首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Advances in the culture of mineralizing growth plate chondrocytes provided an opportunity to study endochondral calcification under controlled conditions. Here we report that these cultures synthesize large amounts of proteins characteristically associated with mineralization: type II and X collagens, sulfated proteoglycans, alkaline phosphatase, and the bone-related proteins, osteonectin and osteopontin. Certain chondrocytes appeared to accumulate large amounts of Ca2+ and Pi during the mineralization process: laser confocal imaging revealed high levels of intracellular Ca2+ in their periphery and X-ray microanalytical mapping revealed the presence of many Ca2+- and Pi-rich cell surface structures ranging from filamentous processes 0.14 ± 0.02 μm by 0.5–2.0 μm, to spherical globules 0.70 ± 0.27 μm in diameter. Removal of organic matter with alkaline sodium hypochlorite revealed numerous deposits of globular (0.77 ± 0.19 μm) mineral (calcospherites) in the lacunae around these cells. The size and spatial distribution of these mineral deposits closely corresponded to the Ca2+-rich cell surface blebs. The globular mineral progressively transformed into clusters of crystallites. Taken with earlier studies, these findings indicate that cellular uptake of Ca2+ and Pi leads to formation of complexes of amorphous calcium phosphate, membrane lipids, and proteins that are released as cell surface blebs analogous to matrix vesicles. These structures initiate development of crystalline mineral. Thus, the current findings support the concept that the peripheral intracellular accumulation of Ca2+ and Pi is directly involved in endochondral calcification.  相似文献   

2.
Biogenic minerals found in teeth and bones are synthesized by precise cell-mediated mechanisms. They have superior mechanical properties due to their complex architecture. Control over biomineral properties can be accomplished by regulation of particle size, shape, crystal orientation, and polymorphic structure. In many organisms, biogenic minerals are assembled using a transient amorphous mineral phase. Here we report that organic constituents of bones and teeth, namely type I collagen and dentin matrix protein 1 (DMP1), are effective crystal modulators. They control nucleation of calcium phosphate polymorphs and the assembly of hierarchically ordered crystalline composite material. Both full-length recombinant DMP1 and post-translationally modified native DMP1 were able to nucleate hydroxyapatite (HAP) in the presence of type I collagen. However, the N-terminal domain of DMP1 (amino acid residues 1-334) inhibited HAP formation and stabilized the amorphous phase that was formed. During the nucleation and growth process, the initially formed metastable amorphous calcium phosphate phase transformed into thermodynamically stable crystalline hydroxyapatite in a precisely controlled manner. The organic matrix-mediated controlled transformation of amorphous calcium phosphate into crystalline HAP was confirmed by x-ray diffraction, selected area electron diffraction pattern, Raman spectroscopy, and elemental analysis. The mechanical properties of the protein-mediated HAP crystals were also determined as they reflect the material structure. Such understanding of biomolecule controls on biomineralization promises new insights into the controlled synthesis of crystalline structures.  相似文献   

3.
Phosphorus-31 NMR spectra have been obtained from a variety of synthetic, solid calcium phosphate mineral phases by magic angle sample spinning. The samples include crystalline hydroxyapatite, two type B carbonatoapatites containing 3.2 and 14.5% CO3(2-), respectively, a hydroxyapatite in which approximately 12% of the phosphate groups are present as HPO4(2-), an amorphous calcium phosphate, monetite, brushite, and octacalcium phosphate. Spectra were observed by the standard Bloch decay and cross-polarization techniques, as well as by a dipolar suppression sequence, in order to distinguish between protonated and unprotonated phosphate moieties. The spectra of the synthetic calcium phosphates provide basic information that is essential for interpreting similar spectra obtained from bone and other calcified tissues.  相似文献   

