首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fourteen gilts that had displayed one or more estrous cycles of 18-22 days (onset of estrus = Day 0) and four ovariectomized (OVX) gilts were treated with naloxone (NAL), an opiate antagonist, at 1 mg/kg body weight in saline i.v. Intact gilts were treated during either the luteal phase (L, Day 10-11; n = 7), early follicular phase (EF, Day 15-17; n = 3), or late follicular phase (LF, Day 18-19; n = 4) of the estrous cycle. Blood was collected at 15-min intervals for 2 h before and 4 h after NAL treatment. Serum luteinizing hormone (LH) concentrations for L gilts averaged 0.65 +/- 0.04 ng/ml during the pretreatment period and increased to an average of 1.3 +/- 0.1 ng/ml (p less than 0.05) during the first 60 min after NAL treatment. Serum prolactin (PRL) concentrations for L gilts averaged 4.8 +/- 0.2 ng/ml during the pretreatment period and increased to an average of 6.3 +/- 0.3 ng/ml (p less than 0.05) during the first 60 min after NAL treatment. Serum PRL concentrations averaged 8.6 +/- 0.7 ng/ml and 7.6 +/- 0.6 ng/ml in EF and LF gilts, respectively, prior to NAL treatment, and decreased (p less than 0.05) to an average of 4.1 +/- 0.2 ng/ml and 5.6 +/- 0.4 ng/ml in EF and LF gilts, respectively, during the fourth h after NAL. Naloxone treatment failed to alter serum LH concentrations in EF, LF, or OVX gilts and PRL concentrations in OVX gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Three experiments were conducted to determine the effect of sampling interval on serum concentrations of LH, FSH, and prolactin (PRL) in prepubertal, ovariectomized, and cycling gilts. In all experiments, blood samples were drawn at 2-min intervals for 4 h from indwelling jugular catheters. Mean serum hormone concentrations, mean number of peaks, and mean and maximum peak heights of LH, FSH, and PRL were calculated using values reflecting 2-, 6-, 10-, 20-, 30-, and 60-min sampling intervals. For LH, FSH, and PRL, mean serum concentrations can be obtained through blood samples drawn at hourly intervals. Since LH peaks are very distinct in pigs, the number of secretory peaks and mean peak height can be obtained via samples drawn at 20-min intervals. Since FSH and PRL peaks are less well defined, a more frequent sampling interval (10 min) is needed to determine number of peaks and mean peak height. To obtain the maximum peak height or the number of minutes for LH, FSH, or PRL to rise from its nadir to zenith, blood samples need to be drawn at 2-min intervals. Regardless of reproductive state, these data indicate that the sampling interval needed to characterize serum concentrations of LH, FSH, and PRL in the gilt is dependent upon the parameter in question.  相似文献   

3.
Six ovariectomized gilts were given zearalenone (Z), estradiol benzoate (EB) or vehicle in a replicated 3 x 3 Latin square design. Zearalenone was added to 2.3 kg of a corn-soybean ration at a dose of 1 mg Z/kg body weight; EB was given intramuscularly at 0.1 mg EB/kg body weight. Control gilts received vehicle solvent for both Z and EB. Blood samples were collected from indwelling jugular cannulas at 6-h intervals for 48 h before Z, EB or vehicle was given. After treatment, blood samples were drawn at 6-h intervals for an additional 84 h. Serum concentrations of luteinizing hormone (LH) decreased (P<0.001) from 4.67 ng/ml to 0.29 ng/ml within 6 h of EB. From 54 to 84 h after EB, serum concentrations of LH rose to 15.60 ng/ml (P<0.001). Serum concentrations of LH were reduced (P<0.001) in a similar pattern after Z (3.70 ng/ml to 0.49 ng/ml), but a rise in serum LH was not observed 54 to 84 h after Z (1.30 ng/ml). Serum concentrations of LH remained unchanged (P=0.55) in gilts given vehicle. Serum concentrations of follicle stimulating hormone (FSH) were suppressed (P<0.03) at 6 h in EB (19.10 vs 11.35 ng/ml) and Z gilts (16.16 vs 11.41 ng/ml) but remained unchanged in vehicle gilts. Serum concentrations of FSH did not change in EB or Z gilts during the next 36 h. These data indicate that the suppressive action of Z on serum concentrations of LH and FSH was similar to that of EB, while the biphasic stimulatory effect of EB for LH was not manifested by Z.  相似文献   

