首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium- and calmodulin-regulated ATPase and protein kinase activities are shown to be strongly associated with brain actomyosin. Similar enzymatic activities and an invariable polypeptide profile on sodium dodecyl sulfate-polyacrylamide gel electrophoresis were obtained for brain actomyosin taken through a solubilization-precipitation cycle (1.0-0.1 M KCl), or precipitated from buffers containing 1% Triton X-100 or 10 mM EDTA and 10 mM EGTA. These data suggest a specific complex of brain actomyosin with a protein kinase similar to calmodulin-dependent kinase II, a 190-kDa calmodulin-binding protein (P190), and a calmodulin-like polypeptide. P190 was the major substrate for endogenous calcium-dependent phosphorylation. 125I-Calmodulin overlay technique revealed four major calmodulin-binding polypeptides associated with brain actomyosin: 50- and 60-kDa subunits of the calmodulin-dependent kinase II, P190, and a high molecular weight polypeptide which is probably fodrin. A fraction enriched in P190 had Ca2(+)- and calmodulin-stimulated MgATPase activity, but not myosin-like K-EDTA ATPase activity. The lack of immunological cross-reactivity between brain myosin heavy chain and P190 confirmed that they are distinct molecules.  相似文献   

2.
A simple and rapid procedure for the purification of the native form of chicken gizzard myosin light-chain kinase (Mr 136000) is described which eliminates problems of proteolysis previously encountered. During this procedure, a calmodulin-binding protein of Mr 141000, which previously co-purified with the myosin light-chain kinase, is removed and shown to be a distinct protein on the basis of lack of kinase activity, different chymotryptic peptide maps, lack of cross-reactivity with a monoclonal antibody to turkey gizzard myosin light-chain kinase, and lack of phosphorylation by the purified catalytic subunit of cyclic AMP-dependent protein kinase. This Mr-141000 calmodulin-binding protein is identified as caldesmon on the basis of Ca2+-dependent interaction with calmodulin, subunit Mr, Ca2+-independent interaction with skeletal-muscle F-actin, Ca2+-dependent competition between calmodulin and F-actin for caldesmon, and tissue content.  相似文献   

3.
The actin bundle within each microvillus of the intestinal brush border is tethered laterally to the membrane by spirally arranged bridges. These bridges are thought to be composed of a protein complex consisting of a 110-kD subunit and multiple molecules of bound calmodulin (CM). Recent studies indicate that this complex, termed 110K-CM, is myosin-like with respect to its actin binding and ATPase properties. In this study, possible structural similarity between the 110-kD subunit and myosin was examined using two sets of mAbs; one was generated against Acanthamoeba myosin II and the other against the 110-kD subunit of avian 110K-CM. The myosin II mAbs had been shown previously to be cross-reactive with skeletal muscle myosin, with the epitope(s) localized to the 50-kD tryptic fragment of the subfragment-1 (S1) domain. The 110K mAbs (CX 1-5) reacted with the 110-kD subunit as well as with the heavy chain of skeletal but not with that of smooth or brush border myosin. All five of these 110K mAbs reacted with the 25-kD, NH2-terminal tryptic fragment of chicken skeletal S1, which contains the ATP-binding site of myosin. Similar tryptic digestion of 110K-CM revealed that these five mAbs all reacted with a 36-kD fragment of 110K (as well as larger 90- and 54-kD fragments) which by photoaffinity labeling was shown to contain the ATP-binding site(s) of the 110K subunit. CM binding to these same tryptic digests of 110K-CM revealed that only the 90-kD fragment retained both ATP- and CM-binding domains. CM binding was observed to several tryptic fragments of 60, 40, 29, and 18 kD, none of which contain the myosin head epitopes. These results suggest structural similarity between the 110K and myosin S1, including those domains involved in ATP- and actin binding, and provide additional evidence that 110K-CM is a myosin. These studies also support the results of Coluccio and Bretscher (1988. J. Cell Biol. 106:367-373) that the calmodulin-binding site(s) and the myosin head region of the 110-kD subunit lie in discrete functional domains of the molecule.  相似文献   

