summer, comprising 30–100% of the total, whilePseudocalanus newmani dominated in Prince William Sound (10–90%).Pseudocalanus minutus were only abundant in Prince William Soundduring early spring. Egg production (by number and volume) wasa function of female prosome length and decreased from springto summer; however, significant variability was attributableto regional influences that were independent of size. For thesame sized female, P. newmani produced more eggs per clutchthan P. mimus. Pseudocalanus mimus, however, tended to havea larger mean egg size than P. newmani. Consequently, clutchvolumes of the two species were indistinguishable. Pseudocalanusegg production rates (EPRs) (eggs female–1 day–1)were lower in July and August (ca. 2–4) than April andMay (ca. 1–9), but total egg production by the population(eggs day–1) was nearly equivalent for the two time periodsdue to higher female concentrations in summer.  相似文献   

11.
Laboratory experiments were carried out on the holoplanktonicscyphomedusa Pelagia noctiluca, which exhibits population explosionssome years in the Mediterranean Sea. Feeding experiments performedon small, laboratory-reared medusae showed specific daily rationsof 13 and 35% at 5 and 20 Anemia nauplii prey 1–1 respectively,while basal NH+4 excretion reached 3.9% (specific elementalmetabolic rate) for adults at 22°C. These values appearto be consistent with those previously observed by several authorsfor other planktonic coelenterates. Assuming that such laboratoryphysiological rates are indicative of food requirements in naturalenvironments, and given the high abundance of P. noctiluca observedregionally, we conclude that P. noctiluca can have a strongpredatory impact in the Ligurian Sea (north-west Mediterranean),particularly during the summer and early fall. 3Present address: ORSTOM B.P. 2528, Bamako, Mali  相似文献   

12.
We surveyed springtime biomass and abundance of the >20 µmmicroprotozoa in surface waters of the SE Bering Sea and Shelikof Strait, Alaska. This study was part of the Fisheries OceanographyCoordinated Investigations (FOCI) program examining processeswhich affect the recruitment variability of walleye pollock(Theragra chalcogramma). Microprotozoa are a potential preyresource for larval pollock which has not been previously examined.In both areas, the >20 µm microprotozoa were predominantlydinoflagellates and ciliates. At the time of sampling (May 1990in Shelikof Strait and April 1992 in the SE Bering Sea), thespring diatom bloom was under way in Shelik of Strait, but notin the SE Bering Sea. Heterotrophic dinoflagellates dominatedthe microprotozoan assemblage in Shelik of Strait, but not inthe SE Bering Sea. In the SE Bering Sea. total microprotozoanabundances ranged from 300 to 6233 organisms 1–1 and biomassfrom 0.58 to 9.73 µg C 1–1. In Shelik of Strait,abundance and biomass were higher, ranging from 850 to 14 960organisms 1–1 and from 1.29 to 70.73 µg C 1–1,respectively. These biomass levels are comparable to those reportedfrom other coastal and oceanic regions. Microprotozoan biomasslevels were sufficient to support the estimated metabolic needsof first-feeding larval walleye pollock. It remains to be shownwhether larval pollock use this resource.  相似文献   

13.
To assess the role of viruses in the bloom dynamics of Micromonaspusilla in the Gulf of Naples (Mediterranean Sea), variationsof host and virus abundance were followed over one annual cycleand in late winter–spring of three consecutive years.Micromonas pusilla was recorded from autumn to spring, withpeak values up to 6.6 x 103 cells ml–1, but was undetectablein summer. Free M.pusilla viruses were detectable in all seasons,with concentrations from 0.02 viruses ml–1 to 1.9 x 103viruses ml–1, exceeding host abundances only in one case.We found a great intraspecific variability in host susceptibilityto viruses present in natural samples, with viral titres rangingover one or two orders of magnitude for the same samples incubatedon different M.pusilla strains. Over the winter–springperiods, a highly dynamic situation was evident, with wide fluctuationsfor both host and virus abundances from one week to another.In some cases, peak host concentrations were accompanied byan increase in viral numbers, whereas in other cases the respectivefluctuations were uncoupled. Although fluctuations of M.pusillaabundance could be influenced by viral infection, there wasno evidence that viruses were able to terminate host blooms.The summer decline of M.pusilla populations did not appear tobe related to the impact of viral infection.  相似文献   

