首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) is known to be involved in regulating the proliferation of parathyroid cells and PTH synthesis through reactions involving its nuclear receptor. We evaluated the effects of 1,25-(OH)2D3 and its hexafluorinated analog, 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3 (26,27-F6-1,25-(OH)2D3), on parathyroid cells. The 1,25-(OH)2D3 and 26,27-F6-1,25-(OH)2D3 each inhibited [3H]thymidine incorporation and ornithine decarboxylase (ODC) activity, which is important in cell proliferation, in primary cultured bovine parathyroid cells. The inhibitory effect of 26,27-F6-1,25-(OH)2D3 on PTH secretion from parathyroid cells was significantly more potent than that of 1,25-(OH)2D 3 between 10−11 M and 10−8 M. Study of 26,27-F6-1,25-(OH)2D3 metabolism in parathyroid cells in vitro elucidated its slower degradation than that of 1,25-(OH)2D3. After 48 h of incubation with [1β-3H]26,27-F6-1,25-(OH)2D3, two HPLC peaks, one for [1β-3H]26,27-F6-1,25-(OH)2D3, and a second larger peak for [1β-3H]26,27-F6-1,23(S),25-(OH)3D3, were detected. No metabolites were detected after the same period of incubation with 1,25-(OH)2[26,27-3H]D3. We observed that 26,27-F6-1,23(S),25-(OH)3D3 was as potent as 1,25-(OH)2D3 in inhibiting the proliferation of parathyroid cells.

Data suggest that the greater biological activity of 26,27-F6-1,25-(OH)2D3 is explained by its slower metabolisms and by the retention of the biological potency of 26,27-F6-1,25-(OH)2D3 even after 23(S)-hydroxylation.  相似文献   


2.
Synthesis of a C-24-epimeric mixture of 25-hydroxy-[26,27-3H]vitamin D2 and a C-24-epimeric mixture of 1,25-dihydroxy-[26,27-3H]vitamin D2 by the Grignard reaction of the corresponding 25-keto-27-nor-vitamin D2 and 1 alpha-acetoxy-25-keto-27-nor-vitamin D3 with tritiated methyl magnesium bromide is described. Separation of epimers by high-performance liquid chromatography afforded pure radiolabeled vitamins of high specific activity (80 Ci/mmol). The identities and radiochemical purities of 25-hydroxy-[26,27-3H[vitamin D2 and 1,25-dihydroxy-[26,27-3H]vitamin D2 D2 were established by cochromatography with synthetic 25-hydroxyvitamin D2 or 1,25-dihydroxyvitamin D2. Biological activity of 25-hydroxy-[26,27-3H]vitamin D2 was demonstrated by its binding to the rat plasma binding protein for vitamin D compounds, and by its in vitro conversion to 1,25-dihydroxy-[26,27-3H]vitamin D2 by kidney homogenate prepared from vitamin D-deficient chickens. The biological activity of 1,25-dihydroxy-[26,27-3H]vitamin D2 was demonstrated by its binding to the chick intestinal receptor for 1,25-dihydroxyvitamin D3.  相似文献   

3.
1,25-Dihydroxyvitamin D3, an endogenous ligand with the highest affinity for the vitamin D receptor (VDR), was labeled with 11C for use in biological experiments. The radionuclide was incorporated via the reaction of [11C]methyllithium on a methyl ketone precursor in tetrahydrofuran at −10 °C. Deprotection of the labeled intermediate yielded 2.5–3 GBq [26,27-11C]1,25-dihydroxyvitamin D3 [11C-1,25(OH)2 D3] with specific radioactivity averaging 100 GBq/μmol at the end of synthesis and HPLC purification. The entire process took 48 min from the end of radionuclide production. In vitro binding experiments in rachitic chick purified VDR demonstrated the high affinity binding of this novel tracer. Thus; 11C-1,25(OH)2 D3 is available for in vivo distribution studies and may be suitable for the positron emission tomography (PET) determination of VDR levels and occupancy in animals and humans.  相似文献   

