首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Substitution of the MoFe protein alpha-70(Val) residue with Ala or Gly expands the substrate range of nitrogenase, allowing the reduction of larger alkynes, including propargyl alcohol (HC[triple bond]CCH(2)OH). Herein, we report characterization of the alpha-70(Val)(-->)(Ala) MoFe protein with propargyl alcohol trapped at the active site. The alpha-70(Ala) variant MoFe protein was rapidly frozen during reduction of propargyl alcohol, resulting in the conversion of the resting-state FeMo-cofactor EPR signal (S = 3/2 and g = [4.41, 3.60, 2.00]) to a new state (S = 1/2 and g = [2.123, 1.998, 1.986]). This EPR signal of the new state increased in intensity with increasing propargyl alcohol concentration, consistent with the binding of a single substrate. The EPR signal of the propargyl alcohol state showed temperature and microwave power dependencies markedly different from those of the classic FeMo-cofactor EPR signal, consistent with the difference in spin. The new state is analogous to that induced by the binding of the inhibitor CO ("lo CO" state) to FeMo-cofactor in the wild-type MoFe protein. The (13)C ENDOR spectrum of the alpha-70(Ala) MoFe protein with trapped (13)C-labeled propargyl alcohol exhibited three well-resolved (13)C doublets centered at the (13)C Larmor frequency with isotropic hyperfine couplings of approximately 3.2, approximately 1.4, and approximately 0.7 MHz, indicating that the alcohol (or a fragment) is coordinated to the cofactor. The results presented here localize the binding site of propargyl alcohol to one [4Fe-4S] face of FeMo-cofactor and indicate roles for the alpha-70(Val) residue in controlling FeMo-cofactor reactivity.  相似文献   

2.
Nitrogenase catalyzes the sequential addition of six electrons and six protons to a N2 that is bound to the active site metal cluster FeMo-cofactor, yielding two ammonia molecules. The nature of the intermediates bound to FeMo-cofactor along this reduction pathway remains unknown, although it has been suggested that there are intermediates at the level of reduction of diazene (HN=NH, also called diimide) and hydrazine (H2N-NH2). Through in situ generation of diazene during nitrogenase turnover, we show that diazene is a substrate for the wild-type nitrogenase and is reduced to NH3. Diazene reduction, like N2 reduction, is inhibited by H2. This contrasts with the absence of H2 inhibition when nitrogenase reduces hydrazine. These results support the existence of an intermediate early in the N2 reduction pathway at the level of reduction of diazene. Freeze-quenching a MoFe protein variant with alpha-195His substituted by Gln and alpha-70Val substituted by Ala during steady-state turnover with diazene resulted in conversion of the S = 3/2 resting state FeMo-cofactor to a novel S = 1/2 state with g1 = 2.09, g2 = 2.01, and g3 approximately 1.98. 15N- and 1H-ENDOR establish that this state consists of a diazene-derived [-NHx] moiety bound to FeMo-cofactor. This moiety is indistinguishable from the hydrazine-derived [-NHx] moiety bound to FeMo-cofactor when the same MoFe protein is trapped during turnover with hydrazine. These observations suggest that diazene joins the normal N2-reduction pathway, and that the diazene- and hydrazine-trapped turnover states represent the same intermediate in the normal reduction of N2 by nitrogenase. Implications of these findings for the mechanism of N2 reduction by nitrogenase are discussed.  相似文献   