4.
Brush border myosin I from chicken intestine is phosphorylated in vitro by chicken intestinal epithelial cell protein kinase C. Phosphorylation on serine and threonine to a maximum of 0.93 mol of P/mol of myosin I occurs within an approximately 20 kDa region at the end of the COOH-terminal tail of the 119-kDa heavy chain. The effects of Ca2+ on myosin I phosphorylation by protein kinase C are complex, with up to 4-fold stimulation occurring at 0.5-3 microM Ca2+, and up to 80% inhibition occurring at 3-320 microM Ca2+. Phosphorylation required that brush border myosin I be in its phosphatidylserine vesicle-bound state. Previously unknown Ca2+ stimulation of brush border myosin I binding to phosphatidylserine vesicles was found to coincide with Ca2+ stimulation of phosphorylation. A myosin I proteolytic fragment lacking approximately 20 kDa of its tail retained Ca(2+)-stimulated binding, but showed reduced Ca(2+)-independent binding. Ca(2+)-dependent phosphatidylserine binding is apparently due to the concomitant phosphatidylserine-promoted, Ca(2+)-induced dissociation of up to three of the four calmodulin light chains from myosin I. Four highly basic putative calmodulin-binding sites in the Ca(2+)-dependent phosphatidylserine binding region of the heavy chain were identified based on the similarity in their sequence to the calmodulin- and phosphatidylserine-binding site of neuromodulin. Calmodulin dissociation is now shown to occur in the low micromolar Ca2+ concentration range and may regulate the association of brush border myosin I with membranes and its phosphorylation by protein kinase C.  相似文献   

5.
We report the identification and characterization of myr 4 (myosin from rat), the first mammalian myosin I that is not closely related to brush border myosin I. Myr 4 contains a myosin head (motor) domain, a regulatory domain with light chain binding sites and a tail domain. Sequence analysis of myosin I head (motor) domains suggested that myr 4 defines a novel subclass of myosin I''s. This subclass is clearly different from the vertebrate brush border myosin I subclass (which includes myr 1) and the myosin I subclass(es) identified from Acanthamoeba castellanii and Dictyostelium discoideum. In accordance with this notion, a detailed sequence analysis of all myosin I tail domains revealed that the myr 4 tail is unique, except for a newly identified myosin I tail homology motif detected in all myosin I tail sequences. The Ca(2+)-binding protein calmodulin was demonstrated to be associated with myr 4. Calmodulin binding activity of myr 4 was mapped by gel overlay assays to the two consecutive light chain binding motifs (IQ motifs) present in the regulatory domain. These two binding sites differed in their Ca2+ requirements for optimal calmodulin binding. The NH2-terminal IQ motif bound calmodulin in the absence of free Ca2+, whereas the COOH-terminal IQ motif bound calmodulin in the presence of free Ca2+. A further Ca(2+)-dependent calmodulin binding site was mapped to amino acids 776-874 in the myr 4 tail domain. These results demonstrate a differential Ca2+ sensitivity for calmodulin binding by IQ motifs, and they suggest that myr 4 activity might be regulated by Ca2+/calmodulin. Myr 4 was demonstrated to be expressed in many cell lines and rat tissues with the highest level of expression in adult brain tissue. Its expression was developmentally regulated during rat brain ontogeny, rising 2-3 wk postnatally, and being maximal in adult brain. Immunofluorescence localization demonstrated that myr 4 is expressed in subpopulations of neurons. In these neurons, prominent punctate staining was detected in cell bodies and apical dendrites. A punctate staining that did not obviously colocalize with the bulk of F- actin was also observed in C6 rat glioma cells. The observed punctate staining for myr 4 is reminiscent of a membranous localization.  相似文献   