4.
This study was conducted to determine whether progesterone inhibits luteinizing hormone (LH) secretion in female pigs by a direct action on the pituitary gland. Eight ovariectomized, hypophysial stalk-transected gilts were given 1-microgram pulses of gonadotropin-releasing hormone iv every 45 min from Day 0 to 12. On Days 5-12, each of four gilts received either progesterone or oil vehicle im at 12-hr intervals. Serum progesterone concentrations in steroid-treated gilts reached 70 +/- 6.8 ng/ml (mean +/- SE) by Day 8 and remained elevated thereafter, whereas serum progesterone concentrations in oil-treated controls were less than 1 ng/ml for the entire study. Daily serum LH concentrations were not different between gilts treated with progesterone or oil. The 1-microgram pulses of gonadotropin-releasing hormone reliably evoked pulses of LH in both treatment groups. The LH pulse frequency and amplitude, assessed from samples collected every 15 min for 6 hr on Day 12, were similar for progesterone- and oil-treated gilts. These results provide evidence that progesterone does not act at the pituitary gland to alter LH secretion in pigs.  相似文献   

5.
Prepubertal gilts, having undergone a 7-day period of feed restriction to a maintenance ration, were allocated to one of 4 treatments; restricted feeding at 09:00 and 17:00 h for an 8th day both with (Group RN) and without (Group R) administration of the opioid antagonist naloxone hydrochloride (1 mg.kg-1 at 09:30 h followed by 0.5 mg.kg-1 at hourly intervals for 7 h), or feed to appetite with (Group ALN) and without (Group AL) naloxone administration. Gilts were bled at 10-min intervals on Day 8 from morning to evening feed and plasma LH, FSH and prolactin concentrations were measured by radioimmunoassay. Compared with Group R gilts, Group AL gilts exhibited significantly (P less than or equal to 0.05) higher mean and maximum LH concentrations and pulsatility, lower prolactin concentrations (P less than 0.05) but no significant difference in FSH secretion. Naloxone significantly depressed the increase in LH after re-feeding (Group ALN) (P less than 0.05). Once again there were no significant effects on FSH secretion. Naloxone also significantly depressed prolactin secretion in feed-restricted gilts (P less than 0.05). These results confirm that re-feeding of feed-restricted prepubertal gilts stimulates an immediate increase in LH secretion and that this elevation is not mediated via a suppression of inhibitory endogenous opioidergic tone. Rather, naloxone treatment appeared to expose a latent inhibition of LH secretion. The control of LH secretion is distinct from that of FSH in this model.  相似文献   

6.
Forty-week-old male broiler breeders were used in two experiments. Males were reared as recommended by the breeder, housed in individual cages, and cannulated to facilitate blood sampling. In experiment 1, blood samples were collected at 10- min intervals for 4 h commencing the day of cannulation (Day 0) and for 12 h on each of Days 1 and 2. In experiment 2, blood samples were collected at 10-min intervals for 8 h on Day 1. After centrifugation, plasma was stored at -20 degrees C until LH, FSH (experiment 1 and 2), testosterone, and corticosterone (experiment 1) concentrations were determined by RIA. Different statistical methods used to identify hormone secretion profiles revealed a characteristic pulsatile pattern of LH and FSH in plasma. However, LH pulses were more frequent and had greater amplitude than FSH pulses. Less than 32% of the FSH pulses were associated with LH episodes. Conversely, the association between LH and testosterone pulses averaged 83% in birds with testis weight greater than 10 g. Concentrations of corticosterone tended to increase after cannulation and remained elevated for only 3-4 h. Our data indicate that LH, FSH, and testosterone secretion is pulsatile in male broiler breeders. Additionally, LH pulses are associated with testosterone episodes but not with FSH pulses. The pulsatile pattern of FSH secretion, which is unique from those of LH, in adult males suggests that FSH secretion is independently regulated in the adult male fowl.  相似文献   

