首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aim

Aquaporin-4(AQP4) expression in the brain with relation to edema formation following focal cerebral ischemia was investigated. Studies have shown that brain edema is one of the significant factors in worsening stroke outcomes. While many mechanisms may aggravate brain injury, one such potential system may involve AQP4 up regulation in stroke patients that could result in increased edema formation. Post administration of melatonin following ischemic stroke reduces AQP4 mediated brain edema and confers neuroprotection.

Materials and methods

An in-silico approach was undertaken to confirm effective melatonin-AQP4 binding. Rats were treated with 5 mg/kg, i.p. melatonin or placebo at 30 min prior, 60 min post and 120 min post 60 min of middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion. Rats were evaluated for battery of neurological and motor function tests just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, biochemical analysis, apoptosis study and western blot experiments.

Key findings

Melatonin at 60 min post ischemia rendered neuroprotection as evident by reduction in cerebral infarct volume, improvement in motor and neurological deficit and reduction in brain edema. Furthermore, ischemia induced surge in levels of nitrite and malondialdehyde (MDA) were also found to be significantly reduced in ischemic brain regions in treated animals. Melatonin potentiated intrinsic antioxidant status, inhibited acid mediated rise in intracellular calcium levels, decreased apoptotic cell death and also markedly inhibited protein kinase C (PKC) influenced AQP4 expression in the cerebral cortex and dorsal striatum.

Significance

Melatonin confers neuroprotection by protein kinase C mediated AQP4 inhibition in ischemic stroke.  相似文献   

2.
Reversible occlusion of the middle cerebral artery (MCA) was used to test hypothesis that hyperbaric oxygen inhibits the neutrophile infiltration into the ischemic brain thus reducing the brain injury. Treatment with hyperbaric oxygen prior to ischemia or during MCA occlusion significantly reduced neutrophile infiltration, motor disorders, and cerebral infarction volume.  相似文献   

3.
Despite progress in reducing ischemic stroke damage, complete protection remains elusive. Here we demonstrate that, after permanent occlusion of a major cortical artery (middle cerebral artery; MCA), single whisker stimulation can induce complete protection of the adult rat cortex, but only if administered within a critical time window. Animals that receive early treatment are histologically and behaviorally equivalent to healthy controls and have normal neuronal function. Protection of the cortex clearly requires reperfusion to the ischemic area despite permanent occlusion. Using blood flow imaging and other techniques we found evidence of reversed blood flow into MCA branches from an alternate arterial source via collateral vessels (inter-arterial connections), a potential mechanism for reperfusion. These findings suggest that the cortex is capable of extensive blood flow reorganization and more importantly that mild sensory stimulation can provide complete protection from impending stroke given early intervention. Such non-invasive, non-pharmacological intervention has clear translational potential.  相似文献   

4.
BNG-1 is a herb complex used in traditional Chinese medicine to treat stroke. In this study, we attempted to identify the neuroprotective mechanism of BNG-1 by using neuroimaging and neurotrophin analyses of a stroke animal model. Rats were treated with either saline or BNG-1 for 7 d after 60-min middle cerebral artery occlusion by filament model. The temporal change of magnetic resonance (MR) imaging of brain was studied using a 7 Tesla MR imaging (MRI) system and the temporal expressions of neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) in brain were analyzed before operation and at 4 h, 2 d, and 7 d after operation. Compared with the saline group, the BNG-1 group exhibited a smaller infarction volume in the cerebral cortex in T2 image from as early as 4 h to 7 d, less edema in the cortex in diffusion weighted image from 2 to 7 d, earlier reduction of postischemic hyperperfusion in both the cortex and striatum in perfusion image at 4 h, and earlier normalization of the ischemic pattern in the striatum in susceptibility weighted image at 2 d. NT-3 and BDNF levels were higher in the BNG-1 group than the saline group at 7 d. We concluded that the protective effect of BNG-1 against cerebral ischemic injury might act through improving cerebral hemodynamics and recovering neurotrophin generation.  相似文献   