6.
We have reinvestigated the effects of Ca++ and ATP on brush borders isolated from intestinal epithelial cells. At 37 degrees C, Ca++ (1 microM) and ATP cause a dramatic contraction of brush border terminal webs, not a retraction of microvilli as previously reported (M. S. Mooseker, 1976, J. Cell Biol. 71:417-433). Terminal web contraction, which occurs over the course of 1-5 min at 37 degrees C, actively constricts brush borders at the level of their zonula adherens. Contraction requires ATP, is stimulated by Ca++ (1 microM), and occurs in both membrane-intact and demembranated brush borders. Ca++ - dependent-solation of microvillus cores requires a concentration of Ca++ slightly greater (10 microM) than that required for contraction. Under conditions in which brush borders contract, many proteins in the isolated brush borders become phosphorylated. However, the phosphorylation of only one of the brush border proteins, the 20,000 dalton (20-kdalton) light chain of brush border myosin (BBMLC20), is stimulated by Ca++. At 37 degrees C, BBMLC20 phosphorylation correlates directly with brush border contraction. Furthermore, both BBMLC20 phosphorylation and brush border contraction are inhibited by trifluoperazine, an anti-psychotic phenothiazine that inhibits calmodulin activity. These results indicate that Ca++ regulates brush border contractility in vitro by stimulating cytoskeleton-associated, Ca++- and calmodulin-dependent brush border myosin light chain kinase.  相似文献   

7.
Recent biochemical studies of p190, a calmodulin (CM)-binding protein purified from vertebrate brain, have demonstrated that this protein, purified as a complex with bound CM, shares a number of properties with myosins (Espindola, F. S., E. M. Espreafico, M. V. Coelho, A. R. Martins, F. R. C. Costa, M. S. Mooseker, and R. E. Larson. 1992. J. Cell Biol. 118:359-368). To determine whether or not p190 was a member of the myosin family of proteins, a set of overlapping cDNAs encoding the full-length protein sequence of chicken brain p190 was isolated and sequenced. Verification that the deduced primary structure was that of p190 was demonstrated through microsequence analysis of a cyanogen bromide peptide generated from chick brain p190. The deduced primary structure of chicken brain p190 revealed that this 1,830-amino acid (aa) 212,509-D) protein is a member of a novel structural class of unconventional myosins that includes the gene products encoded by the dilute locus of mouse and the MYO2 gene of Saccharomyces cerevisiae. We have named the p190-CM complex "myosin-V" based on the results of a detailed sequence comparison of the head domains of 29 myosin heavy chains (hc), which has revealed that this myosin, based on head structure, is the fifth of six distinct structural classes of myosin to be described thus far. Like the presumed products of the mouse dilute and yeast MYO2 genes, the head domain of chicken myosin-V hc (aa 1-764) is linked to a "neck" domain (aa 765-909) consisting of six tandem repeats of an approximately 23-aa "IQ-motif." All known myosins contain at least one such motif at their head-tail junctions; these IQ-motifs may function as calmodulin or light chain binding sites. The tail domain of chicken myosin-V consists of an initial 511 aa predicted to form several segments of coiled-coil alpha helix followed by a terminal 410-aa globular domain (aa, 1,421-1,830). Interestingly, a portion of the tail domain (aa, 1,094-1,830) shares 58% amino acid sequence identity with a 723-aa protein from mouse brain reported to be a glutamic acid decarboxylase. The neck region of chicken myosin-V, which contains the IQ-motifs, was demonstrated to contain the binding sites for CM by analyzing CM binding to bacterially expressed fusion proteins containing the head, neck, and tail domains. Immunolocalization of myosin-V in brain and in cultured cells revealed an unusual distribution for this myosin in both neurons and nonneuronal cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Brush border myosin I from chicken intestinal microvilli is a membrane-associated, single-headed myosin composed of a 119-kDa heavy chain and several calmodulin light chains. We first describe in detail a new procedure for the rapid purification of brush border myosin I in greater than 99% purity with a yield of 40%, significantly higher than for previous methods. The subunit stoichiometry was determined to be 4 calmodulin light chains/myosin I heavy chain by amino acid compositional analysis of the separated subunits. We have studied the effects of Ca2+ and temperature on dissociation of calmodulin from myosin I and on myosin I Mg2(+)-ATPase and contractile activities. At 30 degrees C the actin-activable ATPase activity is stimulated 2-fold at 10-700 microM Ca2+. Dissociation of 1 calmodulin occurs at 25-50 microM Ca2+, but this has no effect on actin activation. The contractile activity of myosin I, expressed as superprecipitation, is greatly enhanced by Ca2+ under conditions in which 1 calmodulin is dissociated. This calmodulin is thus not essential for actin activation or superprecipitation. Myosin I was found to be highly temperature-sensitive, with an increase to 37 degrees C resulting in dissociation of 1 calmodulin at below 10(-7) M Ca2+ and an additional 1.5 calmodulins at 1-10 microM Ca2+. A complete loss of actin activation accompanies the Ca2(+)-induced calmodulin dissociation at 37 degrees C. Our conclusion is that physiological levels of Ca2+ can either stimulate or inhibit the mechanoenzyme activities of brush border myosin I in vitro, with the mode of regulation determined by the number of associated calmodulin light chains.  相似文献   

