首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this work was to assess the effect of dilute bovine manure (1.0% and 0.1%) versus that of no manure on attachment and subsequent detachment of Cryptosporidium parvum oocysts to soil. Manure enhanced the attachment of oocysts to soil particles; the maximum attachment was observed with 0.1% manure. Oocyst attachment was partially reversible; maximum detachment was observed with dilute manure. These results indicate that oocyst attachment to soil is substantially affected by bovine manure in a complex manner and should have implications for how oocysts may be transported through or over soils.  相似文献   

2.
A new method for the isolation of Cryptosporidium parvum oocysts and Giardia lamblia cysts from biosolid samples has been developed that utilizes sedimentation and immunomagnetic separation. The method was used to recover stained cysts and oocysts (spike organisms) from primary settled sewage sludge, anaerobically digested sewage sludge, and bovine manure. Recovery efficiencies associated with this method were approximately 40 to 60% and were significantly greater than those associated with similar methods based on sucrose flotation (P < 0.001). The recovery efficiency of the sedimentation-based method showed no significant reduction as a result of sample storage for up to 21 days (P > 0.05). Recovery efficiencies were determined by spiking samples with prestained cysts and oocysts, allowing them to be differentiated from those naturally present in the biosolid samples. The prestained cysts and oocysts had been fixed in 5% formalin, and the recovery efficiencies associated with this method may be different from recovery efficiencies for fresh cysts or oocysts.  相似文献   

3.
Eight concentration and purification methods were evaluated to determine percentages of recovery of Cryptosporidium parvum oocysts from calf feces. The NaCl flotation method generally resulted in the highest percentages of recovery. Based on the percentages of recovery, the amounts of fecal debris in the final oocyst preparations, the relatively short processing time (<3 h), and the low expense, the NaCl flotation method was chosen for further evaluation. Extraction efficiency was evaluated by using oocyst concentrations of 25, 50, 10(2), 10(3), 10(4), and 10(5) oocysts g of bovine feces-1. The percentages of recovery ranged from 10.8% (25 oocysts g-1) to 17.0% (10(4) oocysts g-1) (r2 = 0.996). A conservative estimate of the detection limit for bovine feces is ca. 30 oocysts g of feces-1. Percentages of recovery were determined for six different types of animal feces (cow, horse, pig, sheep, deer, and chicken feces) at a single oocyst concentration (10(4) oocysts g-1). The percentages of recovery were highest for bovine feces (17. 0%) and lowest for chicken feces (3.2%). Percentages of recovery were determined for bovine manure after 3 to 7 days of storage. The percentages of recovery ranged from 1.9 to 3.5% depending on the oocyst concentration, the time of storage, and the dispersing solution. The percentages of oocyst recovery from soils were evaluated by using different flotation solutions (NaCl, cold sucrose, ZnSO4), different dispersing solutions (Triton X-100, Tween 80, Tris plus Tween 80), different dispersion techniques (magnetic stirring, sonication, blending), and different dispersion times (5, 15, and 30 min). Twenty-five-gram soil samples were used to reduce the spatial variability. The highest percentages of recovery were obtained when we used 50 mM Tris-0.5% Tween 80 as the dispersing solution, dispersion for 15 min by stirring, and saturated NaCl as the flotation solution. The percentages of oocyst recovery from freshly spiked sandy loam, silty clay loam, and clay loam soils were ca. 12 to 18, 8, and 6%, respectively. The theoretical detection limits were ca. 1 to 2 oocysts g of soil-1 depending on the soil type. The percentages of recovery without dispersant (distilled H2O or phosphate-buffered saline) were less than 0.1%, which indicated that oocysts adhere to soil particles. The percentages of recovery decreased with storage time, although the addition of dispersant (Tris-Tween 80) before storage appeared to partially prevent adhesion. These data indicate that the NaCl flotation method is suitable for routine detection and enumeration of oocysts from feces, manures, soils, or soil-manure mixtures.  相似文献   

