首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kittler JT 《Neuron》2006,49(5):646-648
A molecular explanation for why some neurons are more vulnerable than others to ischemic injury has long remained elusive. In this issue of Neuron, Peng et al. propose that CREB-dependent downregulation of the RNA editing enzyme ADAR2, resulting in defective Q/R editing of AMPA receptor GluR2 subunits and increased availability of calcium and zinc-permeable death-promoting AMPA receptors, underlies the vulnerability of some neuronal populations to ischemia.  相似文献   

2.
Preischemic hyperglycemia is known to aggravate brain damage resulting from transient ischemia. In the present study, we explored whether this aggravation is preceded by an enhanced formation of reactive oxygen species (ROS) during the early reperfusion period. To that end, normo- and hyperglycemic rats were subjected to 15 min of forebrain ischemia and allowed recovery periods of 5, 15, and 60 min. Sodium salicylate was injected intraperitoneally in a dose of 100 mg/kg, and tissues were sampled during recirculation to allow analyses of salicylic acid (SA) and its hydroxylation products, 2,3- and 2,5-dihydroxybenzoate (DHBA). Tissue sampled from thalamus and caudoputamen in normoglycemic animals failed to show an increase in 2,3- or 2,5-DHBA after 5 and 15 min of recirculation. However, such an increase was observed in the neocortex after 60 min of recirculation, with a suggested increase in the hippocampus as well. Hyperglycemia had three effects. First, it increased 2,5-DHBA in the thalamus and caudoputamen to values exceeding normoglycemic ones after 15 min of recirculation. Second, it increased basal values of 2,5- and total DHBA in the neocortex. Third, it increased the 60-min values for 2,5- and total DHBA in the hippocampus. These results hint that, at least in part, hyperglycemia may aggravate damage by enhancing basal- and ischemia-triggered production of ROS.  相似文献   

3.
Acute neuroprotective effects of cinnamophilin (CINN; (8R, 8'S)-4, 4'-dihydroxy-3, 3'-dimethoxy-7-oxo-8, 8'-neolignan), a novel antioxidant and free radical scavenger, were studied in a mouse model of transient middle cerebral artery (MCA) occlusion. CINN was administered intraperitoneally either 15 min before (pretreatment) or 2 h after the onset of MCA occlusion (postischemic treatment). Relative to vehicle-treated controls, animals pretreated with CINN, at 20-80 mg/kg, had significant reductions in brain infarction by 33-46% and improvements in neurobehavioral outcome. Postischemic administration with CINN (80 mg/kg) also significantly reduced brain infarction by 43% and ameliorated neurobehavioral deficits. Additionally, CINN administration significantly attenuated in situ accumulation of superoxide anions (O2-) in the boundary zones of infarct at 4 h after reperfusion. Consequently, CINN-treated animals exhibited significantly decreased levels of oxidative damage, as assessed by immunopositive reactions for 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 4-hydroxynonenal (4-HNE), and the resultant inflammatory reactions at 24 h post-insult. It is concluded that CINN effectively reduced brain infarction and improved neurobehavioral outcome following a short-term recovery period after severe transient focal cerebral ischemia in mice. The finding of a decreased extent of reactive oxygen species and oxidative damage observed with CINN treatment highlights that its antioxidant and radical scavenging ability is contributory.  相似文献   

4.
In the present study, the effect of the adenosine uptake blocker, propentofylline (HWA 285) on the extracellular concentration of several amino acids including glutamate, glycine and taurine following 10 min of forebrain ischemia in gerbil hippocampus was investigated using in vivo microdialysis. Pretreatment with HWA 285 (20 mg/kg i.p.) significantly reduced the extracellular concentration of glutamate following ischemia but did not significantly alter levels of other amino acids such as glycine and taurine. These findings suggest that the neuroprotective effect of HWA 285 may be associated with inhibition of glutamate release in the gerbil hippocampus.  相似文献   