9.
Nanomolar concentrations of synthetic peptides corresponding to the calmodulin-binding domain of skeletal muscle myosin light chain kinase were found to inhibit calmodulin activation of seven well-characterized calmodulin-dependent enzymes: brain 61 kDa cyclic nucleotide phosphodiesterase, brain adenylate cyclase, Bordetella pertussis adenylate cyclase, red blood cell membrane Ca++-pump ATPase, brain calmodulin-dependent protein phosphatase (calcineurin), skeletal muscle phosphorylase b kinase, and brain multifunctional Ca++ (calmodulin)-dependent protein kinase. Inhibition could be entirely overcome by the addition of excess calmodulin. Thus, the myosin light chain kinase peptides used in this study may be useful antagonists for studying calmodulin-dependent enzymes and processes.  相似文献   

10.
A synthetic peptide representing the calmodulin-binding domain of rabbit skeletal muscle myosin light chain kinase (K-R-R-W-K-K-N-F-I-A-V-S-A-A-N-R-F-K-K-I-S-S-S-G-A-L) was used as an antigen to produce a monoclonal antibody. The antibody (designated MAb RSkCBP1, of the IgM class) reacted with similar affinity (KD approximately 20 nM) by competitive enzyme-linked immunoassay (ELISA) with the antigen peptide and intact rabbit skeletal muscle myosin light chain kinase. MAb RSkCBP1 inhibited rabbit skeletal muscle myosin light chain kinase activity competitively with respect to calmodulin (Ki = 20 nM). The antibody also inhibited myosin light chain kinase activity in extracts of skeletal muscle from several mammalian species (rabbit, sheep, and bovine) and an avian species (chicken). The concentration of MAb RSKCBP1 required for 50% inhibition of enzyme activity was similar for the mammalian species (80 nM) but was significantly higher for the avian species (1.2 microM). A competitive ELISA protocol was used to analyze weak cross-reactivity to other calmodulin-binding peptides and proteins. This assay demonstrated no cross-reactivity with the venom peptides melittin or mastoparan; smooth muscle myosin light chain kinases from hog carotid, bovine trachea, or chicken gizzard; bovine brain calmodulin-dependent calcineurin; or rabbit skeletal muscle troponin I. These data support the contention that the synthetic peptide used as the antigen represents the calmodulin-binding domain of rabbit skeletal muscle myosin light chain kinase and that the calmodulin-binding domains of different calmodulin-regulated proteins may have distinct primary and/or higher order structures.  相似文献   

11.
Rabbit brain actomyosin showed several fold stimulation of the MgATPase activity by Ca2+ alone and by Ca2+/calmodulin. The calmodulin-binding drug, fluphenazine, abolished the stimulated activity. In the presence of Ca2+, exogenous calmodulin had a biphasic effect on ATPase activity at low concentrations (less than 0.15 microM) and activated the ATPase activity by 60-70% at about 1 microM. Tropomyosin-troponin complex from skeletal muscle did not stimulate the ATPase activity of brain actomyosin, but conferred Ca2+ sensitivity to a skeletal muscle myosin/brain actomyosin mixture. These results indicate the presence of myosin-linked, calmodulin-dependent, Ca2+-regulatory system for brain actomyosin. Heavy and light chains of brain myosin were found to be rapidly phosphorylated by endogenous Ca2+-dependent protein kinase(s). Ca2+-independent phosphorylation of one of the light chains was also observed.  相似文献   