3.
The nitrogenase MoFe protein contains the active site metallocluster called FeMo-cofactor [7Fe-9S-Mo-homocitrate] that exhibits an S = 3/2 EPR signal in the resting state. No interaction with FeMo-cofactor is detected when either substrates or inhibitors are incubated with MoFe protein in the resting state. Rather, the detection of such interactions requires the incubation of the MoFe protein together with its obligate electron donor, called the Fe protein, and MgATP under turnover conditions. This indicates that a more reduced state of the MoFe protein is required to accommodate substrate or inhibitor interaction. In the present work, substitution of an arginine residue (alpha-96(Arg)) located next to the active site FeMo-cofactor in the MoFe protein by leucine, glutamine, alanine, or histidine is found to result in MoFe proteins that can interact with acetylene or cyanide in the as-isolated, resting state without the need for the Fe protein, or MgATP. The dithionite-reduced, resting states of the alpha-96(Leu)-, alpha-96(Gln)-, alpha-96(Ala)-, or alpha-96(His)-substituted MoFe proteins show an S = 3/2 EPR signal (g = 4.26, 3.67, 2.00) similar to that assigned to FeMo-cofactor in the wild-type MoFe protein. However, in contrast to the wild-type MoFe protein, the alpha-96-substituted MoFe proteins all exhibit changes in their EPR spectra upon incubation with acetylene or cyanide. The alpha-96(Leu)-substituted MoFe protein was representative of the other alpha-96-substituted MoFe proteins examined. The incubation of acetylene with the alpha-96(Leu) MoFe protein decreased the intensity of the normal FeMo-cofactor signal with the appearance of a new EPR signal having inflections at g = 4.50 and 3.50. Incubation of cyanide with the alpha-96(Leu) MoFe protein also decreased the FeMo-cofactor EPR signal with concomitant appearance of a new EPR signal having an inflection at g = 4.06. The acetylene- and cyanide-dependent EPR signals observed for the alpha-96(Leu)-substituted MoFe protein were found to follow Curie law 1/T dependence, consistent with a ground-state transition as observed for FeMo-cofactor. The microwave power dependence of the EPR signal intensity is shifted to higher power for the acetylene- and cyanide-dependent signals, consistent with a change in the relaxation properties of the spin system of FeMo-cofactor. Finally, the alpha-96(Leu)-substituted MoFe protein incubated with (13)C-labeled cyanide displays a (13)C ENDOR signal with an isotropic hyperfine coupling of 0.42 MHz in Q-band Mims pulsed ENDOR spectra. This indicates the existence of some spin density on the cyanide, and thus suggests that the new component of the cyanide-dependent EPR signals arise from the direct bonding of cyanide to the FeMo-cofactor. These data indicate that both acetylene and cyanide are able to interact with FeMo-cofactor contained within the alpha-96-substituted MoFe proteins in the resting state. These results support a model where effective interaction of substrates or inhibitors with FeMo-cofactor occurs as a consequence of both increased reactivity and accessibility of FeMo-cofactor under turnover conditions. We suggest that, for the wild-type MoFe protein, the alpha-96(Arg) side chain acts as a gatekeeper, moving during turnover in order to permit accessibility of acetylene or cyanide to a specific [4Fe-4S] face of FeMo-cofactor.  相似文献   

4.
Nitrogenase catalyzes biological dinitrogen fixation, the reduction of N(2) to 2NH(3). Recently, the binding site for a non-physiological alkyne substrate (propargyl alcohol, HC triple bond C-CH(2)OH) was localized to a specific Fe-S face of the FeMo-cofactor approached by the MoFe protein amino acid alpha-70(Val). Here we provide evidence to indicate that the smaller alkyne substrate acetylene (HC triple bond CH), the physiological substrate dinitrogen, and its semi-reduced form hydrazine (H(2)N-NH(2)) interact with the same Fe-S face of the FeMo-cofactor. Hydrazine is a relatively poor substrate for the wild-type (alpha-70(Val)) MoFe protein. Substitution of the alpha-70(Val) residue by an amino acid having a smaller side chain (alanine) dramatically enhanced hydrazine reduction activity. Conversely, substitution of alpha-70(Val) by an amino acid having a larger side chain (isoleucine) significantly lowered the capacity of the MoFe protein to reduce dinitrogen, hydrazine, or acetylene.  相似文献   