5.
Although neurofibrillary tangle (NFT) formation is a central event in both familial and sporadic Alzheimer's disease (AD), neither cellular origin nor functional consequence of the NFTs are fully understood. This largely is due to the lack of available in vivo models for neurofibrillary degeneration (NFD). NFTs have only been identified in transgenic mice, bearing a transgene for a rare hereditary neurodegenerative disease, frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP17). Epidemiological evidence suggests a much higher occurrence of dementia in stroke patients. This may represent the underlying cause of the pathogenesis of sporadic AD, which accounts for the majority of AD cases. We examined pathological markers of AD in a rodent stroke model. Here we show that after transient cerebral ischemia, hyperphosphorylated tau accumulates in neurons of the cerebral cortex in the ischemic area, forms filaments similar to those present in human neurodegenerative tauopathies and colocalizes with markers of apoptosis. As a potential underlying mechanism, we were able to determine that transient ischemia induced tau hyperphosphorylation and NFT-like conformations are associated with aberrant activation of cyclin dependent kinase 5 (Cdk5) and can be rescued by delivery of a potent, but non-specific cyclin dependent kinase inhibitor, roscovitine to the brain. Our study further indicates that accumulation of p35 and its calpain-mediated cleavage product, p25 may account for the deregulation of Cdk5 induced by transient ischemia. We conclude that Cdk5 may be the principal protein kinase responsible for tau hyperphosphorylation and may be a hallmark of the tauopathies in this stroke model.  相似文献   

6.
Neurogenesis in the dentate gyrus occurs throughout life. We observed regional differences in neurogenesis in the dentate gyrus of adult rats following transient forebrain ischemia. Nine days after ischemic-reperfusion or sham manipulation, rats were given 5-bromo-2'-deoxyuridine-5'-monophosphate (BrdU), a marker for dividing cells. They were killed 1 or 28 days later to distinguish between cell proliferation and survival. Neurogenesis was evaluated by BrdU incorporation as well by identifying neuronal and glial markers in six regions of the dentate gyrus: rostral, middle and caudal along the rostrocaudal axis, each further divided into suprapyramidal and infrapyramidal blade subregions. In control rats BrdU-positive cells in the rostral subregions were significantly lower in the suprapyramidal than in the infrapyramidal blades at both 1 and 28 days after BrdU injection. One day after injection, BrdU-positive cells had increased more in five of the subregions in the ischemic rats than in the controls, the exception being the suprapyramidal blade of the rostral subregion. At 28 days after BrdU injection, numbers of BrdU-positive cells were higher in four subregions in the ischemic group, the exceptions being the rostral suprapyramidal and middle infrapyramidal blades. At 28 days after BrdU injection, the percentages of BrdU positive cells that expressed a neuronal marker (NeuN) were the same in the dentate granule cell layers of ischemic and control rats. Our data thus demonstrate regional differences in enhanced neurogenesis in the dentate gyrus of adult rats after transient forebrain ischemia.  相似文献   

7.

Background

Global ischemic stroke is one of the most prominent consequences of cardiac arrest, since the diminished blood flow to the brain results in cell damage and sometimes permanently impaired neurological function. The post-arrest period is often characterised by cerebral hypoperfusion due to subacute hemodynamic disturbances, the pathophysiology of which are poorly understood. In two other types of stroke, focal ischemic stroke and subarachnoid hemorrhage, it has earlier been demonstrated that the expression of certain vasoconstrictor receptors is increased in cerebral arteries several days after the insult, a phenomenon that leads to increased contraction of cerebral arteries, reduced perfusion of the affected area and worsened ischemic damage. Based on these findings, the aim of the present study was to investigate if transient global cerebral ischemia is associated with upregulation of vasoconstrictive endothelin and 5-hydroxytryptamine receptors in cerebral arteries. Experimental transient forebrain ischemia of varying durations was induced in male wistar rats, followed by reperfusion for 48 hours. Neurological function was assessed daily by three different tests and cerebrovascular expression and contractile function of endothelin and 5-hydroxytryptamine receptors were evaluated by wire myography, immunohistochemistry and western blotting.

Results

Transient forebrain ischemia induced neurological deficits as well as functional upregulation of vasoconstrictive ETB and 5-HT1B receptors in cerebral arteries supplying mid- and forebrain regions. No receptor upregulation was seen in arteries supplying the hindbrain. Immunohistochemical stainings and western blotting demonstrated expressional upregulation of these receptor subtypes in the mid- and forebrain arteries and confirmed that the receptors were located in the smooth muscle layer of the cerebral arteries.