12.
The epithelial layer lining the proximal convoluted tubule of mammalian kidney contains a brush border of numerous microvilli. These microvilli appear in structure to be very similar to the microvilli on epithelial cells of the small intestine. Microvilli found in both the small intestine and the proximal convoluted tubules in kidney have a core bundle of actin filaments bundled by the accessory proteins villin and fimbrin. Along the length of intestinal microvilli, lateral links can be observed to connect the core bundle of actin filaments to the membrane. These cross-bridges are comprised of a 110-kDa calmodulin complex which belongs to a class of single-headed myosin molecules, collectively referred to as myosin-1. We now report that an analogous calmodulin-binding polypeptide of 105 kDa has been identified in rat kidney cortex. The 105-kDa polypeptide is preferentially found in purified kidney brush borders, can be extracted with ATP, and co-elutes with calmodulin on gel filtration and anion exchange chromatography. Fractions containing the 105-kDa polypeptide exhibit a modest ATPase activity in buffer containing CaCl2. The partially purified 105-kDa polypeptide will bind iodinated calmodulin and will sediment with F-actin in buffer containing ethylene glycol-bis-(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) or Ca2+. The addition of ATP partially reverses this association with F-actin. These results indicate that myosin-1, in addition to its presence in intestinal brush borders, is present in the brush border of kidney. We also provide preliminary evidence to indicate that the 105-kDa polypeptide is not restricted to tissues possessing a brush border.  相似文献   

13.
Vascular smooth muscle caldesmon   总被引:10,自引:0,他引:10  
Caldesmon, a major actin- and calmodulin-binding protein, has been identified in diverse bovine tissues, including smooth and striated muscles and various nonmuscle tissues, by denaturing polyacrylamide gel electrophoresis of tissue homogenates and immunoblotting using rabbit anti-chicken gizzard caldesmon. Caldesmon was purified from vascular smooth muscle (bovine aorta) by heat treatment of a tissue homogenate, ion-exchange chromatography, and affinity chromatography on a column of immobilized calmodulin. The isolated protein shared many properties in common with chicken gizzard caldesmon: immunological cross-reactivity, Ca2+-dependent interaction with calmodulin, Ca2+-independent interaction with F-actin, competition between actin and calmodulin for caldesmon binding only in the presence of Ca2+, and inhibition of the actin-activated Mg2+-ATPase activity of smooth muscle myosin without affecting the phosphorylation state of myosin. Maximal binding of aorta caldesmon to actin occurred at 1 mol of caldesmon: 9-10 mol of actin, and binding was unaffected by tropomyosin. Half-maximal inhibition of the actin-activated myosin Mg2+-ATPase occurred at approximately 1 mol of caldesmon: 12 mol of actin. This inhibition was also unaffected by tropomyosin. Caldesmon had no effect on the Mg2+-ATPase activity of smooth muscle myosin in the absence of actin. Bovine aorta and chicken gizzard caldesmons differed in several respects: Mr (149,000 for bovine aorta caldesmon and 141,000 for chicken gizzard caldesmon), extinction coefficient (E1%280nm = 19.5 and 5.0 for bovine aorta and chicken gizzard caldesmon, respectively), amino acid composition, and one-dimensional peptide maps obtained by limited chymotryptic and Staphylococcus aureus V8 protease digestion. In a competitive enzyme-linked immunosorbent assay, using anti-chicken gizzard caldesmon, a 174-fold molar excess of bovine aorta caldesmon relative to chicken gizzard caldesmon was required for half-maximal inhibition. These studies establish the widespread tissue and species distribution of caldesmon and indicate that vascular smooth muscle caldesmon exhibits physicochemical differences yet structural and functional similarities to caldesmon isolated from chicken gizzard.  相似文献   