5.
Nitrogenase catalyzes the biological reduction of N(2) to ammonia (nitrogen fixation) as well as the reduction of a number of alternative substrates, including acetylene (HC identical with CH) to ethylene (H2C=CH2). It is known that the metallocluster FeMo-cofactor located within the nitrogenase MoFe protein component provides the site of substrate reduction, but the exact site where substrates bind and are reduced on the FeMo-cofactor remains unknown. We have recently shown that the alpha-70 residue of the MoFe protein plays a significant role in defining substrate access to the active site; alpha-70 approaches one face of the FeMo-cofactor, and when valine is substituted by alanine at this position, the substituted nitrogenase is able to accommodate a reduction of the larger alkyne propargyl alcohol (HC identical with CCH(2)OH, propargyl-OH). During this reduction, a substrate-derived intermediate can be trapped on the FeMo-cofactor resulting in an S = 1/2 spin system with a novel electron paramagnetic resonance spectrum. In the present work, trapping of the propargyl-OH-derived or propargyl amine (HC identical with CCH(2)NH(2), propargyl-NH(2))-derived intermediates is shown to be dependent on pH and the presence of histidine at position alpha-195. It is concluded that these catalytic intermediates are stabilized and thereby trapped by H-bonding interactions between either the-OH group or the-NH(3)(+)group and the imidazole epsilon-NH of alpha-195(His). Thus, for the first time it is possible to establish the location of a bound substrate-derived intermediate on the FeMo-cofactor. Refinement of the binding mode and site was accomplished by the use of density functional and force field calculations pointing to an eta(2) coordination at Fe-6 of the FeMo-cofactor.  相似文献   

6.
Nitrogenase catalyzes the biological reduction of N(2) to ammonia (nitrogen fixation), as well as the two-electron reduction of the non-physiological alkyne substrate acetylene (HC triple bond CH). A complex metallo-organic species called FeMo-cofactor provides the site of substrate reduction within the MoFe protein, but exactly where and how substrates interact with FeMo-cofactor remains unknown. Recent results have shown that the MoFe protein alpha-70(Val) residue, whose side chain approaches one Fe-S face of FeMo-cofactor, plays a significant role in defining substrate access to the active site. For example, substitution of alpha-70(Val) by alanine results in an increased capacity for the reduction of the larger alkyne propyne (HC triple bond C-CH(3)), whereas, substitution by isoleucine at this position nearly eliminates the capacity for the reduction of acetylene. These and complementary spectroscopic studies led us to propose that binding of short chain alkynes occurs with side-on binding to Fe atom 6 within FeMo-cofactor. In the present work, the alpha-70(Val) residue was substituted by glycine and this MoFe protein variant shows an increased capacity for reduction of the terminal alkyne, 1-butyne (HC triple bond C-CH(2)-CH(3)). This protein shows no detectable reduction of the internal alkyne 2-butyne (H(3)C-C triple bond C-CH(3)). In contrast, substitution of the nearby alpha-191(Gln) residue by alanine, in combination with the alpha-70(Ala) substitution, does result in significant reduction of 2-butyne, with the exclusive product being 2-cis-butene. These results indicate that the reduction of alkynes by nitrogenases involves side-on binding of the alkyne to Fe6 within FeMo-cofactor, and that a terminal acidic proton is not required for reduction. The successful design of amino acid substitutions that permit the targeted accommodation of an alkyne that otherwise is not a nitrogenase substrate provides evidence to support the current model for alkyne interaction within the nitrogenase MoFe protein.  相似文献   

7.
Ryle MJ  Lee HI  Seefeldt LC  Hoffman BM 《Biochemistry》2000,39(5):1114-1119
Freeze-quenching of nitrogenase during reduction of carbon disulfide (CS(2)) was previously shown to result in the appearance of a novel EPR signal (g = 2.21, 1.99, and 1.97) not previously associated with any of the oxidation states of the nitrogenase metal clusters. In the present work, freeze-quench X- and Q-band EPR and Q-band (13)C electron nuclear double resonance (ENDOR) spectroscopic studies of nitrogenase during CS(2) reduction disclose the sequential formation of three distinct intermediates with a carbon-containing fragment of CS(2) bound to a metal cluster inferred to be the molybdenum-iron cofactor. Modeling of the Q-band (35 GHz) EPR spectrum of freeze-trapped samples of nitrogenase during turnover with CS(2) allowed assignment of three signals designated "a" (g = 2.035, 1.982, 1.973), "b" (g = 2.111, 2.002, and 1.956), and "c" (g = 2.211, 1. 996, and 1.978). Freezing samples at varying times after initiation of the reaction reveals that signals "a", "b", and "c" appear and disappear in sequential order. Signal "a" reaches a maximal intensity at 25 s; signal "b" achieves maximal intensity at 60 s; and signal "c" shows maximal intensity at 100 s. To characterize the intermediates, (13)CS(2) was used as a substrate, and freeze-trapped turnover samples were examined by Q-band (13)C ENDOR spectroscopy. Each EPR signal ("a", "b", and "c") gave rise to a distinct (13)C signal, with hyperfine coupling constants of 4.9 MHz for (13)C(a), 1. 8 MHz for (13)C(b), and 2.7 MHz for (13)C(c). Models for the sequential formation of intermediates during nitrogenase reduction of CS(2) are discussed.  相似文献   