Conclusions

This study reveals a new pathophysiological aspect of global ischemic stroke, namely expressional upregulation of vasoconstrictor receptors in cerebral arteries two days after the insult, which might contribute to cerebral hypoperfusion and delayed neuronal damage after cardiac arrest.  相似文献   

8.
目的:研究大鼠脑缺血/再灌注过程中血流量及与脑组织水含量变化的趋势。方法:选取5只成年SD雄性大鼠(n=5),参照改良Zea-Longa线栓法制备大鼠大脑中动脉缺血/再灌注模型,2 h后拔出线栓。利用PeriCam PSI血流灌注成像系统实时监测大鼠在缺血前及缺血5 min、30 min、1 h、2 h、再灌注5 min、30 min、1 h、2 h、4 h、6 h及24 h的血流灌注量,记录在ROI(感兴趣区)测量的数值。再选取15只成年SD雄性大鼠,分为Control组、缺血2 h、再灌注30 min、4 h及24 h组(n=3)。正常组不做任何处理,实验组按上述线栓法制备MCAO模型。取新鲜脑组织用干湿重法测定其左、右半球的水含量。结果:栓塞时缺血侧血流量逐渐下降,缺血2 h下降最低(P<0.05);再灌注早期血流量恢复较大(P<0.05),30 min时显著下降(P<0.05),4 h明显上升(P<0.05),24 h再次上升(P<0.05)但低于缺血前血流量(P>0.05)。脑组织水含量测量,缺血2 h组和再灌注30 min组与正常组无明显差异(P>0.05);再灌4 h组和再灌24 h组明显增高(P<0.05),且再灌24 h组明显高于再灌4 h组(P<0.05)。结论:大鼠脑缺血/再灌注过程中血流量和脑组织中水含量的变化存在一定的规律,且脑组织中水含量与再灌注过程中血流量的变化有一定关系。  相似文献   

9.
10.
Growing evidence from in vitro studies supports that valproic acid (VPA), an anti-convulsant and mood-stabilizing drug, has neuroprotective effects. The present study investigated whether VPA reduces brain damage and improves functional outcome in a transient focal cerebral ischemia model of rats. Subcutaneous injection of VPA (300 mg/kg) immediately after ischemia followed by repeated injections every 12 h, was found to markedly decrease infarct size and reduce ischemia-induced neurological deficit scores measured at 24 and 48 h after ischemic onset. VPA treatment also suppressed ischemia-induced neuronal caspase-3 activation in the cerebral cortex. VPA treatments resulted in a time-dependent increase in acetylated histone H3 levels in the cortex and striatum of both ipsilateral and contralateral brain hemispheres of middle cerebral artery occlusion (MCAO) rats, as well as in these brain areas of normal, non-surgical rats, supporting the in vitro finding that VPA is a histone deacetylase (HDAC) inhibitor. Similarly, heat shock protein 70 (HSP70) levels were time-dependently up-regulated by VPA in the cortex and striatum of both ipsilateral and contralateral sides of MCAO rats and in these brain areas of normal rats. Altogether, our results demonstrate that VPA is neuroprotective in the cerebral ischemia model and suggest that the protection mechanisms may involve HDAC inhibition and HSP induction.  相似文献   

11.
External application of static magnetic fields (SMF), used specifically for the treatment of inflammatory conditions such as soft tissue injuries, has recently become popular as a complementary and/or alternative therapy with minimal investigation into efficacy or mechanism. Localized inflammation was induced via injection of inflammatory agents lambda-carrageenan (CA) or histamine into rat hindpaws, alone or in conjunction with pharmacological agents, resulting in a spatially and temporally defined inflammatory reaction. Application of a 10- or 70-mT, but not a 400-mT, SMF for 15 or 30 min immediately following histamine-induced edema resulted in a significant, 20-50% reduction in edema formation. In addition, a 2-h, 70-mT field application to CA-induced edema also resulted in significant (33-37%) edema reduction. Field application before injection or at the time of maximal edema did not influence edema formation or resolution, respectively. Together, these results suggest the existence of a therapeutic threshold of SMF strength (below 400 mT) and a temporal dependence of efficacy. Administration of pharmacological agents directed at nitric oxide signaling and L-type Ca(2+) channel dynamics in conjunction with SMF treatment and histamine-induced edema revealed that the potential mechanism of SMF action may be via modulation of vascular tone through effects on L-type Ca(2+) channels in vascular smooth muscle cells.  相似文献   