4.
Manure-borne bacteria can be transported in runoff as free cells, cells attached to soil particles, and cells attached to manure particles. The objectives of this work were to compare the attachment of fecal coliforms (FC) to different soils and soil fractions and to assess the effect of bovine manure on FC attachment to soil and soil fractions. Three sand fractions of different sizes, the silt fraction, and the clay fraction of loam and sandy clay loam soils were separated and used along with soil samples in batch attachment experiments with water-FC suspensions and water-manure-FC suspensions. In the absence of manure colloids, bacterial attachment to soil, silt, and clay particles was much higher than the attachment to sand particles having no organic coating. The attachment to the coated sand particles was similar to the attachment to silt and clay. Manure colloids in suspensions decreased bacterial attachment to soils, clay and silt fractions, and coated sand fractions, but did not decrease the attachment to sand fractions without the coating. The low attachment of bacteria to silt and clay particles in the presence of manure colloids may cause predominantly free-cell transport of manure-borne FC in runoff.  相似文献   

5.
Manure-borne bacteria can be transported in runoff as free cells, cells attached to soil particles, and cells attached to manure particles. The objectives of this work were to compare the attachment of fecal coliforms (FC) to different soils and soil fractions and to assess the effect of bovine manure on FC attachment to soil and soil fractions. Three sand fractions of different sizes, the silt fraction, and the clay fraction of loam and sandy clay loam soils were separated and used along with soil samples in batch attachment experiments with water-FC suspensions and water-manure-FC suspensions. In the absence of manure colloids, bacterial attachment to soil, silt, and clay particles was much higher than the attachment to sand particles having no organic coating. The attachment to the coated sand particles was similar to the attachment to silt and clay. Manure colloids in suspensions decreased bacterial attachment to soils, clay and silt fractions, and coated sand fractions, but did not decrease the attachment to sand fractions without the coating. The low attachment of bacteria to silt and clay particles in the presence of manure colloids may cause predominantly free-cell transport of manure-borne FC in runoff.  相似文献   

6.
Eight concentration and purification methods were evaluated to determine percentages of recovery of Cryptosporidium parvum oocysts from calf feces. The NaCl flotation method generally resulted in the highest percentages of recovery. Based on the percentages of recovery, the amounts of fecal debris in the final oocyst preparations, the relatively short processing time (<3 h), and the low expense, the NaCl flotation method was chosen for further evaluation. Extraction efficiency was evaluated by using oocyst concentrations of 25, 50, 102, 103, 104, and 105 oocysts g of bovine feces−1. The percentages of recovery ranged from 10.8% (25 oocysts g−1) to 17.0% (104 oocysts g−1) (r2 = 0.996). A conservative estimate of the detection limit for bovine feces is ca. 30 oocysts g of feces−1. Percentages of recovery were determined for six different types of animal feces (cow, horse, pig, sheep, deer, and chicken feces) at a single oocyst concentration (104 oocysts g−1). The percentages of recovery were highest for bovine feces (17.0%) and lowest for chicken feces (3.2%). Percentages of recovery were determined for bovine manure after 3 to 7 days of storage. The percentages of recovery ranged from 1.9 to 3.5% depending on the oocyst concentration, the time of storage, and the dispersing solution. The percentages of oocyst recovery from soils were evaluated by using different flotation solutions (NaCl, cold sucrose, ZnSO4), different dispersing solutions (Triton X-100, Tween 80, Tris plus Tween 80), different dispersion techniques (magnetic stirring, sonication, blending), and different dispersion times (5, 15, and 30 min). Twenty-five-gram soil samples were used to reduce the spatial variability. The highest percentages of recovery were obtained when we used 50 mM Tris–0.5% Tween 80 as the dispersing solution, dispersion for 15 min by stirring, and saturated NaCl as the flotation solution. The percentages of oocyst recovery from freshly spiked sandy loam, silty clay loam, and clay loam soils were ca. 12 to 18, 8, and 6%, respectively. The theoretical detection limits were ca. 1 to 2 oocysts g of soil−1 depending on the soil type. The percentages of recovery without dispersant (distilled H2O or phosphate-buffered saline) were less than 0.1%, which indicated that oocysts adhere to soil particles. The percentages of recovery decreased with storage time, although the addition of dispersant (Tris-Tween 80) before storage appeared to partially prevent adhesion. These data indicate that the NaCl flotation method is suitable for routine detection and enumeration of oocysts from feces, manures, soils, or soil-manure mixtures.  相似文献   