8.
EPR signals observed under CO and C(2)H(2) during nitrogenase turnover were investigated for the alpha-Gln(195) MoFe protein, an altered form for which the alpha-His(195) residue has been substituted by glutamine. Under CO, samples show S = 1/2 hi- and lo-CO EPR signals identical to those recognized for the wild-type protein, whereas the S = 3/2 signals generated under high CO/high flux conditions differ. Previous work has revealed that the EPR spectrum generated under C(2)H(2) exhibits a signal (S(EPR1)) originating from the FeMo-cofactor having two or more bound C(2)H(2) adducts and a second signal (S(EPR2)) arising from a radical species [S?rlie, M., Christiansen, J., Dean, D. R., and Hales, B. J. (1999) J. Am. Chem. Soc. 121, 9457-9458]. Pressure-dependent studies show that the intensity of these signals has a sigmoidal dependency at low pressures and maximized at 0.1 atm C(2)H(2) with a subsequent decrease in steady-state intensity at higher pressures. Analogous signals are not recognized for the wild-type MoFe protein. Analysis of the principal g-factors of S(EPR2) suggests that it either represents an unusual metal cluster or is a carboxylate centered radical possibly originating from homocitrate. Both S(EPR1) and S(EPR2) exhibit similar relaxation properties that are atypical for S = 1/2 signals originating from Fe-S clusters or radicals and indicate a coupled relaxation pathway. The alpha-Gln(195) MoFe protein also exhibits these signals when incubated under turnover conditions in the presence of C(2)H(4). Under these conditions, additional inflections in the g 4-6 region assigned to ground-state transitions of an S = 3/2 spin system are also recognized and assigned to turnover states of the MoFe protein without C(2)H(4) bound. The structure of alpha-Gln(195) was crystallographically determined and found to be virtually identical to that of the wild-type MoFe protein except for replacement of an NuH-S hydrogen bond interaction between FeMo-cofactor and the imidazole side chain of alpha-His(195) by an analogous interaction involving Gln.  相似文献   

9.
We report the use of electron nuclear double resonance (ENDOR) spectroscopy to examine how the metal sites in the FeMo-cofactor cluster of the resting nitrogenase MoFe protein respond to addition of the substrates acetylene and methyl isocyanide and the inhibitor carbon monoxide. 1H, 57Fe and 95Mo ENDOR measurements were performed on the wild-type and the NifV(-)proteins from Klebsiella pneumoniae. Among the molecules tested, only the addition of acetylene to either protein induced widespread changes in the 57Fe ENDOR spectra. Acetylene also induced increases in intensity from unresolved protons in the proton ENDOR spectra. Thus we conclude that acetylene may bind to the resting-state MoFe protein to perturb the FeMo-cofactor environment. On the other hand, the present results show that methyl isocyanide and carbon monoxide do not substantially alter the FeMo cofactor's geometric and electronic structures. We interpret this as lack of interaction between those two molecules and the FeMo cofactor in the resting state MoFe protein. Thus, although it is generally accepted that substrates or inhibitors bind to the FeMo-cofactor only under turnover condition, this work provides evidence that at least one substrate can perturb the active site of nitrogenase under non-catalytic conditions.  相似文献   