4.
The use of washed brushite, CaHPO4, as a filter aid permitted the flow rates of calcium hydroxyapatite (HAP) columns to be made reliable and high. Regeneration of the column contents yielded pure, crystalline HAP, which could be mixed with fresh brushite and reused. Column fractionation over HAP-brushite with a phosphate gradient was used as a second ion exchange step in protein purification, the first step being fractionation over DEAE-cellulose. In two examples discussed, HAP-brushite fractionation in the presence of an effector molecule, a molecule for which the enzyme of interest had a specific affinity, gave marked improvement of resolution.  相似文献   

5.
The most widely accepted hypothesis to account for maturational changes in the X-ray diffraction characteristics of bone mineral has been the 'amorphous calcium phosphate theory', which postulates that an initial amorphous calcium phosphate solid phase is deposited that gradually converts to poorly crystalline hydroxyapatite. Our studies of bone mineral of different ages by X-ray radial distribution function analysis and 31P n.m.r. have conclusively demonstrated that a solid phase of amorphous calcium phosphate does not exist in bone in any significant amount. 31P n.m.r. studies have detected the presence of acid phosphate groups in a brushite-like configuration. Phosphoproteins containing O-phosphoserine and O-phosphothreonine have been isolated from bone matrix and characterized. Tissue and cell culture have established that they are synthesized in bone, most likely by the osteoblasts. Physiochemical and pathophysiological studies support the thesis that the mineral and organic phases of bone and other vertebrate mineralized tissues are linked by the phosphomonester bonds of O-phosphoserine and O-phosphothreonine, which are constituents of both the structural organic matrix and the inorganic calcium phosphate crystals.  相似文献   

6.
Mg2+ and Zn2+ are present in the mineral of matrix vesicles (MVs) and biological apatites, and are known to influence the onset and progression of mineral formation by amorphous calcium phosphate (ACP) and hydroxyapatite (HAP). However, neither has been studied systematically for its effect on mineral formation by phosphatidylserine-Ca2+-Pi complexes (PS-CPLX), an important constituent of the MV nucleation core. Presented here are studies on the effects of increasing levels of Mg2+ and Zn2+ on the process of mineral formation, either when present in synthetic cartilage lymph (SCL), or when incorporated during the formation of PS-CPLX. Pure HAP and PS-CPLX proved to be powerful nucleators, but ACP took much longer to induce mineral formation. In SCL, Mg2+ and Zn2+ had significantly different inhibitory effects on the onset and amount of mineral formation; HAP and PS-CPLX were less affected than ACP. Mg2+ and Zn2+ caused similar reductions in the rate and length of rapid mineral formation, but Zn2+ was a more potent inhibitor on a molar basis. When incorporated into PS-CPLX, Mg2+ and Zn2+ caused significantly different effects than when present in SCL. Even low, subphysiological levels of Mg2+ altered the inherent structure of PS-CPLX and markedly reduced its ability to induce and propagate mineral formation. Incorporated Zn2+ caused significantly less effect, low (<20 μM) levels causing almost no inhibition. Levels of Zn2+ present in MVs do not appear to inhibit their nucleational activity.  相似文献   

7.
Urinary stones can be readily disintegrated by Holmium:YAG laser (Holmium laser lithotripsy), resulting in a mixture of small stone dust particles, which will spontaneously evacuate with urine and larger residual fragments (RF) requiring mechanical retrieval. Differences between fragments and dust have not been well characterized. Also, it remains unknown how the recently introduced “Moses technology” may alter stone disintegration products. Three complementary analytical techniques have been used in this study to offer an in‐depth characterization of disintegration products after in vitro Holmium laser lithotripsy: stereoscopic microscopy, scanning electron microscopy and Fourier‐transform infrared spectroscopy. Dust was separated from fragments based on its floating ability in saline irrigation. Depending on initial crystalline constituents, stone dust either conserved attributes found in larger RFs or showed changes in crystalline organization. These included conversion of calcium oxalate dihydrate towards calcium oxalate monohydrate, changes in carbapatite spectra towards an amorphous phase, changes of magnesium ammonium phosphate towards a differing amorphous and crystalline phase and the appearance of hydroxyapatite on brushite fragments. Comparatively, “Moses technology” produced more pronounced changes. These findings provide new insights suggesting a photothermal effect occurring in Holmium laser lithotripsy. Figure: Appearance of hydroxyapatite hexagons on stone dust collected after Holmium laser lithotripsy of a brushite stone using “Moses technology.”   相似文献   