7.
Increasing amounts of livestock manure are being applied to agricultural soil, but it is unknown to what extent this may be associated with contamination of aquatic recipients and groundwater if microorganisms are transported through the soil under natural weather conditions. The objective of this study was therefore to evaluate how injection and surface application of pig slurry on intact sandy clay loam soil cores influenced the leaching of Salmonella enterica serovar Typhimurium bacteriophage 28B, Escherichia coli, and Cryptosporidium parvum oocysts. All three microbial tracers were detected in the leachate on day 1, and the highest relative concentration was detected on the fourth day (0.1 pore volume). Although the concentration of the phage 28B declined over time, the phage was still found in leachate at day 148. C. parvum oocysts and chloride had an additional rise in the relative concentration at a 0.5 pore volume, corresponding to the exchange of the total pore volume. The leaching of E. coli was delayed compared with that of the added microbial tracers, indicating a stronger attachment to slurry particles, but E. coli could be detected up to 3 months. Significantly enhanced leaching of phage 28B and oocysts by the injection method was seen, whereas leaching of the indigenous E. coli was not affected by the application method. Preferential flow was the primary transport vehicle, and the diameter of the fractures in the intact soil cores facilitated transport of all sizes of microbial tracers under natural weather conditions.  相似文献   

8.
Fate of Escherichia coli O157:H7 in Manure-Amended Soil   总被引:5,自引:0,他引:5       下载免费PDF全文
Escherichia coli O157:H7 cells survived for up to 77, >226, and 231 days in manure-amended autoclaved soil held at 5, 15, and 21°C, respectively. Pathogen populations declined more rapidly in manure-amended unautoclaved soil under the same conditions, likely due to antagonistic interactions with indigenous soil microorganisms. E. coli O157:H7 cells were inactivated more rapidly in both autoclaved and unautoclaved soils amended with manure at a ratio of 1 part manure to 10 parts soil at 15 and 21°C than in soil samples containing dilute amounts of manure. The manure-to-soil ratio, soil temperature, and indigenous microorganisms of the soil appear to be contributory factors to the pathogen's survival in manure-amended soil.  相似文献   

9.
A new method for the isolation of Cryptosporidium parvum oocysts and Giardia lamblia cysts from biosolid samples has been developed that utilizes sedimentation and immunomagnetic separation. The method was used to recover stained cysts and oocysts (spike organisms) from primary settled sewage sludge, anaerobically digested sewage sludge, and bovine manure. Recovery efficiencies associated with this method were approximately 40 to 60% and were significantly greater than those associated with similar methods based on sucrose flotation (P < 0.001). The recovery efficiency of the sedimentation-based method showed no significant reduction as a result of sample storage for up to 21 days (P > 0.05). Recovery efficiencies were determined by spiking samples with prestained cysts and oocysts, allowing them to be differentiated from those naturally present in the biosolid samples. The prestained cysts and oocysts had been fixed in 5% formalin, and the recovery efficiencies associated with this method may be different from recovery efficiencies for fresh cysts or oocysts.  相似文献   