4.
After intravenous administration of the vitamin D3 analog, 22-oxacalcitriol (OCT), to normal rats plasma metabolites were investigated by HPLC, GC-MS and LC-MS. Five side-chain oxidation metabolites, 24R(OH)OCT, 24S(OH)OCT, (25R)-26(OH)OCT, (25S)-26(OH)OCT and 24oxoOCT, were identified by comparison with the corresponding synthetic compounds. These side-chain oxidation metabolites were similar to those of calcitriol [1,25(OH)2 vitamin D3] described previously. Besides these five metabolites, two unique side-chain cleavage metabolites, 20S(OH)-hexanor-OCT and 17,20S(OH)2-hexanor-OCT, were identified as main metabolites in plasma by GC-MS and LC-MS using a specific chemical reaction. Our studies suggest that OCT is extensively metabolized and circulates in blood as a number of metabolites as well as unchanged OCT. This metabolism includes both unique pathways of C23-O22 cleavage and 17-hydroxylation, in addition to the side-chain oxidation metabolites similar to those of 1,25-(OH)2D3.  相似文献   

5.
6.
Vitamin D is produced by exposure of 7-dehydrocholesterol in the skin to UV irradiation (UVR) and further converted in the skin to the biologically active metabolite, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and other compounds. UVR also results in DNA damage producing cyclobutane pyrimidine dimers (CPD). We previously reported that 1,25(OH)2D3 at picomolar concentrations, protects human skin cells from UVR-induced apoptosis, and decreases CPD in surviving cells. 1,25(OH)2D3 has been shown to generate biological responses via two pathways—the classical steroid receptor/genomic pathway or a rapid, non-genomic pathway mediated by a putative membrane receptor. Whether the rapid response pathway is physiologically relevant is unclear. A cis-locked, rapid-acting agonist 1,25(OH)2lumisterol3 (JN), entirely mimicked the actions of 1,25(OH)2D3 to reduce fibroblast and keratinocyte loss and CPD damage after UVR. The effects of 1,25(OH)2D3 were abolished by a rapid-acting antagonist, but not by a genomic antagonist. Skh:hr1 mice exposed to three times the minimal erythemal dose of solar-simulated UVR and treated topically with 1,25(OH)2D3 or JN immediately after UVR showed reduction in UVR-induced UVR-induced sunburn cells (p < 0.01 and <0.05, respectively), CPD (p < 0.01 for both) and immunosuppression (p < 0.001 for both) compared with vehicle-treated mice. These results show for the first time an in vivo biological response mediated by a rapid-acting analog of the vitamin D system. The data support the hypothesis that 1,25(OH)2D3 exerts its photoprotective effects via the rapid pathway and raise the possibility that other D compounds produced in skin may contribute to the photoprotective effects.  相似文献   

7.
Vitamin D: A modulator of cell proliferation and differentiation   总被引:4,自引:0,他引:4  
1,25-Dihydroxyvitamin D3, [1,25(OH)2D3], the biologically most active metabolite of vitamin D3, is involved in the regulation of calcium homeostasis and bone metabolism. Recently, receptors for 1,25(OH)2D3 have also been shown in cells and tissues not directly related to calcium homeostasis. Experimental data obtained with leukemic and cancer cell lines, both in vitro and in vivo, showed the effects of 1,25(OH)2D3 on cell differentiation and proliferation. However, high doses of the sterol have to be used to observe these effects. Additional studies are needed to establish whether 1,25(OH)2D3 or suitable analogues have a therapeutic potential in malignant diseases without unacceptable toxicity like the development of hypercalcemia.  相似文献   