10.
Biological nitrogen fixation catalyzed by nitrogenase requires the participation of two component proteins called the Fe protein and the MoFe protein. Each alphabeta catalytic unit of the MoFe protein contains an [8Fe-7S] cluster and a [7Fe-9S-Mo-homocitrate] cluster, respectively designated the P-cluster and FeMo-cofactor. FeMo-cofactor is known to provide the site of substrate reduction whereas the P-cluster has been suggested to function in nitrogenase catalysis by providing an intermediate electron-transfer site. In the present work, evidence is presented for redox changes of the P-cluster during the nitrogenase catalytic cycle from examination of an altered MoFe protein that has the beta-subunit serine-188 residue substituted by cysteine. This residue was targeted for substitution because it provides a reversible redox-dependent ligand to one of the P-cluster Fe atoms. The altered beta-188(Cys) MoFe protein was found to reduce protons, acetylene, and nitrogen at rates approximately 30% of that supported by the wild-type MoFe protein. In the dithionite-reduced state, the beta-188(Cys) MoFe protein exhibited unusual electron paramagnetic resonance (EPR) signals arising from a mixed spin state system (S = 5/2, 1/2) that integrated to 0.6 spin/alphabeta-unit. These EPR signals were assigned to the P-cluster because they were also present in an apo-form of the beta-188(Cys) MoFe protein that does not contain FeMo-cofactor. Mediated voltammetry was used to show that the intensity of the EPR signals was maximal near -475 mV at pH 8.0 and that the P-cluster could be reversibly oxidized or reduced with concomitant loss in intensity of the EPR signals. A midpoint potential (Em) of -390 mV was approximated for the oxidized/resting state couple at pH 8.0, which was observed to be pH dependent. Finally, the EPR signals exhibited by the beta-188(Cys) MoFe protein greatly diminished in intensity under nitrogenase turnover conditions and reappeared to the original intensity when the MoFe protein returned to the resting state.  相似文献   

11.
We have employed EPR and a set of recently developed electron nuclear double resonance (ENDOR) spectroscopies to characterize a suite of [2Fe?C2S] ferredoxin clusters from Aquifex aeolicus (Aae Fd1, Fd4, and Fd5). Antiferromagnetic coupling between the FeII, S?=?2, and FeIII, S?=?5/2, sites of the [2Fe?C2S]+ cluster in these proteins creates an S?=?1/2 ground state. A complete discussion of the spin-Hamiltonian contributions to g includes new symmetry arguments along with references to related FeS model compounds and their symmetry and EPR properties. Complete 57Fe hyperfine coupling (hfc) tensors for each iron, with respective orientations relative to g, have been determined by the use of ??stochastic?? continuous wave and/or ??random hopped?? pulsed ENDOR, with the relative utility of the two approaches being emphasized. The reported hyperfine tensors include absolute signs determined by a modified pulsed ENDOR saturation and recovery (PESTRE) technique, RD-PESTRE??a post-processing protocol of the ??raw data?? that comprises an ENDOR spectrum. The 57Fe hyperfine tensor components found by ENDOR are nicely consistent with those previously found by M?ssbauer spectroscopy, while accurate tensor orientations are unique to the ENDOR approach. These measurements demonstrate the capabilities of the newly developed methods. The high-precision hfc tensors serve as a benchmark for this class of FeS proteins, while the variation in the 57Fe hfc tensors as a function of symmetry in these small FeS clusters provides a reference for higher-nuclearity FeS clusters, such as those found in nitrogenase.  相似文献   