10.
Organic manures in combination with biochar might improve efficacy of biochar in improving soil functions related to hydro-physical properties and a field experiment was conducted over the course of two years with two levels of biochar @ 0 and 2tha−1 and four levels of compost (100% recommended dose of N through farm yard manure, 100% recommended dose of N through vermicompost, 50% recommended dose of N through farm yard manure, and vermicompost each, and unfertilized control). Each treatment was replicated three times in factorial randomized block design (RBD). The objective of this research was to determine the effects of biochar and compost on soil hydro-physical properties, water use efficiency, monetary returns and yield of knolkhol (Brassica oleracea var. gongyloides L.) under sub-tropics of North West India. Compared with no-biochar, application of biochar significantly increased knolkhol yield by 7.8% and soil properties (infiltration rate, aggregate stability, maximum water holding capacity and hydraulic conductivity). Similarly, integration of compost significantly enhanced the soil water retention, aggregate stability, hydraulic conductivity and crop yield and gave highest infiltration rate, water retention, hydraulic conductivity and crop yield under M3 (50 % N through farm yard manure, +50 % N through vermicompost) treatment. Furthermore, synergetic positive effect of biochar and compost were noted for soil infiltration rate (4–38%), water retention (0.9–13.7%), aggregate stability (6–10.7%) and yield (6–11.9%) over the sole application of compost. Combined use of farm yard manure, and vermicompost accompanied by biochar resulted in highest net returns and B:C ratio. Biochar in combination with farm yard manure, and vermicompost can enhance soil hydraulic properties resulting in increased crop yield and maximum monetary returns under subtropical conditions.  相似文献   

11.
Hoar  B. R.  Atwill  E. R.  Farver  T. B.  Jones  T. 《Quantitative Microbiology》2000,2(1):21-36
Populations of beef cattle represent a potential non-point source of environmental contamination for Cryptosporidium parvum if on-farm management practices fail to minimize transport from bovine manure to adjacent water sources. Characterizing this risk of contamination requires several parameters to be estimated, the most important being a valid and precise estimate of the oocyst loading rate per animal unit. The oocyst loading rate is defined in this study as the total number of oocysts excreted by a cohort of adult beef cows during a 24[emsp4 ]h period. We propose a methodology for estimating this parameter for low prevalent populations whereby the majority of individuals are test negative. Under specific degrees of confidence and at the population scale, this methodology generates estimates for maximal oocyst loading based on the sensitivity of the diagnostic test and the point prevalence and intensity of fecal shedding from a cross-sectional survey of the target population.Our cross-sectional survey on California beef cows generated a prevalence of infection of 1.1 % (6/557) and an intensity of oocyst shedding ranging from 219 to 5,491 oocysts/g, with a geometric mean of 835 oocysts/g from six positive cows. Negative binomial estimate of the percent recovery of the diagnostic assay was 0.235. Based on this percent recovery and using approximately 19.4[emsp4 ]mg of feces per assay, the DT90 of our assay, defined as the concentration of oocysts at which our diagnostic assay had a 90 % probability of detecting one or more oocysts in a sample, was 755 oocyst/g feces. At a 95 % confidence level, the estimated maximum number of oocysts being excreted in the feces of California beef cows ranged from 4.8 to 14.4 oocysts/g feces/cow, or 7.7×104 to 2.3×105 oocysts/beef cow/day.  相似文献   

12.
Salmonella enterica serovar Newport has undergone a rapid epidemic spread in dairy cattle. This provides an efficient mechanism for pathogen amplification and dissemination into the environment through manure spreading on agricultural land. The objective of this study was to determine the survival characteristics of Salmonella serovar Newport in manure and manure-amended soils where the pathogen may be amplified. A multidrug-resistant (MDR) Salmonella serovar Newport strain and a drug-susceptible (DS) strain, both bovine isolates, were inoculated into dairy manure that was incubated under constant temperature and moisture conditions alone or after being mixed with sterilized or nonsterilized soil. Salmonella serovar Newport concentrations increased by up to 400% in the first 1 to 3 days following inoculation, and a trend of steady decline followed. With manure treatment, a sharp decline in cell concentration occurred after day 35, possibly due to microbial antagonism. For all treatments, decreases in Salmonella serovar Newport concentrations over time fit a first-order kinetic model. Log reduction time was 14 to 32 days for 1 log10, 28 to 64 days for 2 log10, and 42 to 96 days for 3 log10 declines in the organisms' populations from initially inoculated concentrations. Most-probable-number monitoring data indicated that the organisms persisted for 184, 332, and 405 days in manure, manure-amended nonsterilized soil, and manure-amended sterilized soil, respectively. The MDR strain and the DS strain had similar survival patterns.  相似文献   