5.
Interest is growing in the role of adenosine triphosphate (ATP) on P2 receptors during hypoxic/ischemic events in the brain. However, there is no direct evidence of an increase in extracellular ATP levels during cerebral ischemia in vivo. The aim of the present study was to evaluate ATP outflow from the rat striatum by the microdialysis technique associated with focal cerebral ischemia in vivo by intraluminal occlusion of the right middle cerebral artery (MCA). Between 1 and 4h after ischemia, rats showed a clear turning behavior contralateral to the ischemic side. Twenty-four hour after MCA occlusion, ischemic rats had definite neurological deficit and striatal and cortical damage. The ATP concentration (mean+/-S.E.M.) in the striatum of normoxic rats (n = 8) was 3.10+/-0.34 nM. During 220 min after MCA occlusion, the extracellular ATP levels significantly increased two-fold, being 5.90+/-0.61 nM (p < 0.01 versus normoxic level). ATP outflow showed a tendency to increase over time during the 220 min of ischemia. Since extracellular ATP is rapidly metabolized to adenosine, we also assessed ATP outflow in the presence of the ecto-5'-nucleotidase inhibitor, alpha,beta-methylene-adenosine diphosphate (AOPCP, 1 mM) directly perfused into the striatum. The ATP concentration in normoxic rats (n = 8) was increased three-fold in the presence of the ecto-5'-nucleotidase inhibitor (9.57+/-0.26 nM). During 220 min of ischemia, extracellular ATP levels significantly increased 1.3-fold in AOPCP-treated rats (12.62+/-0.65 nM, p < 0.01 versus normoxic level). The present study confirms that ATP is continuously released in the brain and demonstrates for the first time that ATP outflow increases during ischemia in vivo. These results confirm that ATP may be an important mediator in brain ischemia.  相似文献   

6.
The role of glial cells in neuronal death has become a major research interest. Glial cell activation has been demonstrated to accompany cerebral ischemia. However, there is disagreement whether such gliosis is a cell death or a neuroprotective response. In the present study, we examined alterations in glial cell responses to the reported neuroprotective action of the free radical scavenger, melatonin, against cerebral ischemia. Adult male Wistar rats were given oral injections of either melatonin (26 micromol/rat) or saline just prior to 1 h occlusion of the middle cerebral artery (MCA), then once daily for 11 or 19 consecutive days. At 11 and 19 days after reperfusion of the MCA, randomly selected animals were killed and their brains removed for immunohistochemical assays. Melatonin significantly enhanced survival of glial cells (as revealed by glial cell specific markers, glial fibrillary acidic protein and aquaporin-4 immunostaining) at both time periods postischemia, and the preservation of these glial cells in the ischemic penumbra corresponded with a markedly reduced area of infarction (detected by immunoglobulin G and hematoxylin-eosin staining), as well as increased neuronal survival. The ischemia-induced locomotor deficits were partially ameliorated in melatonin-treated animals. In vitro replications of ischemia by serum deprivation or by exposure to free radical-producing toxins (sodium nitroprusside and 3-nitropropionic acid) revealed that melatonin (10 microg/ml or 100 microM) treatment of pure astrocytic cultures significantly reduced astrocytic cell death. These results suggest a potential strategy directed at enhancing glial cell survival as an alternative protective approach against ischemic damage.  相似文献   

7.
Disruptions of the circadian rhythm and reduced circulating levels of the circadian hormone melatonin predispose to ischemic stroke. Although the nuclear receptor RORα is considered as a circadian rhythm regulator and a mediator of certain melatonin effects, its potential role in cerebral ischemia-reperfusion (CI/R) injury and in the neuroprotective effects of melatonin remain undefined. Here, we observed that CI/R injury in RORα-deficient mice was associated with greater cerebral infarct size, brain edema, and cerebral apoptosis compared with wild-type model. In contrast, transgenic mice with brain-specific overexpression of RORα versus non-transgenic controls exerted significantly reduced infarct volume, brain edema and apoptotic response induced by CI/R. Mechanistically, RORα deficiency was found to exacerbate apoptosis pathways mediated by endoplasmic-reticulum stress and mitochondria and aggravate oxidative/nitrative stress after CI/R. Further studies revealed that RORα deficiency intensified the activation of nuclear factor-κB signaling induced by CI/R. Given the emerging evidence of RORα as an essential melatonin activity mediator, we further investigated the RORα roles in melatonin-exerted neuroprotection against acute ischemic stroke. Melatonin treatment significantly decreased infarct volume and cerebral apoptosis; mitigated endoplasmic reticulum stress and mitochondrial dysfunction; and inhibited CI/R injury-induced oxidative/nitrative stress and nuclear factor-κB activation, which was eradicated in RORα-deficient mice. Collectively, current findings suggest that RORα is a novel endogenous neuroprotective receptor, and a pivotal mediator of melatonin's suppressive effects against CI/R injury.  相似文献   