8.
It has been recognized that people who live at higher latitudes and who are vitamin D deficient are at higher risk of dying from many common cancers including colon cancer. To evaluate the role of vitamin D deficiency on colon tumor growth, Balb/c adult male mice were fed either a vitamin D sufficient or vitamin D deficient diet for 10 weeks. Mice were arranged into groups of six and each animal received subcutaneously 10(4) MC-26 cells in the posterior trunk. The tumor size was recorded daily. By day 9 there was a significant difference in tumor volume between the vitamin D sufficient and vitamin D deficient mice. By day 18 the vitamin D deficient animals had a tumor size that was 56% larger compared to the animals that were vitamin D sufficient. To determine whether treatment with active vitamin D analogs could further decrease colon tumor growth in a vitamin D sufficient state, groups of mice were treated with the novel 19-nor-Gemini compounds. The mice were fed a low calcium diet. Twenty-four hours after tumor implantation, the mice received, three times weekly, one of the vitamin D analogs or the vehicle. The group that received Gemini 1,25-dihydroxy-21(3-hydroxy-3-trifluoromethyl-4-trifluoro-butynyl)-19-nor-20S-cholecalciferol (3) showed a dose-dependent decrease in tumor volume. On day 19, at the dose level of 0.02microg molar equivalents (E), the tumor volume was reduced by 41% when compared to the control group. At the same time point, the hexadeuterated analog 1,25-dihydroxy-21(3-hydroxy-3-trifluoromethyl-4-trifluoro-butynyl)-26,27-hexadeutero-19-nor-20S-cholecalciferol (4), administered at the 10-fold lower dose of 0.002microgE, showed a 52% reduction in tumor volume (p<0.05), compared to the control group. Animals that received 1,25(OH)(2)D(3) at 0.002 and 0.02microg showed a trend in tumor volume reduction at the highest dose but the changes were not statistically significant. An evaluation of serum calcium concentrations revealed that the calcium levels were normal in all groups, except the group receiving 0.02microgE of 4. The results from these studies demonstrate that vitamin D deficiency may accelerate colon cancer growth and that novel Gemini analogs of 1,25(OH)(2)D(3) may be an effective new approach for colon cancer treatment.  相似文献   

9.
Adequate supply of vitamin D3 is not sufficient for the prevention of post-menopausal osteoporosis, because of a tightly regulated critical step in formation of the most active vitamin D metabolite 1,25-dihydroxyvitamin D3. Direct application of 1,25(OH)2D3, however, was effective in reducing fracture rate and increasing bone mineral density as has been shown in large clinical studies.

Extracts from Solanum glaucophyllum and Trisetum flavescens plants containing 1,25(OH)2D3-glycosides were characterized by their vitamin D-activity in a quail eggshell bioassay and applied in an osteoporosis model in ovariectomized rats.

An extract from the grass T. flavescens and a purified extract from S. glaucophyllum were characterized by the absence of alkaloids and the analytically determined content of 1,25(OH)2D3. In the ovariectomized rat model after 6 months duration, the bone metabolism relevant markers serum calcium, 1,25(OH)2D3, urinary crosslinks and calcium were measured. At termination tibial mineral content was determined and as imaging procedure micro-computerized tomography was applied. The bisphosphonate alendronate was used as a positive standard.

While alendronate reduced bone resorption, as seen in a reduced urinary crosslink excretion, both vitamin D metabolite-containing extracts were able to improve bone mineral density by an enhanced calcium turnover.  相似文献   


10.
We synthesized 25-hydroxy-26,27-dimethylvitamin D3, 9, and 1,25-dihydroxy-26,27-dimethylvitamin D3, 14, from chol-5-enic acid-3 beta-ol and tested their biological activity in vivo and in vitro. 9 was found to be highly potent vitamin D analog with bioactivity similar to that of 25-hydroxyvitamin D3. 9 bound to rat plasma vitamin D binding protein with approximately one-third the affinity of 25-hydroxyvitamin D3. In a duodenal organ culture system and in a competitive binding assay with chick intestinal 1,25-dihydroxyvitamin D receptor, 9 was significantly more potent than 25-hydroxyvitamin D3. 1,25-Dihydroxy-26,27-dimethylvitamin D3, 14 was also highly active in vivo. At doses of 1000-5000 pmol/rat, its action was more sustained than that of 1,25-dihydroxyvitamin D3. 14 bound to vitamin D binding protein about 18 times less effectively than 1,25-dihydroxyvitamin D3. 14 bound to the chick intestinal cytosol receptor with an affinity one-half that of 1,25-dihydroxyvitamin D3. In a duodenal organ culture system, 14 was about half as active as 1,25-dihydroxyvitamin D3. Extension of the sterol side chain, at C-26 and C-27, by methylene groups, prolongs the bioactivity of a vitamin D sterol hydroxylated at C-1 and C-25; the corresponding sterol, hydroxylated only at C-25, does not show any alteration of its bioactivity in vivo. These newly synthesized analogs may potentially be of therapeutic use in various mineral disorders.  相似文献   