14.
《The Journal of cell biology》1994,126(5):1201-1210
We previously discovered a cellular isoform of titin (originally named T-protein) colocalized with myosin II in the terminal web domain of the chicken intestinal epithelial cell brush border cytoskeleton (Eilertsen, K.J., and T.C.S. Keller. 1992. J. Cell Biol. 119:549-557). Here, we demonstrate that cellular titin also colocalizes with myosin II filaments in stress fibers and organizes a similar array of myosin II filaments in vitro. To investigate interactions between cellular titin and myosin in vitro, we purified both proteins from isolated intestinal epithelial cell brush borders by a combination of gel filtration and hydroxyapatite column chromatography. Electron microscopy of brush border myosin bipolar filaments assembled in the presence and absence of cellular titin revealed a cellular titin- dependent side-by-side and end-to-end alignment of the filaments into highly ordered arrays. Immunogold labeling confirmed cellular titin association with the filament arrays. Under similar assembly conditions, purified chicken pectoralis muscle titin formed much less regular aggregates of muscle myosin bipolar filaments. Sucrose density gradient analyses of both cellular and muscle titin-myosin supramolecular arrays demonstrated that the cellular titin and myosin isoforms coassembled with a myosin/titin ratio of approximately 25:1, whereas the muscle isoforms coassembled with a myosin:titin ratio of approximately 38:1. No coassembly aggregates were found when cellular myosin was assembled in the presence of muscle titin or when muscle myosin was assembled in the presence of cellular titin. Our results demonstrate that cellular titin can organize an isoform-specific association of myosin II bipolar filaments and support the possibility that cellular titin is a key organizing component of the brush border and other myosin II-containing cytoskeletal structures including stress fibers.  相似文献   

15.
mAbs specific for calmodulin were used to examine the distribution of calmodulin in vegetative Dictyostelium cells. Indirect immunofluorescence indicated that calmodulin was greatly enriched at the periphery of phase lucent vacuoles. The presence of these vacuoles in newly germinated (non-feeding) as well as growing cells, and the response of the vacuoles to changes in the osmotic environment, identified them as contractile vacuoles, osmoregulatory organelles. No evidence was found for an association of calmodulin with endosomes or lysosomes, nor was calmodulin enriched along cytoskeletal filaments. When membranes from Dictyostelium cells were fractionated on equilibrium sucrose density gradients, calmodulin cofractionated with alkaline phosphatase, a cytochemical marker for contractile vacuole membranes, at a density of 1.156 g/ml. Several high molecular weight calmodulin-binding proteins were enriched in the same region of the gradient. One of the calmodulin-binding polypeptides (molecular mass approximately 150 kD) cross-reacted with an antiserum specific for Acanthamoeba myosin IC. By indirect immunofluorescence, this protein was also enriched on contractile vacuole membranes. These results suggest that a calmodulin-binding unconventional myosin is associated with contractile vacuoles in Dictyostelium; similar proteins in yeast and mammalian cells have been implicated in vesicle movement.  相似文献   

16.
We have produced and characterised five monoclonal antibodies against myosin isolated from chicken intestinal epithelial brush border cells. The binding sites of the antibodies on the rod portion of brush border myosin were localised using rotary shadowing/electron microscopy of myosin-antibody complexes. Two antibodies were shown to bind to the tip of the myosin tail, two antibodies to sites about two thirds down the length of the rod, and one antibody about one third down the length of the rod. Brush border myosin was digested with papain, trypsin and alpha-chymotrypsin, and they myosin fragments obtained were analysed by western blots with the monoclonal antibodies and polyclonal antiserum, and by gel overlay with 125I-labelled light chains. Using this approach we were able to identify and map the protease cleavage sites and thus characterise the proteolytic substructure of brush border myosin. Solid-phase assays, western blots and immunofluorescence were used to study the cross-reactivity of these monoclonal antibodies against a variety of myosins from different species and cell types, to assess the immunological relatedness between brush border myosin and homologous molecules present in different tissues and species. Finally, we used a competitive solid-phase assay to measure the 'relative affinities' of the antibodies towards the three possible conformational states of brush border myosin, i.e. filament, extended monomer and folded monomer.  相似文献   

17.
Properties of caldesmon isolated from chicken gizzard.   总被引:5,自引:4,他引:1       下载免费PDF全文
Chicken gizzard smooth muscle contains two major calmodulin-binding proteins: caldesmon (11.1 microM; Mr 141 000) and myosin light-chain kinase (4.6 microM; Mr 136 000), both of which are associated with the contractile apparatus. The amino acid composition of caldesmon is distinct from that of myosin light-chain kinase and is characterized by a very high glutamic acid content (25.5%), high contents of lysine (13.6%) and arginine (10.3%), and a low aromatic amino acid content (2.4%). Caldesmon lacked myosin light-chain kinase and phosphatase activities and did not compete with either myosin light-chain kinase or cyclic nucleotide phosphodiesterase (both calmodulin-dependent enzymes) for available calmodulin, suggesting that calmodulin may have distinct binding sites for caldesmon on the one hand and myosin light-chain kinase and cyclic nucleotide phosphodiesterase on the other. Consistent with the lack of effect of caldesmon on myosin phosphorylation, caldesmon did not affect the assembly or disassembly of myosin filaments in vitro. As previously shown [Ngai & Walsh (1984) J. Biol. Chem. 259, 13656-13659], caldesmon can be reversibly phosphorylated. The phosphorylation and dephosphorylation of caldesmon were further characterized and the Ca2+/calmodulin-dependent caldesmon kinase was purified; kinase activity correlated with a protein of subunit Mr 93 000. Caldesmon was not a substrate of myosin light-chain kinase or phosphorylase kinase, both calmodulin-activated protein kinases.  相似文献   

