首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Endothelial progenitor cells (EPCs) in the circulatory system have been suggested to maintain vascular homeostasis and contribute to adult vascular regeneration and repair. These processes require that EPCs break down the extracellular matrix (ECM), migrate, differentiate and undergo tube morphogenesis. Evidently, the ECM plays a critical role by providing biochemical and biophysical cues that regulate cellular behaviour. Using a chemically and mechanically tunable hydrogel to study tube morphogenesis in vitro, we show that vascular endothelial growth factor (VEGF) and substrate mechanics co‐regulate tubulogenesis of EPCs. High levels of VEGF are required to initiate tube morphogenesis and activate matrix metalloproteinases (MMPs), which enable EPC migration. Under these conditions, the elasticity of the substrate affects the progression of tube morphogenesis. With decreases in substrate stiffness, we observe decreased MMP expression while increased cellular elongation, with intracellular vacuole extension and coalescence to open lumen compartments. RNAi studies demonstrate that membrane type 1‐MMP (MT1‐MMP) is required to enable the movement of EPCs on the matrix and that EPCs sense matrix stiffness through signalling cascades leading to the activation of the RhoGTPase Cdc42. Collectively, these results suggest that coupled responses for VEGF stimulation and modulation of substrate stiffness are required to regulate tube morphogenesis of EPCs.  相似文献   

3.
血管内皮生长因子受体信号转导通路与肿瘤血管生成   总被引:2,自引:0,他引:2  
血管内皮生长因子是促进血管生成的重要调节因子.它能促进内皮细胞增殖、迁移,阻止内皮细胞凋亡、管腔网状结构退化,增加血管渗透性.所有这些作用都是通过血管内皮生长因子受体信号转导通路实现的.它们在肿瘤血管生成、肿瘤生长中起着重要的作用.以血管内皮生长因子受体信号转导通路为靶点是开发肿瘤血管生成抑制剂的理想策略.  相似文献   

4.
血管内皮生长因子和抗肿瘤血管新生药物研究进展   总被引:1,自引:0,他引:1  
肿瘤的生长与迁移离不开新血管的形成,这使得抗血管新生成为肿瘤治疗的重要途径之一。血管内皮生长因子(VEGF)是针对内皮细胞作用最强、特异性最高的血管新生促进因子,因而VEGF是抗肿瘤治疗的重要靶点。我们简要介绍了VEGF的一些生物学特点及肿瘤血管新生,着重介绍了一些抗血管新生药物的最新研究成果及其临床应用。  相似文献   

5.
血管内皮细胞生长因子研究进展   总被引:5,自引:0,他引:5  
从不同侧面阐述了血管内皮细胞生长因子(VEGF)在新生血管形成中的作用.VEGF诱导新生血管形成,具有血管渗透性,是新生血管形成的主要调控者之一.VEGF mRNA不同剪接,形成5种VEGF变异体(isoform)即VEGF121-206.VEGF诱导新生血管的调控过程、拮抗VEGF成为大家竞相研究的领域.  相似文献   

6.
7.
8.
The endothelial barrier controls the passage of fluids, nutrients and cells through the vascular wall. This physiological function is closely related to developmental and adult angiogenesis, blood pressure control, as well as immune responses. Moreover, cancer progression is frequently characterized by disorganized and leaky blood vessels. In this context, vascular permeability drives tumour-induced angiogenesis, blood flow disturbances, inflammatory cell infiltration and tumour cell extravasation. Although various molecules have been implicated, the vascular endothelial adhesion molecule, VE-cadherin (vascular endothelial cadherin), has emerged as a critical player involved in maintaining endothelial barrier integrity and homoeostasis. Indeed, VE-cadherin coordinates the endothelial cell-cell junctions through its adhesive and signalling properties. Of note, many angiogenic and inflammatory mediators released into the tumour microenvironment influence VE-cadherin behaviour. Therefore restoring VE-cadherin function could be one very promising target for vascular normalization in cancer therapies. In this review, we will mainly focus on recent discoveries concerning the molecular mechanisms involved in modulating VE-cadherin plasticity in cancer.  相似文献   