13.
Extraction of high-quality DNA is a key step in PCR detection of Cryptosporidium and other pathogens in environmental samples. Currently, Cryptosporidium oocysts in water samples have to be purified from water concentrates before DNA is extracted. This study compared the effectiveness of six DNA extraction methods (DNA extraction with the QIAamp DNA minikit after oocyst purification with immunomagnetic separation and direct DNA extraction methods using the FastDNA SPIN kit for soil, QIAamp DNA stool minikit, UltraClean soil kit, or QIAamp DNA minikit and the traditional phenol-chloroform technique) for the detection of Cryptosporidium with oocyst-seeded samples, DNA-spiked samples, and field water samples. The study also evaluated the effects of different PCR facilitators (nonacetylated bovine serum albumin, the T4 gene 32 protein, and polyvinylpyrrolidone) and treatments (the use of GeneReleaser or ultrafiltration) for the relief from or removal of inhibitors of PCR amplification. The results of seeding and spiking studies showed that PCR inhibitors were presented in all DNA solutions extracted by the six methods. However, the effect of PCR inhibitors could be relieved significantly by the addition of 400 ng of bovine serum albumin/μl or 25 ng of T4 gene 32 protein/μl to the PCR mixture. With the inclusion of bovine serum albumin in the PCR mixture, DNA extracted with the FastDNA SPIN kit for soil without oocyst isolation resulted in PCR performance similar to that produced by the QIAamp DNA minikit after oocysts were purified by immunomagnetic separation.  相似文献   

14.
Spreading manure containing antibiotics in agriculture is assumed to stimulate the dissemination of antibiotic resistance in soil bacterial populations. Plant roots influencing the soil environment and its microflora by exudation of growth substrates might considerably increase this effect. In this study, the effects of manure from pigs treated with sulfadiazine (SDZ), here called SDZ manure, on the abundance and transferability of sulfonamide resistance genes sul1 and sul2 in the rhizosphere of maize and grass were compared to the effects in bulk soil in a field experiment. In plots that repeatedly received SDZ manure, a significantly higher abundance of both sul genes was detected compared to that in plots where manure from untreated pigs was applied. Significantly lower abundances of sul genes relative to bacterial ribosomal genes were encountered in the rhizosphere than in bulk soil. However, in contrast to results for bulk soil, the sul gene abundance in the SDZ manure-treated rhizosphere constantly deviated from control treatments over a period of 6 weeks after manuring, suggesting ongoing antibiotic selection over this period. Transferability of sulfonamide resistance was analyzed by capturing resistance plasmids from soil communities into Escherichia coli. Increased rates of plasmid capture were observed in samples from SDZ manure-treated bulk soil and the rhizosphere of maize and grass. More than 97% of the captured plasmids belonged to the LowGC type (having low G+C content), giving further evidence for their important contribution to the environmental spread of antibiotic resistance. In conclusion, differences between bulk soil and rhizosphere need to be considered when assessing the risks associated with the spreading of antibiotic resistance.  相似文献   