12.
Xu W  Lees NS  Hall D  Welideniya D  Hoffman BM  Duin EC 《Biochemistry》2012,51(24):4835-4849
(E)-4-Hydroxy-3-methylbut-2-enyl diphosphate reductase (IspH or LytB) catalyzes the terminal step of the MEP/DOXP pathway where it converts (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP) into the two products, isopentenyl diphosphate and dimethylallyl diphosphate. The reaction involves the reductive elimination of the C4 hydroxyl group, using a total of two electrons. Here we show that the active form of IspH contains a [4Fe-4S] cluster and not the [3Fe-4S] form. Our studies show that the cluster is the direct electron source for the reaction and that a reaction intermediate is bound directly to the cluster. This active form has been trapped in a state, dubbed FeS(A), that was detected by electron paramagnetic resonance (EPR) spectroscopy when one-electron-reduced IspH was incubated with HMBPP. In addition, three mutants of IspH have been prepared and studied, His42, His124, and Glu126 (Aquifex aeolicus numbering), with particular attention paid to the effects on the cluster properties and possible reaction intermediates. None of the mutants significantly affected the properties of the [4Fe-4S](+) cluster, but different effects were observed when one-electron-reduced forms were incubated with HMBPP. Replacing His42 led to an increased K(M) value and a much lower catalytic efficiency, confirming the role of this residue in substrate binding. Replacing the His124 also resulted in a lower catalytic efficiency. In this case, however, the enzyme showed the loss of the [4Fe-4S](+) EPR signal upon addition of HMBPP without the subsequent formation of the FeS(A) signal. Instead, a radical-type signal was observed in some of the samples, indicating that this residue plays a role in the correct positioning of the substrate. The incorrect orientation in the mutant leads to the formation of substrate-based radicals instead of the cluster-bound intermediate complex FeS(A). Replacing the Glu126 also resulted in a lower catalytic efficiency, with yet a third type of EPR signal being detected upon incubation with HMBPP. (31)P and (2)H ENDOR measurements of the FeS(A) species incubated with regular and (2)H-C4-labeled HMBPP reveal that the substrate binds to the enzyme in the proximity of the active-site cluster with C4 adjacent to the site of linkage between the FeS cluster and HMBPP. Comparison of the spectroscopic properties of this intermediate to those of intermediates detected in (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase and ferredoxin:thioredoxin reductase suggests that HMBPP binds to the FeS cluster via its hydroxyl group instead of a side-on binding as previously proposed for the species detected in the inactive Glu126 variant. Consequences for the IspH reaction mechanism are discussed.  相似文献   

13.
The diiron center in stearoyl-acyl carrier protein (ACP) desaturase (DS) from castor plant Ricinus communis catalyzes the dioxygen- and NADPH-dependent introduction of a cis double bond between C9 and C10 of stearoyl-ACP. Radiolytic reduction of diferric DS at 77 K produces an electron paramagnetic resonance (EPR)-detectable mixed-valence center (or [DS(ox)](mv)) that is trapped in the conformation of the diferric precursor and thus provides a sensitive EPR/electron nuclear double resonance (ENDOR) probe of the structure of the diamagnetic diiron(III) state. The cryoreduced DS shows two distinct EPR signals, suggesting the presence of two diiron(III) states: the mu-oxo (major)- and mu-hydroxo (minor)-bridged diiron centers. ENDOR studies show that in the dominant oxo-bridged diferric state each iron(III) coordinates a histidine and a water along with other ligands. Samples containing stoichiometric amounts of stearoyl-ACP show pronounced changes in the EPR and (1)H ENDOR spectra of cryoreduced DS. EPR spectra of the cryoreduced DS-substrate complex reveal two distinct substates of the parent. EPR and ENDOR studies show that both major conformers of the diferric cluster have a mu-oxo bridge. ENDOR shows that the major conformer has a histidine and a water bound to both Fe ions. In the minor conformer, one of the irons has lost the terminal water ligand. The structure of the trapped [DS(ox)](mv) state relaxes upon annealing to 170 K: the mu-oxo bridge in the major cryoreduced DS species protonates on annealing to 170 K; this does not occur for the major DS-substrate complex, even upon annealing to 230 K. The relaxed Fe(II)Fe(III) center in cryoreduced DS and DS-substrate show much less intense and resolved (14)N ENDOR spectra than those of the structurally similar cryoreduced diiron center in ribonucleotide reductase (RNR) protein R2. This difference may reflect some differences in His-Fe bonds. The alterations in the diferric site of DS induced by substrate are suggested to be mediated by conformational changes in the polypeptide chain produced by substrate binding. These structural alterations may provide DS with an additional mechanism for tuning the redox potential of the diferric site. The mixed-valence states of DS are unstable at temperatures above 230 K.  相似文献   