11.
R Kumar  D Harnden  H F DeLuca 《Biochemistry》1976,15(11):2420-2423
Approximately 7% of a 650-pmol dose of 25-hydroxyl[26,27-14C]vitamin D3 and 25% of a 325-pmol dose of 1,25-dihydroxyl[26,27-14C]vitamin D3 are metabolized to 14CO2 by vitamin D deficient rats. Nephrectomy prevents the metabolism of 25-hydroxy[26,27-14C]vitamin D3 to 14CO2 but not that of 1,25-dihydroxy[26,27-14C]vitamin D3. Less than 5% of the 14C from 24,25-dihydroxy[26,27-14C]vitamin D3 is metabolized to 14CO2. Feeding diets high in calcium and supplemented with vitamin D3 markedly diminishes the amount of 14CO2 formed from 25-hydroxy[26,27-14C]vitamin D3 but not that from 1,25-dihydroxyl[26,27-14C]vitamin D3. These results provide strong evidence that only 1-hydroxylated vitamin D compounds and especially 1,25-dihydroxyvitamin D3 undergo side-chain oxidation and cleavage to yield an unknown metabolite and CO2.  相似文献   

12.
13.
The economy of Ca utilization is under the control of vitamin D3, particularly its active metabolite 1,25-dihydroxy cholecalciferol [1,25(OH)2D3]. In sufficient Ca absorption leads to tibial dyschondroplasia resulting in not attaining optimum body weight. Our earlier studies [T.P. Prema, N. Raghuramulu, Phytochemistry 37 (1994) 167] have shown that the Cestrum diurnum (CD) leaves contain vitamin D3 metabolites. It was felt whether incorporation of CD as a source of 1,25(OH)2D3 could improve the Ca absorption in broilers. Four groups of 60 birds each were fed with either normal diet or normal diet + 0.25% CD or normal diet without vitamin D3 or normal diet without vitamin D3 + 0.25% CD leaf powder for 45 days. In subsample of six birds it was observed that incorporation of CD leaves in the feed had the maximal effect on all the parameters studied. The results indicate that the intestinal Ca transport as represented by Serosa/Mucosa (S/M) ratio was found to be significantly (p < 0.01) higher in broilers fed diet with CD leaf powder and the 1 hydroxylase activity in kidney is significantly (p < 0.001) higher in negative controls. On the other hand the supplementation of CD leaves enhanced the serum Ca, body weight, tibia weight, density and strength resulting in the disappearance of tibial dyschondroplasia. No lesions of toxicity were observed in any of the soft tissue examined. The results suggest that the incorporation of CD leaf powder in poultry feed could be beneficial to the poultry.  相似文献   

14.
The aromatase and estrone sulfatase enzymes are important sources of biologically active estrogens in postmenopausal women with breast cancer. Promising initial results in the treatment of endocrine-responsive breast cancer have been exhibited by 125-dihydroxyvitamin D3 and the synthetic vitamin D analogues MC903 and EB1089. However, these compounds together with vitamin D3 and vitamin D3 sulfate did not inhibit the human placental aromatase enzyme when assayed up to 20 μm. Only vitamin D3 sulfate and 125-dihydroxyvitamin D inhibited the estrone sulfatase activity in human placental microsomes, albeit at high concentration (32 and 37% inhibition, respectively with 50 μm each inhibitor). It is unlikely that inhibition of aromatase or estrone sulfatase enzymes contribute to the inhibitory effect of this group of compounds on breast cancer cells in vivo.  相似文献   