7.
The aim of this study was to determine if there is an age related reduction in the sensitivity of the negative feedback action of 17β-estradiol (estradiol) on luteinizing hormone (LH) secretion in the prepubertal gilt. Ovariectomized gilts at 90 (n=12), 150 (n=11) or 210 (n=12) days of age received estradiol benzoate (EB) osmotic pump implants 6/group and the remaining animals received vehicle control (C) implants except for 150-day C (n=5) on Day 0. On Day 10 blood samples were collected every 15 min for 8h and serum LH and estradiol concentrations were measured. Serum estradiol concentrations averaged 5 ± 1, 5 ± 1 and 7 ± 2 pg/ml for the 90-, 150- and 210-day-old gilts implanted with estradiol, respectively, whereas, serum estradiol concentrations was undetectable in C gilts. Mean serum LH concentrations, basal LH concentrations and serum LH pulse amplitude were less in EB-treated gilts at all ages compared to control animals. In contrast, LH pulse frequency initially was less in EB-treated gilts but subsequently increased (P<0.04) with age (from 0.8 ± 0.2 at 90 days to 5.2 ± 0.2/8h at 210 days), and at 210 days of age the pulse frequency was similar to C gilts. These results demonstrate an age related reduction in the sensitivity to the negative feedback action of estradiol on LH secretion and support the idea that the gilt conforms to the gonadostat hypothesis.  相似文献   

8.
FSH is favored over chorionic gonadotropins for induction of estrus in various species, yet little data are available for its effects on follicle development and fertility for use in pigs. For Experiment 1, prepubertal gilts (n = 36) received saline, 100 mg FSH, or FSH with 0.5 mg LH. Treatments were divided into six injections given every 8 h on Days 0 and 1. Proportions of gilts developing medium follicles were increased for FSH and FSH-LH (P < 0.05) compared to saline, but follicles were not sustained and fewer hormone-treated gilts developed large follicles (P < 0.05). No gilts expressed estrus and few ovulated. Experiment 2 tested FSH preparations with greater LH content. Prepubertal gilts (n = 56) received saline, FSH-hCG (100 mg FSH with 200 IU hCG), FSH-LH5 (FSH with 5 mg LH), FSH-LH10 (FSH with 10 mg LH), or FSH-LH20 (FSH with 20 mg LH). FSH-LH was administered as previously described, while 100 IU of hCG was given at 0 h and 24 h. Hormone treated gilts showed increased (P < 0.05) medium and large follicle development, estrus (>70%), ovulation (100%), and ovulation rate (>30 CL) compared to saline. There was an increase (P < 0.05) in the proportion of hormone-treated gilts with follicular cysts at Day 5, but these did not persist to Day 22. These gilts also showed an increase in poorly formed CL (P < 0.05). FSH alone or with small amounts of LH can induce medium follicle growth but greater amounts of LH at the same time is needed to sustain medium follicles, stimulate development of large follicles and induce estrus and ovulation in prepubertal gilts.  相似文献   