15.
Bovine manure, with or without added Salmonella enterica serovar Typhimurium (three strains), was incorporated into silty clay loam (SCL) and loamy sand (LS) soil beds (53- by 114-cm surface area, 17.5 cm deep) and maintained in two controlled-environment chambers. The S. enterica serovar Typhimurium inoculum was 4 to 5 log CFU/g in manure-fertilized soil. The conditions in the two environmental chambers, each containing inoculated and uninoculated beds of manure-fertilized soil, simulated daily average Madison, Wis., weather conditions (hourly temperatures, rainfall, daylight, and humidity) for a 1 March or a 1 June manure application and subsequent vegetable growing seasons ending 9 August or 28 September, respectively. Core soil samples were taken biweekly from both inoculated and uninoculated soil beds in each chamber. Radishes, arugula, and carrots were planted in soil beds, thinned, and harvested. Soils, thinned vegetables, and harvested vegetables were analyzed for S. enterica serovar Typhimurium and Escherichia coli (indigenous in manure). After the 1 March manure application, S. enterica serovar Typhimurium was detected at low levels in both soils on 31 May, but not on vegetables planted 1 May and harvested 12 July from either soil. After the 1 June manure application, S. enterica serovar Typhimurium was detected in SCL soil on 7 September and on radishes and arugula planted in SCL soil on 15 August and harvested on 27 September. In LS soil, S. enterica serovar Typhimurium died at a similar rate (P ≥ 0.05) after the 1 June manure application and was less often detected on arugula and radishes harvested from this soil compared to the SCL soil. Pathogen levels on vegetables were decreased by washing. Manure application in cool (daily average maximum temperature of <10°C) spring conditions is recommended to ensure that harvested vegetables are not contaminated with S. enterica serovar Typhimurium. Manure application under warmer (daily average maximum temperature >20°C) summer conditions is not recommended when vegetable planting is done between the time of manure application and late summer. A late fall manure application will not increase the risk of contaminating vegetables planted the next spring, since further experiments showed that repeated freeze-thaw cycles were detrimental to the survival of S. enterica serovar Typhimurium and E. coli in manure-fertilized soil. The number of indigenous E. coli in soil was never significantly lower (P < 0.05) than that of S. enterica serovar Typhimurium, suggesting its usefulness as an indicator organism for evaluating the risk of vegetable contamination with manure-borne S. enterica serovar Typhimurium.  相似文献   

16.
Understanding protein adsorption kinetics to surfaces is of importance for various environmental and biomedical applications. Adsorption of bovine serum albumin to various self-assembled monolayer surfaces including neutral and charged hydrophilic and hydrophobic surfaces was investigated using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. Adsorption of bovine serum albumin varied as a function of surface properties, bovine serum albumin concentration and pH value. Charged surfaces exhibited a greater quantity of bovine serum albumin adsorption, a larger bovine serum albumin layer thickness, and increased density of bovine serum albumin protein compared to neutral surfaces at neutral pH value. The quantity of adsorbed bovine serum albumin protein increased with increasing bovine serum albumin concentration. After equilibrium sorption was reached at pH 7.0, desorption of bovine serum albumin occurred when pH was lowered to 2.0, which is below the isoelectric point of bovine serum albumin. Our data provide further evidence that combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry is a sensitive analytical tool to evaluate attachment and detachment of adsorbed proteins in systems with environmental implications.  相似文献   

17.
不同稻蟹生产模式对土壤活性有机碳和酶活性的影响   总被引:2,自引:0,他引:2  
安辉  刘鸣达  王耀晶  闫颖 《生态学报》2012,32(15):4753-4761
采取田间定位试验与室内分析相结合的方法,研究了有机稻蟹、常规稻蟹与单作水稻生产模式对土壤活性有机碳和酶活性的影响。结果表明,与单作水稻模式相比,有机稻蟹模式下的土壤总有机碳(TOC)、活性有机碳(LOC)、中活性有机碳(MLOC)、高活性有机碳(HLOC)含量及碳库管理指数(CMI)均显著或者极显著提高,且有机肥用量越大,效果越显著;有机稻蟹模式显著提高了土壤过氧化氢酶、脲酶、转化酶及碱性磷酸酶活性,与2009年相比,2010年中量有机肥稻蟹模式(M3)的LOC和MLOC含量增幅最高,分别达10.11%和5.14%;低量有机肥稻蟹模式(M4)的脲酶和碱性磷酸酶活性增幅最为明显,分别达80.25%和46.62%;常规稻蟹模式各指标的变化也有其类似的规律,但均明显低于有机稻蟹模式。相关分析表明,TOC、LOC、MLOC与4种土壤酶活性呈显著或者极显著正相关,相关系数最低为0.584*(P<0.05),最高可达0.940**(P<0.01)。因此,有机稻蟹生产模式不仅能显著提高土壤有机质的数量和质量,而且能增加土壤酶活性,提高土壤肥力。  相似文献   