12.
Wen Y  Yang S  Liu R  Simpkins JW 《FEBS letters》2005,579(21):4591-4599
Recent evidence indicates that cell-cycle regulating proteins are involved in apoptotic process in post-mitotic neurons. In this study, we examined cell-cycle regulators for G1/S cell-cycle progression after a transient focal cerebral ischemia induced by middle cerebral artery (MCA) occlusion. In the cerebral frontoparietal cortex, we observed a marked induction of Cyclin D1 (a coactivator of Cdks), and proliferating cell nuclear antigen (PCNA), together with upregulated Cdk kinase activities. This process is accompanied with multiple phosphorylation of retinoblastoma (Rb) protein at Cdk phosphorylation sites in neurons from the ischemic cortex. We further examined DNA synthesis by the incorporation of BrdU, a nucleotide analog that incorporates into newly synthesized DNA. Within 24-h of reperfusion after 60-min occlusion, substantial BrdU-positive neurons were observed in the ischemic cortex. Inhibition of Cdk4 activity during this ischemia/reperfusion is highly neuroprotective. These results suggest that ischemia/reperfusion cerebral damage induces signalings at the G1/S cell-cycle transition, and may constitute a critical step in the neuronal apoptotic pathway in ischemia/reperfusion induced neuronal damage.  相似文献   

13.
In the rat model of forebrain ischemia with subsequent reperfusion, an obvious formation of intravascular kinin (IVKF) occurred. The IVKF preceded and coincided in time with the maximum hyperemia and a vasogenic oedema. Local cerebral blood flow (LCBF) increased up to about 187%, at that. In three groups of experimental rats, a correlation was revealed among the ischemia obviousness, IVKF, and development of the brain oedema.  相似文献   

14.
The effect of naloxone upon neurologic deficit was evaluated in a model of transient forebrain ischemia in rats. Awake male Wistar rats were subjected to a 30 minute ischemia by occluding both common carotid arteries 8 days after cauterizing vertebral arteries. Administration of naloxone 1 or 5 mg/kg iv 10 minutes after carotid occlusion or 1 mg/kg iv one hour after clamp removal failed to reduce immediate and tardive neurologic postischemic deficits. On the other hand, in rats treated by a dose of 1 mg/kg naloxone 10 minutes after carotid occlusion and perfused with an additional dose of 2 mg/kg/h for 80 minutes, neurologic score was improved one hour after ischemia. However mortality was not decreased whatever was the modality of naloxone administration. This result confirms previous data showing that naloxone exerts a protective effect when given at sufficiently high dosage.  相似文献   

15.
The synthesis rate of brain acetylcholine (ACh) was estimated 30 min and 5 days following transient forebrain ischemia performed by 10 min bilateral carotid occlusion in gerbils. ACh synthesis was evaluated from the conversion of radiolabeled choline (Ch) into ACh after an i.v. administration of [methyl-3H]Ch. Endogenous and labeled Ch and ACh were quantified by HPLC. The synthesis rate of ACh was significantly decreased following 30 min of recirculation. The reductions reached 55.4% in the hippocampus, 51.2% in the cerebral cortex and 44.4% in the striatum. Five days after ischemia, the values returned to normal in the cerebral cortex and in the striatum, while ACh synthesis remained selectively lowered (–30.4%, p<0.01) in the hippocampus. These cholinergic alterations may account for both early and delayed post-ischemic behavioral and mnesic deficits.  相似文献   

16.
孕酮对缺血/再灌注大鼠脑皮层水肿的影响   总被引:10,自引:1,他引:10  
目的探讨孕酮(progesterone,PROG)对脑水肿的影响.方法48只大鼠随机分为6组即缺血/再灌(I/R)组,二甲基亚砜(DMSO)组,预防(pretreatment)组,防治(pre+posttreatment)组,治疗(posttreatment)组,地塞米松(DEXA)组.采用大鼠局灶性脑缺血/再灌注(I/R)模型,测定大脑中动脉阻塞(MCAO)24h后脑皮层水、钠、钾、钙含量.结果与DMSO组相比,应用PROG预防及防治组均能明显降低缺血皮层的H2O(P<0.01)、Na+(P<0.01)、Ca2+(P<0.01)含量,升高K+(P<0.01)含量,而治疗组虽能明显降低H2O(P<0.05)、Na+(P<0.01),但降低Ca2+(P>0.05)和升高K+(P>0.05)的效果不显著.DEXA组的结果与PROG预防或防治组类似.结论用PROG预防或防治能显著减轻I/R引起的脑水肿.  相似文献   