9.
Porcine conceptus secretory proteins (pCSP) were obtained from medium in which pig conceptuses, collected on Day 15 of pregnancy, were cultured for 30 h. Culture medium was pooled, dialyzed, and concentrated by Amicon ultrafiltration for intrauterine infusion. Serum proteins (SP) were obtained from blood collected from a Day 15 pregnant gilt and diluted for intrauterine infusion. Catheters were placed into both uterine horns and the inferior vena cava of cyclic (Day 8) gilts. Single blood samples were collected at 0800 h on Days 9, 10, and 11. On Day 11, all gilts received 1 mg estradiol-17 beta (E2) i.m. at 0800 h. Protein infusions commenced on Day 12 and continued through Day 15, twice daily at 0800 h and 2000 h. Protein infusions per uterine horn were (1) 4.0 mg pCSP + 4.0 mg SP (pCSP, 4 gilts) and (2) 8.0 mg SP (SP, 4 gilts). Blood samples were collected every 15 min on Days 12 through 17 between 0805 h and 1100 h. Single blood samples were collected at 0800 h after Day 17 until gilts exhibited estrus. Concentrations of prostaglandin (PG) E, 13,14-dihydro-15-keto-PGF2 alpha (PGFM), and progesterone (P4) were measured by specific radioimmunoassays. Interestrous intervals for pCSP-treated (18.2 days) and SP-treated (18.0 days) gilts were not different (SEM = 0.8 days) and temporal changes in concentrations of P4 in plasma did not differ between pCSP-treated (29.2 ng/ml) and SP-treated (31.2 ng/ml) gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The objective of this study was to investigate whether PGF2 alpha, administered to pregnant and pseudopregnant gilts in vivo, would cause an acute increase in serum progesterone concentrations prior to luteolysis. Pregnant (n = 9) and pseudopregnant (n = 4) gilts were fitted with a jugular vein cannula on day 40, were treated with 3 ml vehicle (control) i.m. on day 42 and with 15 mg PGF2 alpha on day 45. Blood samples were collected at frequent (5 and 15 min) intervals from 1 h before until 1 h after control and PGF2 alpha injections, at 15 min intervals for 4 h, and then at 5, 6, 9, 21, 33, 45 and 57 h post injection. Progesterone was measured by radioimmunoassay (RIA) in all samples. Porcine LH was measured by RIA in samples collected frequently in the 1 h pre- and 1 h post-injection periods. Serum progesterone concentrations were unchanged in both pregnant and pseudopregnant animals in response to control injection on day 42. However, in both pregnant and pseudopregnant gilts, PGF2 alpha injection on day 45 resulted in an acute increase (approximately 75-80% above pre-treatment levels; p less than 0.05) in serum progesterone lasting approximately 1 h, followed by a return to pre-treatment levels by 2 h, and then a decline to 1 ng/ml or less by 45-57 h (pregnant) or 21-57 h (pseudopregnant), associated with luteolysis. Serum LH concentrations were unchanged between 1 h pre- and post-treatment periods in response to either control or PGF2 alpha-treatment, in both pregnant and pseuodpregnant gilts. These results indicate that PGF2 alpha-injection produces a rapid and transient increase in serum progesterone concentrations which may result from a rapid and direct stimulatory action of PGF2 alpha on porcine luteal cell progesterone synthesis/secretion in vivo.  相似文献   

11.
Twelve 5-month-old Hereford X Friesian heifers were injected i.v. with 2.0 micrograms GnRH at 2-h intervals for 72 h. Blood samples were collected at 15-min intervals from 24 h before the start until 8 h after the end of the GnRH treatment period. Over the 24-h pretreatment period, mean LH concentrations ranged from 0.4 to 2.2 ng/ml and FSH concentrations from 14.1 to 157.4 ng/ml; LH episodes (2-6 episodes/24 h) were evident in all animals. Each injection of GnRH resulted in a distinct episode-like response in LH, but not FSH. Mean LH, but not FSH, concentrations were significantly increased by GnRH treatment. The GnRH-induced LH episodes were of greater magnitude than naturally-occurring episodes (mean maximum concentration 6.7 +/- 0.5 and 4.9 +/- 0.6 ng/ml respectively). Preovulatory LH surges occurred between 17.0 and 58.8 h after the start of treatment in 9/12 heifers, with a coincident FSH surge in 8 of these animals. This was not followed by normal luteal function. There were no apparent correlations between pretreatment hormone concentrations, and either the pituitary response to GnRH or the occurrence of preovulatory gonadotrophin release.  相似文献   