8.
M E Marsh 《Biochemistry》1989,28(1):346-352
The concomitant binding of calcium and inorganic phosphate ions by the highly phosphorylated rat dentin phosphophoryn (HP) was measured in the pH range of 7.4-8.5 by an ultrafiltration procedure. HP binds almost exclusively the triply charged PO4(3-) ion, and for each PO4(3-) ion bound, the protein binds about 1.5 additional Ca2+ ions. Therefore, the protein-mineral ion complex can be described as a protein with two different ligands, Ca2+ ions and calcium phosphate clusters having a stoichiometry of about Ca1.5PO4. Empirically the binding of calcium and phosphate can best be described as a function of a neutral ion activity product in which 2.5-10% of the phosphate is HPO4(2-). The stoichiometry of the bound clusters is similar to that of amorphous calcium phosphate, and it is clear that the protein does not sequester crystal embryos of octacalcium phosphate or hydroxyapatite. The protein-mineral ion complex is amorphous by electron diffraction analysis and does not catalyze the formation of a crystalline phase when aged in contact with its solution. About 15% of the bound phosphate is buried in protected domains, and it is stable with respect to dissociation for extended periods in phosphate-free calcium buffers. The buried mineral maintains the protein in an aggregated state even at calcium ion concentrations which are too low for the aggregation of unmineralized HP. In vivo HP should be ineffective in the nucleation of a crystalline mineral phase, if it is secreted in a mineralized aggregated state similar to casein and the bivalve phosphoprotein.  相似文献   

9.
EXPFS spectra have been recorded from bone mineral and related calcium phosphates. Fourier transformation of a spectrum, using theoretically calculated phase shifts, yields a good approximation to the radial distribution of atoms around a calcium ion. Comparison of the results shows that bone mineral is appreciably different from crystalline synthetic hydroxyapatite and geological apatites, which are similar to each other, but closely resembles hydroxyapatite obtained by maturation of amorphous calcium phosphate.  相似文献   

10.
EXAFS spectra have been recorded above the calcium K edge from bones of mice aged 3 days, 1 week, 1 month, 2 months and 7 months. Spectra indicated that the calcium ion environment in bone mineral changes during development. Results were compared with those obtained from amorphous calcium phosphate and a poorly crystalline hydroxyapatite matured from this amorphous calcium phosphate in the presence of water. Spectra from the older mice closely resembled those of the matured product but those from the younger mice were more like those from the freshly prepared amorphous calcium phosphate.  相似文献   

11.
Organophosphorus pollution and heavy metal pollution are prominent in China and have caused increasingly severe environmental pollution. This research used Pseudomonas putida to degrade dimethoate so as to induce the formation of calcium carbonate (CaCO3) and calcium phosphate (Ca3(PO4)2) in beef extract peptone medium. In addition, the mineral immobilizing function of the generated Ca3(PO4)2 and CaCO3 for Cd2+ was studied by adding different concentrations of Cd2+ to the culture solution. Meanwhile, transmission electron microscopy (TEM), scanning electronic microscopy (SEM), X-ray diffraction, gas chromatography and atomic absorption spectrophotometry were used to investigate the biodegradation of dimethoate, the concentration variation of Ca2+ and Cd2+, the mineral and chemical compositions of the precipitates. The results showed that the growth of P. Putida could increase the pH value of the culture solution and effectively degrade the organophosphorus pesticide dimethoate. Besides, the concentration of Ca2+ in the culture solution decreased significantly in the first four days and then tended to be stable. Moreover, the TEM and SEM results presented that there were large amounts of biogenic sedimentary CaCO3 and a little Ca3(PO4)2 in the precipitates. Furthermore, in the employed culture system, the removal rates of Cd2+, when added at two different concentrations (6 ppm and 15 ppm), reached 100%. Therefore, this study provided a new idea for treating wastewater polluted with organophosphorus pesticide and heavy metals by using microorganisms.  相似文献   