17.
Ischemic stroke is a neurovascular disease treatable by thrombolytic therapy, but the therapy has to be initiated within 3 h of the incident. This therapeutic limitation stems from the secondary injury which results mainly from oxidative stress and inflammation. A potent antioxidant/anti-inflammatory agent, caffeic acid phenethyl ester (CAPE) has potential to mitigate stroke's secondary injury, and thereby widening the therapeutic window. We observed that CAPE protected the brain in a dose-dependent manner (1-10 mg/kg body weight) and showed a wide therapeutic window (about 18 h) in a rat model of transient focal cerebral ischemia and reperfusion. The treatment also increased nitric oxide and glutathione levels, decreased lipid peroxidation and nitrotyrosine levels, and enhanced cerebral blood flow. CAPE down-regulated inflammation by blocking nuclear factor kappa B activity. The affected mediators included adhesion molecules (intercellular adhesion molecule-1 and E-selectin), cytokines (tumor necrosis factor-alpha and interleukin-1beta) and inducible nitric oxide synthase. Anti-inflammatory action of CAPE was further documented through reduction of ED1 (marker of activated macrophage/microglia) expression. The treatment inhibited apoptotic cell death by down-regulating caspase 3 and up-regulating anti-apoptotic protein Bcl-xL. Conclusively, CAPE is a promising drug candidate for ischemic stroke treatment due to its inhibition of oxidative stress and inflammation, and its clinically relevant wide therapeutic window.  相似文献   

18.
Delta-aminolevulinic acid, precursor of heme, accumulates in a number of organs, especially in the liver, of patients with acute intermittent porphyria. The potential protective effect of melatonin against oxidative damage to nuclear DNA and microsomal and mitochondrial membranes in rat liver, caused by delta-aminolevulinic acid, was examined. Changes in 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, an index of DNA damage, and alterations in membrane fluidity (the inverse of membrane rigidity) and lipid peroxidation in microsomal and mitochondrial membranes, as indices of damage to lipid and protein molecules in membranes, were estimated. Measurements were made in rat liver after a 2 week treatment with delta-aminolevulinic acid (40 mg/kg b.w., every other day). To test the potential protective effects of melatonin, the indole was injected (i.p. 10 mg/kg b.w.) 3 times daily for 2 weeks. 8-OHdG levels and lipid peroxidation in microsomal membranes increased significantly whereas microsomal and mitochondrial membrane fluidity decreased as a consequence of delta-aminolevulinic acid treatment. Melatonin completely counteracted the effects of delta-aminolevulinic acid. Melatonin was highly effective in protecting against oxidative damage to DNA as well as to microsomal and mitochondrial membranes in rat liver and it may be useful as a cotreatment in patients with acute intermittent porphyria.  相似文献   

19.
1.  The effect of transient forebrain ischemia on endothelin-1 (ET-1) and endothelin-3 (ET-3) production in the hippocampus of stroke-prone spontaneously hypertensive rats (SHRSPs) was investigated using immunohistochemical techniques.
2.  In SHRSPs subjected to 10-min bilateral carotid occlusion, neuronal degeneration in the CA1 pyramidal cell layer of the hippocampus was detectable at 4 days and remarkable at 7 days after reperfusion.
3.  Coinciding with neuronal degeneration, ET-1- and ET-3-like immunoreactivities were intense in the CA1 pyramidal-cell layer, the stratum lacunosum moleculare, and the CA4 subfield of the hippocampus. Almost all of the immunostained cells had morphological characteristics of astrocytes.
4.  The possibility that ET has a role in the development of neuronal cell death following transient forebrain ischemia warrants further attention.
  相似文献   

20.
Antioxidant ebselen reduces oxidative damage in focal cerebral ischemia   总被引:13,自引:0,他引:13  
The antioxidant and neuroprotective potential of the glutathione peroxidase mimic ebselen has been investigated in experimental stroke. Intravenous ebselen (1 mg/kg/h) or vehicle infusion was started 45 min before permanent middle cerebral artery occlusion in the rat, and continued until the end of the experiment. The topography and extent of oxidative damage to the brain was assessed immunohistochemically using an antibody for DNA damage that identified hydroxylated products of 2'-deoxyguanosine (8-OHdG/8-oxodGuo) and an antibody for lipid peroxidation that identified the 4-hydroxynonenal histidine adduct (4-HNE). Ischemic damage was mapped and evaluated with standard histopathology. In the vehicle-treated rats immunopositive staining for both 8-oxodGuo and 4-HNE extended beyond the boundary of ischemic damage. In ebselen-treated rats, the extent of tissue immunopositive for 8-oxodGuo, and 4-HNE was less than that demonstrating ischemic damage confirming the antioxidant mechanism of action in vivo. In addition, ebselen treatment induced a 28% reduction in cortical ischemic damage (p <.02).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号