14.
To characterize the binding of substrate to aconitase, we have made 17O electron nuclear double resonance (ENDOR) measurements on reduced active ([4Fe-4S]1+) beef heart aconitase, both in H216O and H217O, in the presence of substrate and the inhibitors, tricarballylate, trans-aconitate, and 1-hydroxy-2-nitro-1, 3-propanedicarboxylate, referred to here as nitroisocitrate; the hydroxyl of the latter also was isotypically labeled with 17O. The hydroxyl oxygen of citrate and isocitrate is exchanged with solvent water by aconitase, but the hydroxyl of nitroisocitrate is not. Thus, the isotopic composition of nitroisocitrate can be chemically controlled, allowing direct identification of any 17O ENDOR signal associated with it. 17O ENDOR signals were observed from Hx17O (mean = 1 or 2) bound to the [4Fe-4S]1+ cluster in samples prepared with trans-aconitate and unlabeled nitroisocitrate. 17O-Labeled nitroisocitrate in H216O bound to the cluster showed a signal from the 17OH group; in H217O it showed 17O ENDOR resonances due to both Hx17O and 17OH of substrate. This result demonstrates that the cluster participates in substrate binding and can simultaneously coordinate the hydroxyl of a substrate (or analogue) and water (or hydroxyl). The sample with citrate in H217O showed only the Hx17O signal, although aconitase exchanges the hydroxyl of substrate with solvent water. The mechanism of action of aconitase is discussed in light of this observation. Comparison shows the ENDOR study to be in agreement with previous M?ssbauer and EPR spectroscopic results.  相似文献   

15.
Methyl-coenzyme M reductase (MCR), which catalyses the reduction of methyl-coenzyme M (CH(3)-S-CoM) with coenzyme B (H-S-CoB) to CH(4) and CoM-S-S-CoB, contains the nickel porphinoid F430 as prosthetic group. The active enzyme exhibits the Ni(I)-derived axial EPR signal MCR(red1) both in the absence and presence of the substrates. When the enzyme is competitively inhibited by coenzyme M (HS-CoM) the MCR(red1) signal is partially converted into the rhombic EPR signal MCR(red2). To obtain deeper insight into the geometric and electronic structure of the red2 form, pulse EPR and ENDOR spectroscopy at X- and Q-band microwave frequencies was used. Hyperfine interactions of the four pyrrole nitrogens were determined from ENDOR and HYSCORE data, which revealed two sets of nitrogens with hyperfine couplings differing by about a factor of two. In addition, ENDOR data enabled observation of two nearly isotropic (1)H hyperfine interactions. Both the nitrogen and proton data indicate that the substrate analogue coenzyme M is axially coordinated to Ni(I) in the MCR(red2) state.  相似文献   

16.
Bennett B  Lemon BJ  Peters JW 《Biochemistry》2000,39(25):7455-7460
Carbon monoxide binding and inhibition have been investigated by electron paramagnetic resonance (EPR) spectroscopy in solution and in crystals of structurally described states of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum. Simulation of the EPR spectrum of the as-isolated state indicates that the main component of the EPR spectrum consists of the oxidized state of the "H cluster" and components due to reduced accessory FeS clusters. Addition of carbon monoxide to CpI in the presence of dithionite results in the inhibition of hydrogen evolution activity, and a characteristic axial EPR signal [g(eff(1)), g(eff(2)), and g(eff(3)) = 2.0725, 2.0061, and 2.0061, respectively] was observed. Hydrogen evolution activity was restored by successive sparging with hydrogen and argon and resulted in samples that exhibited the native oxidized EPR signature that could be converted to the reduced form upon addition of sodium dithionite and hydrogen. To examine the relationship between the spectroscopically defined states of CpI and those observed structurally by X-ray crystallography, we have examined the CpI crystals using EPR spectroscopy. EPR spectra of the crystals in the CO-bound state exhibit the previously described axial signal associated with CO binding. The results indicate that the addition of carbon monoxide to CpI results in a single reversible carbon monoxide-bound species characterized by loss of enzyme activity and the distinctive axial EPR signal.  相似文献   