12.
A simplified and defined system was developed to study in vitro calcium phosphate deposition by isolated matrix vesicles from rabbit growth plate cartilage, and to examine the relationship between vesicle phosphatase and calcium deposition. Samples of suspended vesicles containing 25 μg of protein, were incubated for 2 h in a 45Ca-labelled solution with 2.2 mM Ca2+, 1.6 mM PO43? and 1 mM ATP at pH 7.6. Calcium deposition was related to the amount of PO4 hydrolysed by matrix vesicle phosphatases from ATP and other phosphate esters. Ca2+ or Mg2+ was found to stimulate matrix vesicle. ATPase, but the hydrolysis of phosphoenolpyruvate, glucose 1-phosphate, β-glycerol phosphate and AMP was independent of either cation. All of the above substrates supported calcium deposition. 1 mM ATP was more effective than 5 mM in supporting calcium deposition, indicating inhibition of mineralization at higher ATP concentrations. Our results suggest that, in addition to concentrating calcium, veiscles provide phosphate from ATP for mineral formation and at the same time remove the inhibitory effect of ATP upon mineral deposition.  相似文献   

13.
Bone alkaline phosphatase with glycolipid anchor (GPI-bALP) from chick embryo femurs in a medium without exogenous inorganic phosphate, but containing calcium and GPI-bALP substrates, served as in vitro model of mineral formation. The mineralization process was initiated by the formation of inorganic phosphate, arising from the hydrolysis of a substrate by GPI-bALP. Several mineralization media containing different substrates were analysed after an incubation time ranging from 1.5 h to 144 h. The measurements of Ca/Pi ratio and infrared spectra permitted us to follow the presence of amorphous and noncrystalline structures, while the analysis of X-ray diffraction data allowed us to obtain the stoichiometry of crystals. The hydrolysis of phosphocreatine, glucose 1-phosphate, glucose 6-phosphate, glucose 1,6-bisphosphate by GPI-bALP produced hydroxyapatite in a manner similar to that of beta-glycerophosphate. Several distinct steps in the mineral formation were observed. Amorphous calcium phosphate was present at the onset of the mineral formation, then poorly formed hydroxyapatite crystalline structures were observed, followed by the presence of hydroxyapatite crystals after 6-12 h incubation time. However, the hydrolysis of either ATP or ADP, catalysed by GPI-bALP in calcium-containing medium, did not lead to the formation of any hydroxyapatite crystals, even after 144 h incubation time, when hydrolysis of both nucleotides was completed. In contrast, the hydrolysis of AMP by GPI-bALP led to the appearance of hydroxyapatite crystals after 12 h incubation time. The hydroxyapatite formation depends not only on the ability of GPI-bALP to hydrolyze the organic phosphate but also on the nature of substrates affecting the nucleation process or producing inhibitors of the mineralization.  相似文献   

14.
Soluble linear (non-cross-linked) poly(monoacryloxyethyl phosphate) (PMAEP) and poly(2-(methacryloyloxy)ethyl phosphate) (PMOEP) were successfully synthesized through reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization and by keeping the molecular weight below 20 K. Above this molecular weight, insoluble (cross-linked) polymers were observed, postulated to be due to residual diene (cross-linkable) monomers formed during purification of the monomers, MOEP and MAEP. Block copolymers consisting of PMAEP or PMOEP and poly(2-(acetoacetoxy)ethyl methacrylate) (PAAEMA) were successfully prepared and were immobilized on aminated slides. Simulated body fluid studies revealed that calcium phosphate (CaP) minerals formed on both the soluble polymers and the cross-linked gels were very similar. Both the PMAEP polymers and the PMOEP gel showed a CaP layer most probably brushite or monetite based on the Ca/P ratios. A secondary CaP mineral growth with a typical hydroxyapatite (HAP) globular morphology was found on the PMOEP gel. The soluble PMOEP film formed carbonated HAP according to Fourier transform infrared (FTIR) spectroscopy. Block copolymers attached to aminated slides showed only patchy mineralization, possibly due to the ionic interaction of negatively charged phosphate groups and protonated amines.  相似文献   