8.
Reversibility of Nimodipine Binding to Brain in Transient Cerebral Ischemia   总被引:2,自引:0,他引:2  
Using autoradiography, we have measured the in vivo binding of [3H]nimodipine to brain in a rat model of reversible cerebral ischemia. Ischemia was induced by simultaneous occlusion of the middle cerebral artery (MCA) and ipsilateral common carotid artery by microaneurysm clips. Rats were studied after 15 min of ischemia (ischemic group) or after 45 min of reperfusion following 15 min of ischemia (reperfused group). Regional cerebral blood flow (CBF) was determined autoradiographically using [14C]iodoantipyrine in both ischemic (n = 6) and reperfused (n = 6) groups. During ischemia blood flow in the territory of the MCA was depressed and recovered to normal only in the distal territory of the MCA following reperfusion. [3H]Nimodipine binding in the ischemic group (n = 12) was elevated in ischemic brain regions and declined significantly (p < 0.01) in these regions in the reperfused group (n = 11). The ratio of the volume of cortex showing increased binding to the total volume of the forebrain was 0.113 +/- 0.025 (mean +/- SD) in the ischemic group and declined to 0.080 +/- 0.027 following reperfusion (p < 0.005). In general, infarct was only observed in regions showing persistent elevation of nimodipine binding following reperfusion as determined by histology performed in a separate group of rats (n = 8) after 24 h of reperfusion. We conclude that increased nimodipine binding to ischemic tissue is initially reversible with prompt reestablishment of CBF and is a sensitive indicator of early and reversible ischemia-induced cerebral dysfunction.  相似文献   

9.
The present study is to determine the effect of mild hypothermia (MHT) on the release of glutamate and glycine in rats subjected to middle cerebral artery occlusion and reperfusion. The relationship between amino acid efflux and brain infarct volume was compared in different periods during MHT. Reversible middle cerebral artery occlusion was performed in Sprague-Dawley rats using a suture model. The rats were divided into four groups including (1) MHT during ischemia (MHTi), (2) MHT during reperfusion (MHTr), (3) MHT during ischemia and reperfusion (MHTi + r), and (4) a normothermic group (NT). Extracellular concentrations of glutamate and glycine in the cortex and striatum were monitored using in vivo microdialysis and analyzed using high-performance liquid chromatography. Morphometric measurements for infarct volume were performed using 2,3,5-triphenyltetrazolium chloride staining. The increase of glutamate and glycine in the ischemic cortex of the MHTi and MHTi + r rats during ischemic and reperfusion periods was significantly less than that of the NT rats (p < 0.05). However, there was no statistical difference among these groups in the peak of glutamate and glycine release in the striatum. Infarct volume paralleled the release of glutamate and glycine. The protective effect of MHTi and MHTi + r in reducing ischemia and reperfusion brain injury may be due to the attenuation of both glutamate and glycine release during ischemia and reperfusion.  相似文献   

10.
Postischemic recovery from brain edema and of protein synthesis was examined following 1 h of middle cerebral artery (MCA) occlusion in rats. Recovery from brain edema and of protein synthesis showed a good correlation until 7 days after reperfusion in each area (cerebral cortex or lateral caudate) in the occluded MCA side. However, regional differences in the above types of recovery in the cortex and in the lateral caudate were found for the first time in this experiment. A profound inhibition of protein synthesis and formation of brain edema began sooner in the lateral caudate than in the cortex and continued long after reperfusion. Grades of cerebral blood flow during ischemia and the early period of reperfusion were almost the same in the two regions. Therefore, the regional differences in the above recoveries may not be due to the difference in the blood flow during ischemia and reperfusion, but may be partly attributable to the imbalance of excitatory and inhibitory innervation in the above two areas of the brain, may be due to a distinctive response to ischemic stress, and may be caused also by the potentiative effect of free arachidonate on the excitotoxic mechanism.  相似文献   