12.
A luteolytic dose (500 micrograms) of cloprostenol was given on Day 12 of the oestrous cycle to 5 heifers. Blood samples were collected simultaneously from the caudal vena cava and jugular vein at 5-20-min intervals from -6 to 0 (control period), 0 to 12 and 24 to 36 h after PG injection. Pulses of LH were secreted concomitantly with pulses of FSH during all sampling periods. However, during the control period separate FSH pulses were detected resulting in a shorter (P less than 0.01) interpulse interval for FSH than LH (93 versus 248 min). LH and FSH pulse frequencies increased (P less than 0.01) beginning 1-3 h after PG to interpulse intervals of 59 and 63 min, respectively, and continued to be maintained 24-36 h after PG. Concomitantly there was a 2-3-fold increase (P less than 0.01) in basal concentrations and pulse amplitude for LH (but not FSH). FSH basal concentrations and pulse amplitudes decreased (P less than 0.05) in 3 heifers 24-36 h after PG. Pulsatile secretion of oestradiol was observed at frequencies similar to LH during the periods 4-12 h (3 heifers) and 24-36 h (2 heifers) after PG, respectively, resulting in higher (P less than 0.05) mean oestradiol concentrations. Progesterone concentrations in the vena cava increased (P less than 0.01) 5-10 min after PG but decreased (P less than 0.01) 67% by 20 min after PG. This decrease was followed by a rise (P less than 0.05) beginning 2-3 h after PG and lasting for an average of 3.3 h.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
During seasonal anoestrus (long-days), oestradiol can effectively inhibit the pulsatile secretion of luteinizing hormone (LH) in sheep. The aim of our trial was to determine whether the same regulatory mechanism exists in the pig. Altogether, 20 ovariectomized and oestradiol-implanted gilts (16 domestic pigs, 4 European wild boars) were randomly allocated to two treatment groups. The first group was kept under a short-day light-dark cycle of 8L:16D, and the second group under a long-day light regime of 16L:8D. After a 6-week treatment period, blood samples were taken at 20-min intervals for 12h. After sampling, the light regimens were switched. Sampling was then repeated following another 6 weeks of treatment. In both treatment groups, 2.3 LH pulses occurred every 12h. The basal LH level was 0.7+/-0.4 ng/ml for the short-day group and 1.0+/-0.5 ng/ml for the long-day group. The mean LH level was 0.9+/-0.4 and 1.3+/-0.6 ng/ml and the LH pulse amplitude 0.5+/-0.4 and 0.6+/-0.5 ng/ml, respectively. The basal and mean LH levels were therefore lower in short-day gilts (P<0.05), while LH pulse amplitude and frequency remained unaffected by treatment. In conclusion, the 6-week period under two different light regimes resulted in higher basal LH concentration in long-day gilts but was not able to produce changes in LH frequency in prepubertal gilts.  相似文献   

14.
Polyvinyl catheters were placed into the right and left utero-ovarian veins and saphenous vein and artery of three control (C) and four estradiol valerate (EV) treated gilts on Day 9 after onset of estrus. The EV treated gilts received 5mg EV/day on Days 11 through 15 after onset of estrus. On Days 12 through 17 utero-ovarian vein blood samples were collected at 15 min intervals from 0700 to 1000 hr and 1900 to 2200 hr and single samples were taken at 1100 and 2300 hr. Peripheral blood samples (saphenous vein or artery) were taken at 0700, 1100, 1900 and 2300 hr from Day 12 until the control gilts returned to estrus or until Day 25 for EV treated gilts and used to measure plasma steroid hormone concentrations. Utero-ovarian vein prostaglandin F (PGF) concentrations (ng/ml, n=1,177) were measured by RIA. Status (control EV treated gilts) by day interactions were detected (P=.10). Curvilinear day trends were detected for plasma PGF concentrations in control (P<.01) but not EV treated gilts. PGF concentrations ( ) for control and EV treated gilts were 1.20 ± 2.08 and .26 ± .84 ng/ml, respectively. PGF peaks (concentrations greater than + 2 S.D.) occured with greater frequency in control gilts (X2 = 4.87; P<.05). The interestrus interval ( ) for control and treated gilts was 19.0 ± .6 and 146.5 ± 74.8 days, respectively. Data indicate that estradiol valerate may exert its luteotrophic effect by preventing PGF release from the uterus.  相似文献   