14.
Response of the phytoplankton community to bottom-up (nutrients,organic carbon source) and top-down (fish) manipulations, bothsingly and together, were studied daily during a 3 week periodin July 1993 by using eight 50 m3 mesocosms in the coastal northernBaltic Sea. Nutrient additions (once per week) invoked a seriesof blooms of Eutreptiella gymnastica Throndsen (Euglenophyceae)(up to 13 x 103 cells ml–1) which formed the major part(60–90%) of the total autotrophic biomass. After rapiddepletion of nutrients (2–3 days) from the surface layer(0–6 m) downwards migration and a subsequent peak of E.gymnasticain the lower part of the water columns (6–12 m) followed.Settled material collected from the bottom of the enclosurescontained a considerable amount of E.gymnastica cells and restingcysts. Nevertheless, sinking loss rates of E.gymnastica wereestimated to be less than 1% day–1 of the suspended cellnumbers. The fate of E.gymnastica blooms was estimated to begrazing through mesozooplankton. However, provided the nutrientsare plentiful in the water column, the growth potential of E.gymnasticaappears to exceed the ambient grazing pressure. If the nutrientsbecome depleted, it seems to be effectively controlled by mesozooplanktongrazing, which is probably limiting the likelihood of massiveE.gymnastica blooms in the coastal Baltic Sea. Our study suggeststhat E.gymnastica appears to be a fast-growing fugitive (bloom)species with flexible behavioural (vertical migration) and lifehistory (cyst formation) adaptations which is able to exertdominant role and direct trophic relations similar to otherbloom species adapted for decaying turbulence and high nutrientenvironments.  相似文献   

15.
The population carbon budget and seasonality of Boeckella minutain a newly formed subtropical reservoir were examined 3 yearsafter the reservoir filled. Average daily biomass was 26.4 mgC m–3 and the annual population carbon budget was: consumption2470, egestion 1482, assimilation 988, production 493 and respiration495, mg C m–3 year–1, and the average P/B and P/Aratios were 0.08 and 0.5 respectively. Clutch size and reproductiveeffort (egg production/assimilation) were low, and the proportionof males decreased throughout the population cycle. The seasonalabundance pattern changed from perennial (pre-filling years)to a 7 month cycle. It is suggested that eutrophication andthe spring bloom of cyanobacteria may have accentuated a seasonaldecrease in reproductive effort and survival, leading to anabsence of planktonic stages during summer, and that restingeggs facilitated population survival during the summer periodof stratification.  相似文献   

16.
The population abundances and rates of biomass production ofheterotrophic nanoplankton (HNAN) in Georgia coastal waterswere evaluated by epifluorescence microscopy. HNAN populations(mostly non-pigmented microflagellates <10 µm in diameter)ranged from 0.3 x 103 cells ml–1 in shelf waters 15 kmoffshore to 6.3 x 103 cells ml–1 in waters 0.25 km fromthe coast. There was a strong correlation (r = 0.83) betweenHNAN and free bacterioplankton population abundances, but noapparent relation (r = 0.38) between HNAN and phototrophic nanopLankton(PNAN) abundances. HNAN biomass production in estuarine andnearshore shelf waters, as estimated from increases in HNANpopulations during laboratory incubations of natural water samples,ranged from 0.10 to 0.79 mg C m–3 h–3, with populationgeneration times of 9.7 to 26.5 h. There was a significant linearrelation (r = 0.95) between HNAN biomass and HNAN productivity.We calculated that HNAN may graze at least 30% to 50% of dailybacterioplankton production in Georgia coastal waters.  相似文献   

17.
Seasonal investigations of size-fractionated biomass and productionwere carried out from February 1992 to May 1993 in JiaozhouBay, China. Microplankton assemblages were separated into threefractions: pico- (0.7–2 µm), nano- (2–20 µm)and netplankton (20–200 µm). The biomass was measuredas chlorophyll a (Chi a), paniculate organic carbon (POC) andparticipate organic nitrogen (PON). The production was determinedby 14C and 15N tracer techniques. The seasonal patterns in biomass,though variable, were characterized by higher values in springand lower values in autumn and summer (for Chi a only). Theseasonal patterns in production, on the other hand, were moreclear with higher values occurring in summer and spring, andlower values occurring in autumn and winter. Averaged over thewhole study period, the respective proportions of total biomassaccounted for by net-, nano- and picoplankton were 26, 45 and29% for Chi a, 32, 33 and 35% for POC, and 26, 32 and 42% forPON. The contributions to total primary production by net-,nano- and picoplankton were 31, 35 and 34%, respectively. Therespective proportions of total NH4+–N uptake accountedfor by net-, nano- and picoplankton were 28, 33 and 39% in thedaytime, and 10, 29 and 61% at night. The respective contributionsto total NO3-N uptake by net-, nano- and picoplanktonwere 37, 40 and 23% in the daytime, and 13, 23 and 64% at night.Some comprehensive ratios, including C/N biomass ratio, Chla/C ratio, C uptake/Chl a ratio, C:N uptake ratio and the f-ratio,were also calculated size separately, and their biological andecological meanings are discussed.  相似文献   