18.
Recent molecular cloning experiments have identified a 25 amino-acid region as the calmodulin-binding domain of the alpha-subunit of rat brain Ca2+/calmodulin-dependent multifunctional protein kinase II (CaM-K II). Synthetic peptides, derived from the deduced amino-acid sequence encompassing this region, were examined for their ability to bind calmodulin in a calcium dependent manner and to inhibit the Ca2+/calmodulin-dependent autophosphorylation of CaM-K II. Comparison of these structure-function relationships highlighted a region of 5 amino-acids, which was essential for calmodulin interaction and inhibition of kinase activity. This region demonstrated some homology with other calmodulin-binding peptides, and may represent a key site of interaction of the kinase with calmodulin. These analyses provide additional insight into the molecular mechanism underlying the Ca2+ regulation of CaM-K II.  相似文献   

19.
Myosin V is a calmodulin-binding motor protein. The dissociation of single calmodulin molecules from individual myosin V molecules at 1 microM Ca(2+) correlates with a reduction in sliding velocity in an in vitro motility assay. The dissociation of two calmodulin molecules at 5 microM Ca(2+) correlates with a detachment of actin filaments from myosin V. To mimic the regulation of myosin V motility by Ca(2+) in a cell, caged Ca(2+) coupled with a UV flash system was used to produce Ca(2+) transients. During the Ca(2+) transient, myosin V goes through the functional cycle of reduced sliding velocity, actin detachment and reattachment followed by the recovery of the sliding velocity. These results indicate that myosin V motility is regulated by Ca(2+) through a reduction in actin-binding affinity resulting from the dissociation of single calmodulin molecules.  相似文献   

20.
The Mr 245,000 calmodulin-binding protein of the dogfish erythrocyte cytoskeleton (D245) has been compared with human erythrocyte spectrin and mammalian brain fodrin [J. Levine and M. Willard (1981) J. Cell Biol. 90, 631-643]. Mammalian erythrocyte alpha-spectrin, brain alpha-fodrin, and D245 are all localized in the cell surface-associated cytoskeleton, and have similar molecular weights. Like mammalian erythrocyte spectrin, D245 was extracted from erythrocyte ghosts under low-ionic-strength conditions. However, D245 failed to bind an antibody which reacted strongly with both subunits of human erythrocyte spectrin. Unlike mammalian erythrocyte alpha- and beta-spectrin, D245 bound calmodulin in the absence of urea both in a "gel-binding" assay and in situ using azidocalmodulin [D.C. Bartelt, R.K. Carlin, G.A. Scheele, and W.D. Cohen (1982) J. Cell Biol. 95, 278-284]. Striking similarities were noted between D245 and alpha-fodrin in that both exhibited (a) comparable calcium-dependent calmodulin binding properties, (b) strong reactivity with two different anti-fodrin antibody preparations, (c) similar reactivity with antibody to brain CBP-I, now believed to be fodrin, (d) proteolytic degradation yielding an Mr 150,000 calmodulin-binding fragment, and (e) lack of reactivity with an anti-spectrin antibody. A protein with calmodulin-binding and anti-fodrin-binding properties similar to D245 was detected in cytoskeletal preparations of chicken erythrocytes. Moderate and consistent cross-reactivity of anti-fodrin with human erythrocyte alpha-spectrin was also observed. The data indicate that D245 is functionally and immunologically more closely related to alpha-fodrin than to alpha-spectrin of the mammalian erythrocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号