15.
Short-term feed restriction in prepubertal gilts suppresses episodic LH secretion in the absence of changes in body weight or composition. To assess non-gonadotropin-mediated effects of realimentation at the ovarian level, 52 gilts were assigned to six treatments after 7 days (Days 1-7) of maintenance feeding (approximately 30% ad libitum). Groups R12 and R9 were maintenance-fed Days 8-12 or Days 8-9, respectively; A12 and A9 were fed to appetite Days 8-12 or Days 8-9, respectively. Groups R9P and A9P were fed as groups R9 and A9 were but received 750 IU eCG at 1500 h on Day 8. Groups R12 and A12 were ovariectomized at 1500 h on Day 12, and all other groups were ovariectomized at 1500 h on Day 9. All gilts received oral progestogen (15 mg allyl trenbolone) from Day 1 to ovariectomy, to antagonize the usual increases in endogenous gonadotropins that follow realimentation. Blood samples were obtained at 10-min intervals during selected windows during the experiment. Ovarian follicles were analyzed for development and steroidogenesis, and plasma samples were analyzed by RIA to determine concentrations of LH, FSH, insulin, and insulin-like growth factor-1 (IGF-1). Allyl trenbolone abolished pulsatile LH secretion, and realimentation did not stimulate LH or FSH secretion, with the exception of FSH secretion on Day 8 in A9 gilts. Postprandial insulin concentrations on Day 9 were greater after feeding to appetite (A9, A9P, and A12) than after feed restriction (R9, R9P, and R12). Pre- and postprandial IGF-1 concentrations were higher in re-fed gilts on Day 9 (A9 and A12) and Day 12 (A12) than in feed-restricted gilts. Follicular diameter, fluid volume, and basal granulosa cell estradiol synthesis per follicle were greater in A12 gilts than in R12 gilts, although there was no difference between A9 and R9 gilts. There was no effect of realimentation on follicular fluid concentrations of estradiol or testosterone, or on androgen-driven granulosa cell estradiol synthesis. Treatment with eCG increased follicular diameter, fluid volume, basal and androgen-driven estradiol synthesis, and fluid estradiol concentrations without interaction with feeding level. In conclusion, in the absence of LH elevations, realimentation over 5 days exerts effects at the ovary, increasing follicular growth and estradiol synthesis. These effects may be mediated by insulin, IGF-1, or unmeasured growth factors and would be expected to synergize with increases in endogenous gonadotropin that follow realimentation.  相似文献   

16.
Polyvinyl catheters were placed into the right and left utero-ovarian veins and saphenous vein and artery of three control (C) and four estradiol valerate (EV) treated gilts on Day 9 after onset of estrus. The EV treated gilts received 5mg EV/day on Days 11 through 15 after onset of estrus. On Days 12 through 17 utero-ovarian vein blood samples were collected at 15 min intervals from 0700 to 1000 hr and 1900 to 2200 hr and single samples were taken at 1100 and 2300 hr. Peripheral blood samples (saphenous vein or artery) were taken at 0700, 1100, 1900 and 2300 hr from Day 12 until the control gilts returned to estrus or until Day 25 for EV treated gilts and used to measure plasma steroid hormone concentrations. Utero-ovarian vein prostaglandin F (gf) concentrations (ng/ml, n-1,177) were measured by RIA. Status (control vs EV treated gilts) by day interactions were detected (P=.10). Curvilinear day trends were detected for plasma PGF concentrations in control (P less than .01) but not EV treated gilts. PGF concentrations (X +/- S.D.) for control and EV treated gilts were 1.20 +/- 2.08 and .26 +/- .84 ng/ml, respectively. PGF peaks (concentrations greater than X + 2 S.D.) occurred with greater frequency in control gilts (X2 =4.87; P less than .05). The interestrus interval (X +/- S.E.) for control and treated gilts was 19.0 +/- .6 and 146.5 +/- 74.8 days, respectively. Data indicate tht t estradiol valerate may exert its luteotrophic effect by preventing PGF release from the uterus.  相似文献   

17.
The present study investigated pulsatile and circadian variations in the circulatory levels of inhibin, gonadotrophins and testosterone. Six adult buffalo bulls (6 to 7 yr of age) were fitted with indwelling jugular vein catheters, and blood samples were collected at 2-h intervals for a period of 24 h and then at 15-min interval for 5 h. Plasma concentrations of inhibin, FSH, LH and testosterone were determined by specific radioimmunoassays. Plasma inhibin levels in Murrah buffalo bulls ranged between 0.201 to 0.429 ng/mL, with a mean of 0.278 +/- 0.023 ng/mL. No inhibin pulses could be detected during the 15-min sampling interval. Plasma FSH levels ranged between 0.95 to 3.61 ng/mL, the mean concentration of FSH over 24 h was 1.66 +/- 0.25 ng/mL. A single FSH pulse was detected in 2 of 6 bulls. The LH levels in peripheral circulation ranged between 0.92 to 9.91 ng/mL, with a mean concentration of 3.33 +/- 1.02 ng/mL. Pulsatility was detected in LH secretion with an average of 0.6 pulses/h. Plasma testosterone levels in 4 buffalo bulls ranged from 0.19 to 2.99 ng/mL, the mean level over 24 h were 1.34 +/- 0.52 ng/mL. Testosterone levels in peripheral circulation followed the LH secretory pattern, with an average of 0.32 pulses/h. The results indicate parallelism in inhibin, FSH and LH, and testosterone secretory pattern. Divergence in LH and FSH secretory patterns in adult buffalo bulls might be due to the presence of appreciable amounts of peripheral inhibin.  相似文献   