11.
Endogenous levels of the endocannabinoid anandamide, and the activities of the synthesizing and hydrolyzing enzymes, i.e. N-acylphosphatidylethanolamine-hydrolyzing phospholipase D and fatty acid amide hydrolase, respectively, were determined in the cortex and the striatum of rats subjected to transient middle cerebral artery occlusion. Anandamide content was markedly increased ( approximately 3-fold over controls; P < 0.01) in the ischemic striatum after 2 h of middle cerebral artery occlusion, but not in the cortex, and this elevation was paralleled by increased activity of N-acylphosphatidylethanolamine-hydrolyzing phospholipase D ( approximately 1.7-fold; P < 0.01), and reduced activity ( approximately 0.6-fold; P < 0.01) and expression ( approximately 0.7-fold; P < 0.05) of fatty acid amide hydrolase. These effects of middle cerebral artery occlusion were further potentiated by 1 h of reperfusion, whereas anandamide binding to type 1 cannabinoid and type 1 vanilloid receptors was not affected significantly by the ischemic insult. Additionally, the cannabinoid type 1 receptor antagonist SR141716, but not the receptor agonist R-(+)-WIN55,212-2, significantly reduced (33%; P < 0.05) cerebral infarct volume detected 22 h after the beginning of reperfusion. A neuroprotective intraperitoneal dose of 17beta-estradiol (0.20 mg x kg(-1)) that reduced infarct size by 43% also minimized the effect of brain ischemia on the endocannabinoid system, in an estrogen receptor-dependent manner. In conclusion, we show that the endocannabinoid system is implicated in the pathophysiology of transient middle cerebral artery occlusion-induced brain damage, and that neuroprotection afforded by estrogen is coincident with a re-establishment of anandamide levels in the ischemic striatum through a mechanism that needs to be investigated further.  相似文献   

12.
Summary 1. The time course of nitric oxide synthase (NOS) activity in neuronal, endothelial, and glial cells in the rat striatum after middle cerebral artery (MCA) occlusion and reperfusion was examined using a histochemical NADPH-diaphorase staining method.2. In sham-operated rats, neuronal cells of the striatum exhibited strong NADPH-diaphorase activities. When rats were subjected to MCA occlusion for 1 hr, neuronal damage, including neurons with positive NADPH-diaphorase activities, appeared in the striatum at 3 hr after and extended to all areas of the striatum 3–4 days after reperfusion.3. NADPH-diaphorase activities in the endothelial cells increased in the damaged part of striatum from 3 hr after, peaked at 1–2 days after MCA occlusion/reperfusion, then gradually decreased.4. In parallel with the development of neuronal damage, some astrocytes and a high proportion of microglia/macrophages located in the perisite and in the center of the damaged striatum, respectively, exhibited a moderate to high level of NADPH-diaphorase activities. Most of these activities disappeared at 4 days after MCA occlusion.5. These findings provided evidence that an inappropriate activation of NOS in endothelial cells and microglia/macrophages, in response to MCA occlusion/reperfusion, is closely associated with initiation and progression of ischemic neuronal injury in the striatum.  相似文献   