15.
Microstructures of non-unions of human humeral shaft fractures were investigated by using scanning electron microscopy, transmission electron microscopy, and X-ray microdiffraction. The non-union has a trabeculae structural framework similar to woven bone. Among the trabeculae are cavities that are subdivided into small chambers by thin plates of collagen fibrils. Some chambers are filled with variously shaped mineralized particles several micrometers in size. The collagen fibrils in both the trabeculae and the thin plates were only slightly mineralized by hydroxyapatite. Vesicles loaded with noncrystalline calcium phosphate (NCP) were observed in most mineralized particles, and brushite crystals with special morphology were seen to be embedded in some particles in irregular shapes. X-ray microdiffraction results indicated that the mineral phases in the non-unions were mainly NCP in addition to small amounts of hydroxyapatite and brushite. NCP deposition and insufficient mineralization of the collagen fibrils may be two important microstructural features of the non-unions of human humeral shaft fractures different from normally repaired bone callus.  相似文献   

16.
The abilities of various sorbents to adsorb catalase (CAT; EC 1.11.1.6) from filtered culture liquid (FCL) of the fungus Penicillium piceum F-648 were compared. Potassium phosphate, hydroxyapatite (HAP), and coprecipitated sorbents containing calcium phosphate and magnesium hydroxide adsorbed extracellular CAT more efficiently than aluminum oxide, aluminum phosphate, or quartz sand. The enzyme was isolated from FCL of Penicillium piceum with the use of HAP and a binary coprecipitated sorbent, Ca3(PO4)2 + Mg(OH)2, 1 : 1 (CM). The CAT(CM) sample contained the least amount of protein admixture. Its spectra had absorption maximums at 279.6, 406.8 (Soret band), 540, 585, 636, and 703 nm and negative molar ellipticity minimums at 207 and 210–214 nm. The kinetic indices of the samples (K M, V max : K M, and specific activity) were intricately dependent on the protein concentration in the reaction mixture. In dilute solutions, the K M and specific activities of CAT(CM) and CAT(HAP) equaled 667 and 137 mM; 300.9 × 104 and 30.0 × 104 U/mg protein, respectively. The effective velocity constants of inactivation of CAT(HAP), CAT(CM), and FCL in the reaction of H2O2 decomposition increased dramatically after the dilution of samples. In the infinitely dilute solution, they were 4.30 × 10–2, 6.46 × 10–2, and 1.12 × 10–2 s–1, respectively.  相似文献   

17.
Limited work has been done on the accumulation characterization of Ca2+ in aerobic granules that are cultivated in a continuous-flow bioreactor. In this work, the contribution of Ca2+ to the biogranulation in a continuous flow airlift fluidized bed (CAFB) reactor has been studied. The spatial distribution and form of calcium in the granules were investigated by scanning electron microscopy-mapping, energy dispersive X-ray and X-ray diffraction (XRD). Calcium was located throughout the Ca-rich granules, rather than accumulating in the center of the granules of the sequencing batch reactor. Furthermore, CaCO3 was detected as the main crystalline mineral form of the calcium. Calcium augmentation of the inflow promoted the accumulation of magnesium in the granules in the CAFB. The magnesium was presented as Ca7Mg2P6O24 according to XRD analyses.  相似文献   