15.
Studies on the site of 1,25-dihydroxyvitamin D3 synthesis in vivo   总被引:2,自引:0,他引:2  
Anephric, vitamin D-deficient male rats were injected with a physiologic dose of 25-hydroxy[26,27-3H]vitamin D3 (specific activity of 160 Ci/mmol), and 18-20 h later, intestine, bone, and serum were analyzed by high performance liquid chromatography for 1,25-dihydroxy-[26,27-3H]vitamin D3. Identical studies were carried out using sham-operated rats and rats with ligated ureters. No 1,25-dihydroxy[26,27-3H]vitamin D3 was detected in the tissues from anephric rats, while large amounts were detected in sham-operated and ureteric ligated controls. This result demonstrates that in the nonpregnant rat, 1,25-dihydroxyvitamin D3 is either not synthesized or is synthesized in vanishingly small amounts in bone and intestine in vivo, casting considerable doubt of the physiological importance of reports of in vitro synthesis of 1,25-dihydroxyvitamin D3 by cells in culture derived from bone and elsewhere.  相似文献   

16.
The affinity of purified human vitamin D-binding protein from serum (DBP) for 25-hydroxyvitamin D3 (25-OHD3) and 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] was measured in the presence of free fatty acids (FFA), cholesterol, prostaglandins and several drugs. Mono- and polyunsaturated fatty acids markedly decreased the affinity of both 25-OHD3 and 1,25-(OH)2D3 for DBP, whereas saturated fatty acids (stearic and arachidic acid), cholesterol, cholesterol esters, retinol, retinoic acid and prostaglandins (A1 and E1) did not affect the apparent affinity. Several chemicals known to decrease the binding of thyroxine to its plasma-binding protein did not affect the affinity of DBP.

The apparent affinity of DBP for both 25-OHD3 and 1,25-(OH)2D3 decreased 2.4- to 4.6-fold in the presence of 36 μM of linoleic or arachidonic acid, respectively. Only a molar ratio of FFA:DBP higher than 10,000 was able to decrease the binding of 25-OHD3 to DBP by 20%. Much smaller ratio's of FFA:DBP (25 for arachidonic and 45 for oleic acid), however, decreased the binding of 1,25-(OH)2D3 to DBP. These latter ratio's are well within the physiological range. The addition of human albumin in a physiological albumin:DBP molar ratio did not impair the inhibitory effect of linoleic acid on the binding of [3H]25-OHD3 to DBP. The binding and bioavailability of vitamin D metabolites thus might be altered by mono- and polyunsaturated but not by saturated fatty acids.  相似文献   


17.
This study examines the effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], 24,25-dihydroxyvitamin D3 [24,25(OH)2D3], two vitamin D analogues (KH 1060 and EB 1089, which are 20-epi-22-oxa and 22,24-diene-analogues, respectively), 9-cis retinoic acid and all-trans retinoic acid on proliferation of SH-SY5Y human neuroblastoma cells, after treatment for 7 days. Cell number did not change when the cells were incubated with 1, 10 or 100 nM 1,25(OH)2D3 or its derivatives, but significantly decreased in the presence of the two retinoids (0.001–10 μM final concentration). A synergistic inhibition was observed, when SH-SY5Y cells were treated combining 0.1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM KH 1060, and 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM EB 1089. Acetylcholinesterase activity showed a significant increase, in comparison with controls, after treatment of the cells for 7 days with 0.1 or 1 μM 9-cis retinoic acid, alone or combined with 10 nM 1,25(OH)2D3 or 10 nM KH 1060 or 10 nM EB 1089. This increase was synergistic, combining 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or EB 1089. The levels of the c-myc encoded protein remarkably decreased after treatment of SH-SY5Y cells for 1, 3, 7 days with 0.1 and 1 μM 9-cis retinoic acid, alone or combined with 10 nM 1,25(OH)2D3 or 10 nM KH 1060 or 10 nM EB 1089. In particular, the association of 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM EB 1089 resulted in a synergistic c-myc inhibition, in comparison with that obtained in the presence of the retinoid alone. These findings may have therapeutic implications in human neuroblastoma.  相似文献   