13.
We performed this study to determine whether gamma-aminobutyric acid (GABA(A)) receptor inhibition could reverse the effect of 17beta-estradiol on blood-brain barrier (BBB) disruption in focal cerebral ischemia. Young ovariectomized rats were implanted with a 500 microg 17beta-estradiol 21-day release pellet or with a vehicle pellet 21 days before the experiments. Forty-five minutes after middle cerebral artery (MCA) occlusion, half of each group was infused with bicuculline (a GABA(A) receptor antagonist) 1 mg/kg/min for 2 min followed by 0.1 mg/kg/min up to the end of experiments. The other half was infused with the same volume of normal saline. The transfer coefficient (Ki) of 14C-alpha-aminoisobutyric acid and the volume of 3H-dextran distribution (70,000 Daltons) were determined to measure the degree of BBB disruption one hour after MCA occlusion. In the control vehicle-treated animals, the Ki in the ischemic cortex (7.2 +/- 2.6 microl/g/min) was higher than in the contralateral cortex (2.5 +/- 1.4 microl/g/min). After bicuculline infusion, the Ki in the ischemic cortex increased (10.6 +/- 5.4 microl/g/min) although the increase was not statistically significant. In the 17beta-estradiol treated animals, the Ki in the ischemic cortex (3.8 +/- 1.6 microl/g/min) was lower than control vehicle-treated rats. With bicuculline infusion, the Ki in the ischemic cortex (14.5 +/- 6.8 microl/g/min) was markedly increased. In the non-ischemic cortex, there was no significant difference in Ki among the experimental groups. The volume of dextran distribution was not significantly different between the experimental groups in the ischemic or non-ischemic cortex. Our data suggests that part of the reason for the decreased BBB disruption in the focal ischemic area after 17beta-estradiol treatment could be due to the interaction between GABA(A) receptors and 17beta-estradiol.  相似文献   

14.
Neuronal damage subsequent to transient cerebral ischemia is a multifactorial process involving several overlapping mechanisms. Gangliosides, sialic acid-conjugated glycosphingolipids, reduce the severity of acute brain damage in vitro. However their in vivo effects on the cerebral cortex damaged by ischemic infarct are unknown. To assess the possible protective role of gangliosides we examined their expression in the cerebral cortex damaged by ischemic infarct in the rat. Ischemia was induced by middle cerebral artery (MCA) occlusion, and the resulting damage was observed by staining with 2, 3, 5-triphenylterazolium chloride (TTC). High-performance thin-layer chromatography (HPTLC) showed that gangliosides GM3 and GM1 increased in the damaged cerebral cortex, and immunofluorescence microscopy also revealed a significant change in expression of GM1. In addition, in situ hybridization demonstrated an increase in the mRNA for ganglioside GM3 synthase. These results suggest that gangliosides GM1 and GM3 may be synthesized in vivo to protect the cerebral cortex from ischemic damage.  相似文献   

15.
Xu XH  Zhang SM  Yan WM  Li XR  Zhang HY  Zheng XX 《Life sciences》2006,78(7):704-712
The aim of this study was to investigate the role of apoptosis or necrosis in the development of delayed infarct, and the relationship between the level of XIAP gene, caspase-3 activation and ischemic cell death following transient focal cerebral ischemia. Adult male Sprague-Dawley rats underwent right middle cerebral artery occlusion (MCAo) for 50 min and reperfusion for 0.5, 4, 8, 24 h, 3, 7, 14 days. On TTC-stained coronal sections, delayed infarct was observed to develop in the whole MCA territory, especially in frontoparietal cortex after ischemia. Near total infarct was shown in striatum 24 h after MCAo, while delayed infarct was evident in the cortex. By day 3, the infarct had progressively expanded to the nearly whole area of the frontoparietal cortex. Flow cytometric analysis of Annexin-V (marks apoptosis) and PI (propidium iodide, marks necrosis) labeling cells showed that MCAo dominantly induced necrosis in ischemic core, striatum. Apoptosis contributed to delayed infarct and cell death in the border zone, dorsolateral cortex and hippocampus. The time-course of caspase-3 activation was consistent with the changes of apoptosis and infarct following MCAo. Further RT-PCR experiments indicated that there was a biphasic regulation of XIAP in time- and region-dependent manner after ischemia. In the infarct core (striatum), following a transient and slight increase during 0.5 h to 4 h post-MCAo, expression of XIAP mRNA markedly decreased. On the other hand, a longer and larger upregulation of XIAP was observed at early time points in border zone (0.5 to 8 h, in dorsolateral cortex; 0.5 to 24 h in hippocampus), then the level of XIAP reduced. A negative correlation was observed between apoptosis and regulation of XIAP gene in these regions. Our findings suggest a possible association between expression of XIAP gene, apoptosis and delayed infarct following ischemia.  相似文献   