17.
During turnover at 10 degrees C at pH 7.4 in the presence of ethylene, the MoFe protein of Klebsiella pneumoniae nitrogenase (Kp 1) exhibited an electron-paramagnetic-resonance signal with g-values at 2.12, 1.998 and 1.987. 57Fe isotopic substitution demonstrated that this signal arose from the Kp 1 FeMo-cofactor in an S = 1/2 spin state.  相似文献   

18.
The X-ray crystal structure is presented for a nitrogenase MoFe protein where the alpha subunit residue at position 70 (α-70Val) has been substituted by the amino acid isoleucine (α-70Ile). Substitution of α-70Val by α-70Ile results in a MoFe protein that is hampered in its ability to reduce a range of substrates including acetylene and N2, yet retains normal proton reduction activity. The 2.3 Å structure of the α-70Ile MoFe protein is compared to the α-70Val wild-type MoFe protein, revealing that the δ methyl group of α-70Val is positioned over Fe6 within the active site FeMo-cofactor. This work provides strong crystallographic support for the previously proposed model that substrates bind and are reduced at a single 4Fe-4S face of the FeMo-cofactor and that when α-70Val is substituted by α-70Ile access of substrates to Fe6 of this face is effectively blocked. Furthermore the detailed examination of the structure provides the basis for understanding the ability to trap and characterize hydrides in the variant, contributing significantly to our understanding of substrate access and substrate reduction at the FeMo-cofactor active site of nitrogenase.  相似文献   

19.
In this study we report on thus-far unobserved proton hyperfine couplings in the well-known EPR signals of [NiFe] hydrogenases. The preparation of the enzyme in several highly homogeneous states allowed us to carefully re-examine the Ni(u)*, Ni(r)*, Ni(a)-C* and Ni(a)-L* EPR signals which are present in most [NiFe] hydrogenases. At high resolution (modulation amplitude 0.57 G), clear indications for hyperfine interactions were observed in the g(z) line of the Ni(r)* EPR signal. The hyperfine pattern became more pronounced in 2H2O. Simulations of the spectra suggested the interaction of the Ni-based unpaired electron with two equivalent, non-exchangeable protons (A1,2=13.2 MHz) and one exchangeable proton (A3=6.6 MHz) in the Ni(r)* state. Interaction with an exchangeable proton could not be observed in the Ni(u)* EPR signal. The identity of the three protons is discussed and correlated to available ENDOR data. It is concluded that the NiFe centre in the Ni(r)* state contains a hydroxide ligand bound to the nickel, which is pointing towards the gas channel rather than to iron.  相似文献   

20.
Fisher K  Newton WE  Lowe DJ 《Biochemistry》2001,40(11):3333-3339
Rapid-freezing experiments elicited two transient EPR signals, designated 1b and 1c, during Azotobacter vinelandii nitrogenase turnover at 23 degrees C and pH 7.4. The first of the signals to form, signal 1b, exhibited g values of 4.21 and 3.76. Its formation was at the expense of the starting EPR signal (signal 1a with g values of 4.32, 3.66, and 2.01). The second signal to arise, signal 1c, with a characteristic g value of 4.69, formed very slowly and was always of low intensity. Both signals occurred independently of the substrate being reduced. Increased electron flux through the MoFe protein caused these signals to form more rapidly. Moreover, after a MoFe-protein solution had been pretreated (using conditions of extremely low electron flux) to set up an equimolar mixture of its resting state and one-electron reduced state, these signals appeared even more rapidly when this mixture was exposed to an excess of the Fe protein. We have simulated the kinetics of formation of these EPR features using the published kinetic model for nitrogenase catalysis [Lowe, D. J., and Thorneley, R. N. F. (1984) Biochem. J. 224, 887-909] and propose that they arise from reduced states of the MoFe protein and reflect different conformations of the FeMo cofactor with different protonation states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号