18.
19.
The antitumor effects of 1,25-dihydroxyvitamin D3 (calcitriol) are being exploited for prevention and treatment of prostate cancer (CaP). These studies examined the antiproliferative effects of calcitriol in primary cell cultures derived from transgenic adenocarcinoma of mouse prostate (TRAMP) mice chronically treated with calcitriol (20 μg/kg) or vehicle 3×/week from 4 weeks-of-age until palpable tumors developed. This is a report on the response of two representative control (Vitamin D naïve, naïve) and calcitriol-treated (Vitamin D insensitive, VDI) cells to calcitriol. VDI cells were less sensitive to calcitriol based on less cell growth inhibition and less inhibition of DNA synthesis as measured by MTT and BrdU incorporation assays. Similarly, VDI cells were less sensitive to growth inhibition by the vitamin analog, 19-nor-1,25-dihydroxyvitamin D2 (paricalcitol). There was no change in apoptosis following treatment of naïve and VDI cells with calcitriol. Vitamin D receptor (VDR) expression was up-regulated by calcitriol in both naïve and VDI cells. In addition, calcitriol induced the Vitamin D metabolizing enzyme, 24-hydroxylase (cyp24) mRNA and enzyme activity similarly in naïve and VDI cells as measured by RT-PCR and HPLC, respectively. In summary, VDI cells are less responsive to the antiproliferative effects of calcitriol. Understanding Vitamin D insensitivity will further clinical development of Vitamin D compounds for prevention and treatment of CaP.  相似文献   

20.

Background

CD44, a transmembrane glycoprotein, is a major receptor for extracellular proteins involved in invasion and metastasis of human cancers. We have previously demonstrated that the novel Gemini vitamin D analog BXL0124 [1α,25-dihydroxy-20R-21(3-hydroxy-3-deuteromethyl-4,4,4-trideuterobutyl)-23-yne-26,27-hexafluro-cholecalciferol] repressed CD44 expression in MCF10DCIS.com basal-like human breast cancer cells and inhibited MCF10DCIS xenograft tumor growth. In the present study, we investigated potential factors downstream of CD44 and the biological role of CD44 repression by BXL0124 in MCF10DCIS cells.

Methods and Findings

The treatment with Gemini vitamin D BXL0124 decreased CD44 protein level, suppressed STAT3 signaling, and inhibited invasion and proliferation of MCF10DCIS cells. The interaction between CD44 and STAT3 was determined by co-immunoprecipitation. CD44 forms a complex with STAT3 and Janus kinase 2 (JAK2) to activate STAT3 signaling, which was inhibited by BXL0124 in MCF10DCIS cells. The role of CD44 in STAT3 signaling and invasion of MCF10DCIS cells was further determined by the knockdown of CD44 using small hairpin RNA in vitro and in vivo. MCF10DCIS cell invasion was markedly decreased by the knockdown of CD44 in vitro. The knockdown of CD44 also significantly decreased mRNA expression levels of invasion markers, matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA), in MCF10DCIS cells. In MCF10DCIS xenograft tumors, CD44 knockdown decreased tumor size and weight as well as invasion markers.

Conclusions

The present study identifies STAT3 as an important signaling molecule interacting with CD44 and demonstrates the essential role of CD44-STAT3 signaling in breast cancer invasion. It also suggests that repression of CD44-STAT3 signaling is a key molecular mechanism in the inhibition of breast cancer invasion by the Gemini vitamin D analog BXL0124.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号