16.
Brain injury affects one-third of persons who survive after heart attack, even with restoration of spontaneous circulation by cardiopulmonary resuscitation. We studied brain injury resulting from transient bilateral carotid artery occlusion (BCAO) and reperfusion by simulating heart attack and restoration of circulation, respectively, in live C57Black6 mice. This model is known to induce neuronal death in the hippocampus, striatum, and cortex. We report the appearance of edema after transient BCAO of 60 minutes and 1 day of reperfusion. Hyperintensity in diffusion-weighted magnetic resonance imaging (MRI) was detectable in the striatum, thalamus, and cortex but not in the hippocampus. To determine whether damage to the hippocampus can be detected in live animals, we infused a T(2) susceptibility magnetic resonance contrast agent (superparamagnetic iron oxide nanoparticles [SPIONs]) that was linked to single-stranded deoxyribonucleic acid (DNA) complementary in sequence to c-fos messenger ribonucleic acid (SPION-cfos); we acquired in vivo T(2)*-weighted MRI 3 days later. SPION retention was measured as T(2)* (milliseconds) signal reduction or R(2)* value (s(-1)) elevation. We found that animals treated with 60-minute BCAO and 7-day reperfusion exhibited significantly less SPION retention in the hippocampus and cortex than sham-operated animals. These findings suggest that brain injury induced by cardiac arrest can be detected in live animals.  相似文献   

17.

Objectives

δ-opioid receptor (DOR) activation reduced brain ischemic infarction and attenuated neurological deficits, while DOR inhibition aggravated the ischemic damage. The underlying mechanisms are, however, not well understood yet. In this work, we asked if DOR activation protects the brain against ischemic injury through a brain-derived neurotrophic factor (BDNF) -TrkB pathway.

Methods

We exposed adult male Sprague-Dawley rats to focal cerebral ischemia, which was induced by middle cerebral artery occlusion (MCAO). DOR agonist TAN-67 (60 nmol), antagonist Naltrindole (100 nmol) or artificial cerebral spinal fluid was injected into the lateral cerebroventricle 30 min before MCAO. Besides the detection of ischemic injury, the expression of BDNF, full-length and truncated TrkB, total CREB, p-CREB, p-ATF and CD11b was detected by Western blot and fluorescence immunostaining.

Results

DOR activation with TAN-67 significantly reduced the ischemic volume and largely reversed the decrease in full-length TrkB protein expression in the ischemic cortex and striatum without any appreciable change in cerebral blood flow, while the DOR antagonist Naltrindole aggregated the ischemic injury. However, the level of BDNF remained unchanged in the cortex, striatum and hippocampus at 24 hours after MCAO and did not change in response to DOR activation or inhibition. MCAO decreased both total CREB and pCREB in the striatum, but not in the cortex, while DOR inhibition promoted a further decrease in total and phosphorylated CREB in the striatum and decreased pATF-1 expression in the cortex. In addition, MCAO increased C11b expression in the cortex, striatum and hippocampus, and DOR activation specifically attenuated the ischemic increase in the cortex but not in the striatum and hippocampus.

Conclusions

DOR activation rescues TrkB signaling by reversing ischemia/reperfusion induced decrease in the full-length TrkB receptor and reduces brain injury in ischemia/reperfusion  相似文献   

18.
目的:研究褪黑素通过大电导Ca2+激活K+(BKCa)通道介导大脑中动脉张力变化的作用机制。方法:8周龄雄性Wistar大鼠,麻醉后取大脑中动脉,酶消化法急性分离脑中动脉平滑肌细胞,采用膜片钳技术全细胞记录模式检测细胞外液加入褪黑素前后BKCa通道和电压门控钾(KV)通道的电流密度,褪黑素受体抑制剂2-苯基-N-乙酰色胺(luzindole)孵育后,全细胞记录模式记录加入褪黑素后BKCa通道电流幅值和贴附式单通道记录模式记录加入褪黑素后BKCa通道Po值,内面向外记录模式检测加入褪黑素后BKCa通道电导(G),开放概率(Po),平均开放时间(To)和关闭时间(Tc)。结果:①褪黑素(100 μmol/L)显著增加全细胞BKCa通道电流密度,但对KV通道电流密度无显著影响;②luzindole (1 μmol/L)显著抑制褪黑素引起的BKCa通道电流密度增加;③贴附式单通道记录模式下,褪黑素(100 μmol/L)增加BKCa单通道Po值,luzindole (1 μmol/L)显著抑制褪黑素引起的Po增加;④内面向外单通道记录模式下,褪黑素(1 μmol/L,100 μmol/L)缩短BKCa单通道的To和Tc值,且Tc较To显著缩短;结论:褪黑素通过受体依赖和非受体依赖途径激活BKCa通道,介导大脑中动脉血管舒张。  相似文献   