18.
Serum levels of luteinizing hormone (LH) were determined in fetal and prepubertal pigs from Day 49 postcoitum to 25 weeks of age, and also in unilaterally cryptorchid, freemartin and castrated pigs of similar ages. Serum LH was undetectable in the second trimester of pregnancy, but then gradually increased up to 2 weeks after birth in both sexes. 2-week-old pigs showed irregular LH peaks exceeding 2 ng/ml. Serum LH concentrations decreased during the 3rd and 4th weeks of life. Mean LH concentrations were approximately 2 ng/ml in castrated pigs and 1.3 + or -.7 ng/ml in freemartins. The differentiation and functional activity of the testis appeared to be well correlated with the changes in serum LH concentrations. Changes in serum LH could not be correlated with normal and abnormal gubernacular development.  相似文献   

19.
Angus and Angus crossbred prepubertal heifers were ovariectomized and randomly assigned to either increasing light simulating the photoperiod of the vernal equinox to the summer solstice (I) or decreasing light simulating the photoperiod of the autumnal equinox to the winter solstice (D) for 43 degrees N latitude. Three blood samples were taken each week for 14 weeks, the first at 11:00 h and two others 2 days later, 1 h before lights on (dark), 1 h before lights off (light). At the end of 14 weeks 4 heifers from each treatment group were cannulated and samples were taken for 12 h at 15-min intervals, 6 h in the light and 6 h in the dark. All sera were assayed for LH, FSH and prolactin. In addition, the samples taken at 15-min intervals were assayed for melatonin. In samples taken weekly at 11:00 h circulating concentrations of LH and prolactin were higher among animals in Group I, while FSH concentrations were not different between Groups D and I. In samples collected weekly in the light or the dark, LH and prolactin concentrations were higher in Group I animals. However, prolactin concentrations were higher and LH concentrations tended to be higher in samples taken in the dark. FSH concentrations were not different between either D or I or dark and light. In samples taken at 15-min intervals the prolactin baseline was higher and pulse amplitude tended to be higher for Group I animals. Neither LH nor FSH pulse characteristics differed between I and D; however, LH baseline and LH pulse amplitude were higher in the dark. Melatonin pulse amplitude was higher among animals in Group D and higher in serum collected in the dark. These results suggest that photoperiod alters circulating concentrations of LH and prolactin and alters pulsatile release of LH, prolactin and melatonin in the prepubertal heifer.  相似文献   

20.
Indwelling catheters were placed in the ovarian branch of the ovarian vein (OBOV) of 14 pregnant beef cows assigned to one of three periods of gestation: Period 1, catheterization on Days 70-100 (n = 5); Period 2, Days 120-150 (n = 5); and Period 3, Days 180-210 (n = 4). Samples were collected from the OBOV twice daily at 0600-0800 h (AM) and 1700-1900 h (PM). Intensive sample collections (every 20 min for 6 h, short-term sampling windows) were performed from the jugular vein (JV) and the OBOV. Average and baseline OBOV progesterone (P4) concentrations per 6-h window as well as the magnitude and amplitude of OBOV P4 pulses decreased from Period 1 to Period 2. The number of pulses per window and the relative increase of pulses above the baseline did not change. There was an increase in the average, but not the baseline, concentration of OBOV P4 from Period 2 to Period 3. The average and baseline concentrations of P4 in the JV as well as luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the OBOV and JV remained constant from Day 70 to Day 210 of gestation. There was no difference between the OBOV and JV for either LH or FSH, whereas the concentration of P4 in the OBOV was higher than in the JV for all periods. In both the AM and PM OBOV samples, P4 concentrations in Period 2 (AM = 83 ng/ml; PM = 67 ng/ml) were lower than Periods 1 (AM = 343 ng/ml; PM = 333 ng/ml) and 3 (AM = 534 ng/ml; PM = 305 ng/ml). However, no difference could be detected between AM (187 ng/ml) and PM (180 ng/ml) P4 concentrations when all periods were combined. Changes occurred in the concentrations and secretion patterns of P4 in the OBOV during and around the second trimester of gestation that were not reflected by P4 in the JV nor by LH and FSH in either vessel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号