18.
The formation aspects of a polycrystalline self-assembled bioceramic leading to the nucleation of hard-tissue mineral from a supersaturated solution are discussed. Scanning electron imaging and surface-sensitive interrogations of the nucleated mineral indicated the presence of an intermediate amorphous layer encompassing a rather crystalline phase that formed on niobium oxide (Nb(2)O(5)) microstructures. The crystalline phase was identified from Raman spectroscopy as hydroxyapatite (HAP), while the phosphorous-rich amorphous layer is suggested to have the chemical form CaO-P(2)O(5). In addition, the mechanism favoring HAP nucleation is discussed in terms of the (0 0 2) and (0 0 1) diffraction planes of HAP and Nb(2)O(5), respectively. The small mismatch along several lattice dimensions strongly suggests epitaxy as a dominant mode in the heterogeneous nucleation of HAP. Furthermore, the effectiveness of this mode was shown to critically depend on the self-organization of the Nb(2)O(5) microstructures. Because nucleation does not appear to depend solely on the integrity of Nb(2)O(5) crystals, the self-organization of Nb(2)O(5) crystals also contributes significantly to HAP nucleation. Based on our results, we propose the organized arrangement of bioceramic crystals as a new mode for the bioinspiration of hydroxyapatite and other hard-tissue mineral.  相似文献   

19.
Calcium in cow's milk is mainly in the form of calcium phosphate-phosphoprotein complexes known as casein micelles. These micelles, in contrast to other phosphoprotein complexes in bone and other tissues, can be readily isolated and studied, but conventional techniques have given ambiguous and conflicting evidence on the structure of milk calcium phosphate. Extended X-ray absorption fine structure and near-edge structure measurements at the newly commissioned Synchrotron Radiation Source at Daresbury indicate that it closely resembles brushite, CaHPO4·2H2O. This result, and chemical analysis, requires that phosphate groups from the matrix phosphoproteins be incorporated in the brushite lattice, probably in the surface, suggesting that these organic phosphate groups act as heterogeneous nucleation sites for phase separation of the calcium phosphate from solution.  相似文献   

20.
Putative living entities called nanobacteria (NB) are unusual for their small sizes (50–500 nm), pleomorphic nature, and accumulation of hydroxyapatite (HAP), and have been implicated in numerous diseases involving extraskeletal calcification. By adding precipitating ions to cell culture medium containing serum, mineral nanoparticles are generated that are morphologically and chemically identical to the so-called NB. These nanoparticles are shown here to be formed of amorphous mineral complexes containing calcium as well as other ions like carbonate, which then rapidly acquire phosphate, forming HAP. The main constituent proteins of serum-derived NB are albumin, fetuin-A, and apolipoprotein A1, but their involvement appears circumstantial since so-called NB from different body fluids harbor other proteins. Accordingly, by passage through various culture media, the protein composition of these particles can be modulated. Immunoblotting experiments reveal that antibodies deemed specific for NB react in fact with either albumin, fetuin-A, or both, indicating that previous studies using these reagents may have detected these serum proteins from the same as well as different species, with human tissue nanoparticles presumably absorbing bovine serum antigens from the culture medium. Both fetal bovine serum and human serum, used earlier by other investigators as sources of NB, paradoxically inhibit the formation of these entities, and this inhibition is trypsin-sensitive, indicating a role for proteins in this inhibitory process. Fetuin-A, and to a lesser degree albumin, inhibit nanoparticle formation, an inhibition that is overcome with time, ending with formation of the so-called NB. Together, these data demonstrate that NB are most likely formed by calcium or apatite crystallization inhibitors that are somehow overwhelmed by excess calcium or calcium phosphate found in culture medium or in body fluids, thereby becoming seeds for calcification. The structures described earlier as NB may thus represent remnants and by-products of physiological mechanisms used for calcium homeostasis, a concept which explains the vast body of NB literature as well as explains the true origin of NB as lifeless protein-mineralo entities with questionable role in pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号