18.
Successful excystation of sporulated Eimeria spp. oocysts is an important step to acquire large numbers of viable sporozoites for molecular, biochemical, immunological and in vitro experiments for detailed studies on complex host cell-parasite interactions. An improved method for excystation of sporulated oocysts and collection of infective E. bovis- and E. arloingi-sporozoites is here described. Eimeria spp. oocysts were treated for at least 20 h with sterile 0.02 M L-cysteine HCl/0.2 M NaHCO3 solution at 37 °C in 100% CO2 atmosphere. The last oocyst treatment was performed with a 0.4% trypsin 8% sterile bovine bile excystation solution, which disrupted oocyst walls with consequent activation of sporozoites within oocyst circumplasm, thereby releasing up to 90% of sporozoites in approximately 2 h of incubation (37 °C) with a 1:3 (oocysts:sporozoites) ratio. Free-released sporozoites were filtered in order to remove rests of oocysts, sporocysts and non-sporulated oocysts. Furthermore, live cell imaging 3D holotomographic microscopy (Nanolive®) analysis allowed visualization of differing sporozoite egress strategies. Sporozoites of both species were up to 99% viable, highly motile, capable of active host cell invasion and further development into trophozoite- as well as macroment-development in primary bovine umbilical vein endothelial cells (BUVEC). Sporozoites obtained by this new excystation protocol were cleaner at the time point of exposure of BUVEC monolayers and thus benefiting from the non-activation status of these highly immunocompetent cells through debris. Alongside, this protocol improved former described methods by being is less expensive, faster, accessible for all labs with minimum equipment, and without requirement of neither expensive buffer solutions nor sophisticated instruments such as ultracentrifuges.  相似文献   

19.
Analysis of Cryptosporidium occurrence in six watersheds by method 1623 and the integrated cell culture-PCR (CC-PCR) technique provided an opportunity to evaluate these two methods. The average recovery efficiencies were 58.5% for the CC-PCR technique and 72% for method 1623, but the values were not significantly different (P = 0.06). Cryptosporidium oocysts were detected in 60 of 593 samples (10.1%) by method 1623. Infectious oocysts were detected in 22 of 560 samples (3.9%) by the CC-PCR technique. There was 87% agreement between the total numbers of samples positive as determined by method 1623 and CC-PCR for four of the sites. The other two sites had 16.3 and 24% correspondence between the methods. Infectious oocysts were detected in all of the watersheds. Overall, approximately 37% of the Cryptosporidium oocysts detected by the immunofluorescence method were viable and infectious. DNA sequence analysis of the Cryptosporidium parvum isolates detected by CC-PCR showed the presence of both the bovine and human genotypes. More than 90% of the C. parvum isolates were identified as having the bovine or bovine-like genotype. The estimates of the concentrations of infectious Cryptosporidium and the resulting daily and annual risks of infection compared well for the two methods. The results suggest that most surface water systems would require, on average, a 3-log reduction in source water Cryptosporidium levels to meet potable water goals.  相似文献   

20.
Abstract The present study was undertaken to determine the infectivity of Cryptosporidium parvum oocysts for immunosup-pressed adult C57BL/6N mice after the oocysts had been stored from 1–48 months at 4°C in 2.5% potassium dichromate. All mice inoculated with oocysts 1–18 months old developed patent infections, while mice inoculated with older oocysts remained uninfected. The prepatent period was extended from 2 to 6 or 7 days as the storage time for oocysts increased. The finding that C. parvum oocysts remain infective for mice for at least 18 months offers important economic and time-saving advantages for investigators who frequently require large numbers of oocysts that must be painstakingly purified from calf manure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号