19.
Inflammatory damage plays an important role in cerebral ischemic pathogenesis and represents a new target for treatment of stroke. Shikonin has gained attention for its prominent anti-inflammatory property, but up to now little is known about shikonin treatment in acute ischemic stroke. The aim of this study was to evaluate the potential neuroprotective role of shikonin in cerebral ischemic injury, and investigate whether shikonin modulated inflammatory responses after stroke. Focal cerebral ischemia in male ICR mice was induced by transient middle cerebral artery occlusion. Shikonin (10 and 25 mg/kg) was administered by gavage once a day for 3 days before surgery and another dosage after operation. Neurological deficit, infarct volume, brain edema, blood–brain barrier (BBB) dysfunction, and inflammatory mediators were evaluated at 24 and 72 h after stroke. Compared with vehicle group, 25 mg/kg shikonin significantly improved neurological deficit, decreased infarct volume and edema both at 24 and 72 h after transient ischemic stroke, our data also showed that shikonin inhibited the pro-inflammatory mediators, including TLR4, TNF-α, NF-κB, and phosphorylation of p38MAPK in ischemic cortex. In addition, shikonin effectively alleviated brain leakage of Evans blue, up-regulated claudin-5 expression, and inhibited the over-expressed MMP-9 in ischemic brain. These results suggested that shikonin effectively protected brain against ischemic damage by regulating inflammatory responses and ameliorating BBB permeability.  相似文献   

20.
In the present study, we examined the temporal and spatial expression profiles of GFAP mRNA and protein in a focal cerebral ischemia model with ischemic injury confined to the cerebral cortex in the right middle cerebral artery (MCA) territory. Northern blot analysis showed a respective 5.5-fold and 7.2-fold increase in the GFAP mRNA in the ischemic right MCA cortex in rats subjected to 30-min (mild) or 60-min (severe) ischemia followed by 72-hr reperfusion. The GFAP mRNA signal remained elevated up to 2-week reperfusion. Interestingly, increased GFAP mRNA signal was clearly demonstrated for the first time in the left MCA cortex. A significant 1.5-fold and 5-fold increase was observed after 72-hr reperfusion following mild and severe ischemia, respectively. However, unlike the ischemic right MCA cortex, this induction was transient in the non-ischemic left MCA counterpart. In situ hybridization studies further revealed characteristic spatial induction profile following mild vs. severe ischemia. In mild ischemia, following 24-hr reperfusion, increase in GFAP mRNA was observed mainly within the ischemic right MCA cortex. Following 72-hr reperfusion, GFAP mRNA signal was observed in virtually the entire ischemic cortex, particularly the amygdala region, then gradually reduced and restricted to right MCA territory and subcortical thalamic nucleus following 2-week reperfusion. On the other hand, in severe ischemia, following 24-hr reperfusion increased GFAP mRNA signal was observed in area surrounding right MCA territory (infarct region) and outer cortical layers within the right MCA territory. Following 72-hr reperfusion, no signal was detected within right MCA cortex; however, increased GFAP signal was detected throughout the remaining ipsilateral cortex and subcortical region, as well as the contralateral cerebral cortex. GFAP mRNA signals then gradually reduced its intensity and was restricted to area surrounding necrosis and ipsilateral thalamic nucleus following 2-week reperfusion. GFAP-like immunoreactivity was also detected in area expressing GFAP mRNA. It is very likely that de novo synthesis was responsible for this increase. In summary, increased GFAP signal was noted in both ipsilateral and contralateral cerebral following mild and severe ischemia. Although the temporal induction profile for mild vs. severe ischemia was similar, the spatial induction profile was different. The mechanism leading to this differential induction and their physiological and functional significance are not clear at present. It is very likely that some local factors may involve, nevertheless, the detailed mechanisms remain to be fully explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号