18.
We describe zooplankton community structure and copepod eggproduction in the vicinity of the coastal boundary zone of theGreat Barrier Reef lagoon, Australia. The abundance and eggproduction rate of constituents of the zooplankton assemblagecharacteristic of the coastal zone rapidly increase subsequentto events such as flooding and upwelling. Our sampling spannedtwo summer monsoonal seasons, the first of which (1990-91) wasvery wet. The second monsoonal season (1991-92) was very dryand was characterized by intrusive upwelling events from theCoral Sea. Chlorophyll a concentrations did not rise in thewet year, probably because of light limitation, but did riseas a result of upwelling. Terrestrial run-off in the wet yearhad a greater apparent effect on zooplankton abundance patternsthan did upwelling in the dry year, except where coastal trappingallowed sufficient time for increases in zooplankton abundanceto occur. Egg production rates by the copepods Acrocalanus gibberand Acrocalanus gracilis showed haphazard spatial differences.Nitrogen-specific egg production ranged between 0.03 and 0.21day–1 for A.gibber, and between 0.13 and 0.41 day–1for A.gracilis. The egg production rate by A.gibber was foodlimited for most of the year and showed a poor correlation withtemperature. 3Present address: Department of Biological Sciences, FloridaTech, 150 W University Boulevard, Melbourne, FL 32901, USA  相似文献   

19.
Chlorophyll (Chl) a was measured every 10 m from 0 to 150 min the Transition Domain (TD), located between 37 and 45°N,and from 160°E to 160°W, in May and June (Leg 1) andin June and July (Leg 2), 1993–96. Total Chl a standingstocks integrated from 0 to 150 m were mostly within the rangeof 20 and 50 mg m–2. High standing stocks (>50 mg m–2)were generally observed westof 180°, with the exceptionof the sporadic high values at the easternmost station. Thetotal Chl a standing stock tended to be higher in the westernTD (160°E–172°30'E) than in the central (175°E–175°W)and eastern (170°W–160°W) TD on Leg 1, but thesame result was not observed on Leg 2. It was likely that largephytoplankton (2–10 and >10 µm fractions) contributedto the high total Chl a standing stock. We suggest that thehigh total Chl a standing stock on Leg 1, in late spring andearly summer, reflects the contribution of the spring bloomin the subarctic region of the northwestern Pacific Ocean. Thedistribution of total Chl a standing stock on Leg 2 was scarcelyaffected by the spring phytoplankton bloom, suggesting thattotal Chl a standing stock is basically nearly uniform in theTD in spring and summer. Moreover, year-to-year variation inthe total Chl a standing stock was observed in the western TDon Leg 1, suggesting that phytoplankton productivity and/orthe timing of the main period of the bloom exhibits interannualvariations.  相似文献   

20.
Ephyra larvae and small medusae (1.7–95 mm diameter, 0.01–350mg ash-free dry wt, AFDW) of the scyphozoan jellyfish Aureliaaurita were used in predation experiments with phytoplankton(the flagellate Isochrysis galbana, 4 µm diameter, {smalltilde}6 x 10–6 µg AFDW cell–1), ciliates (theoligotrich Strombidium sulcatum, 28 µm diameter, {smalltilde}2 x 10–3 µg AFDW), rotifers (Synchaeta sp.,0.5 µg AFDW individual–1) and mixed zooplankton(mainly copepods and cladocerans, 2.1–3.1 µg AFDWindividual–1). Phytoplankton in natural concentrations(50–200 µg C I–1) were not utilized by largemedusae (44–95 mm diameter). Ciliates in concentrationsfrom 0.5 to 50 individuals ml"1 were consumed by ephyra larvaeand small medusae (3–14 mm diameter) at a maximum predationrate of 171 prey day–1, corresponding to a daily rationof 0.42%. The rotifer Synchaeta sp., offered in concentrationsof 100–600 prey I–1, resulted in daily rations ofephyra larvae (2–5 mm diameter) between 1 and 13%. Mixedzooplankton allowed the highest daily rations, usually in therange 5–40%. Large medusae (>45 mm diameter) consumedbetween 2000 and 3500 prey organisms day"1 in prey concentrationsexceeding 100 I–1. Predation rate and daily ration werepositively correlated with prey abundance. Seen over a broadsize spectrum, the daily ration decreased with increased medusasize. The daily rations observed in high abundance of mixedzooplankton suggest a potential ‘scope for growth’that exceeds the growth rate observed in field populations,and this, in turn, suggests that the natural populations areusually food limited. The predicted predation rate at averageprey concentrations that are characteristic of neritic environmentscannot explain the maximum growth rates observed in field populations.It is therefore suggested that exploitation of patches of preyin high abundance is an important component in the trophodynamicsof this species. 1Present address: University of Bergen, Department of MarineBiology, N-5065 Blomsterdalen, Norway  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号