9.
Healthy cells, as well as benign and malignant tumors, depend upon the body's blood supply to bring in oxygen and nutrients and carry away waste products. Using this property against tumors, anti‐angiogenic therapy targets the tumor vasculature with the aim of starving the tumor, and has demonstrated exceptional clinical efficacy against a number of tumors. This review discusses the current state of knowledge regarding anti‐angiogenic therapies presently available to patients, and garners from both preclinical and clinical literature the benefits and side effects associated with anti‐angiogenic therapies, the unfortunate mechanisms of acquired resistance to these novel therapeutics, and highlights promising next generation anti‐angiogenics that may overcome the limitations encountered with first generation therapies. J. Cell. Biochem. 111: 543–553, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Vascular endothelial growth factor (VEGF) is a potent endothelial cell-specific mediator of angiogenesis and vasculogenesis. VEGF is involved pathologically in cancer, proliferative retinopathy and rheumatoid arthritis, and as such represents an important therapeutic target. Three classes of disulfide-constrained peptides that antagonize binding of the VEGF dimer to its receptors, KDR and Flt-1, were identified previously using phage display methods. NMR studies of a representative peptide from the most potent class of these peptide antagonists, v107 (GGNECDAIRMWEWECFERL), were undertaken to characterize its interactions with VEGF. v107 has no defined structure free in solution, but binding to VEGF induces folding of the peptide. The solution structure of the VEGF receptor-binding domain-v107 complex was determined using 3940 (1970 per VEGF monomer) internuclear distance and 476 (238 per VEGF monomer) dihedral angle restraints derived from NMR data obtained using samples containing either (13)C/(15)N-labeled protein plus excess unlabeled peptide or (13)C/(15)N-labeled peptide plus excess unlabeled protein. Residual dipolar coupling restraints supplemented the structure determination of the complex and were found to increase significantly both the global precision of VEGF in the complex and the agreement with available crystal structures of VEGF. The calculated ensemble of structures is of high precision and is in excellent agreement with the experimental restraints. v107 has a turn-helix conformation with hydrophobic residues partitioned to one face of the peptide and polar or charged residues at the other face. Contacts between two v107 peptides and the VEGF dimer are mediated by primarily hydrophobic side-chain interactions. The v107-binding site on VEGF overlaps partially with the binding site of KDR and is similar to that for domain 2 of Flt-1. The structure of the VEGF-v107 complex provides new insight into how binding to VEGF can be achieved that may be useful for the design of small molecule antagonists.  相似文献   

11.
Growth factor-induced signaling by receptor tyrosine kinases (RTKs) plays a central role in embryonic development and in pathogenesis and, hence, is tightly controlled by several regulatory proteins. Recently, Sprouty, an inhibitor of Drosophila development-associated RTK signaling, has been discovered. Subsequently, four mammalian Sprouty homologues (Spry-1-4) have been identified. Here, we report the functional characterization of two of them, Spry-1 and -2, in endothelial cells. Overexpressed Spry-1 and -2 inhibit fibroblast growth factor- and vascular endothelial growth factor-induced proliferation and differentiation by repressing pathways leading to p42/44 mitogen-activating protein (MAP) kinase activation. In contrast, although epidermal growth factor-induced proliferation of endothelial cells was also inhibited by Spry-1 and -2, activation of p42/44 MAP kinase was not affected. Biochemical and immunofluorescence analysis of endogenous and overexpressed Spry-1 and -2 reveal that both Spry-1 and -2 are anchored to membranes by palmitoylation and associate with caveolin-1 in perinuclear and vesicular structures. They are phosphorylated on serine residues and, upon growth factor stimulation, a subset is recruited to the leading edge of the plasma membrane. The data indicate that mammalian Spry-1 and -2 are membrane-anchored proteins that negatively regulate angiogenesis-associated RTK signaling, possibly in a RTK-specific fashion.  相似文献   

12.
Dysregulated angiogenesis is implicated in several pathologies, including cancer and age-related macular degeneration. A potential antiangiogenic strategy consists in developing VEGF receptor ligands capable of preventing VEGF binding and the subsequent activation of these receptors. Herein, we describe the structure-based design of a VEGF-mimicking peptide, VG3F. This 25-mer peptide was doubly cyclized, on-resin, by formation of both a disulfide bridge and an intramolecular amide bond to constrain it to adopt a bioactive conformation. Tested on in vitro assays, VG3F was able to prevent VEGF binding to VEGF receptor 1 and inhibit both VEGF-induced signal transduction and cell migration.  相似文献   

13.
“肿瘤饥饿疗法”是通过抑制促肿瘤血管新生细胞因子的作用,阻断肿瘤血管形成,最终实现“饿死”肿瘤细胞的一种治疗方法.内分泌腺衍生血管内皮生长因子(EG-VEGF)是在2001年被发现的一个组织选择性促血管新生因子.近年来的研究表明,EG-VEGF还兼有促进造血干细胞分化、刺激胃肠道收缩及影响肠神经系统发育等多种生理功能.EG-VEGF的异常表达与多种肿瘤及血管新生依赖性疾病的发生发展密切相关,有望作为相应的治疗靶点开发诊断及治疗试剂.本文对有关研究进展及应用前景作一简要综述.  相似文献   

14.
In adult vessels the proliferation rate of differentiated endothelial cells is very low. In response to several environmental stimuli the expression of so-called ‘angiogenic factors’ is upregulated and the messenger RNAs are actively translated in secreted factors which induce the proliferation of endothelial cells; the digestion of their basement membrane then allows their migration and differentiation. Considerable progress has been made during the past years in elucidating the molecular actors of angiogenesis. Vascular endothelial growth factor turned out to represent the major inducer of angiogenesis. Optional splicing of its pre-messenger RNA generates various isoforms which differ not only by their storage in the extracellular matrix but also by their signaling pathways.  相似文献   

15.
It has been well established that a functioning vascular supply is essential for solid tumor growth and metastases. In the absence of a viable vascular network, tumors are unable to grow beyond a few millimeters and therefore remain dormant. Initiation of angiogenesis allows for continued tumor growth and progression. Targeting tumor vasculature, either by inhibiting growth of new tumor blood vessels (antiangiogenic agents) or by destroying the already present tumor vessels (vascular disrupting agents; VDA), is an area of extensive research in the development of new antitumor agents. These two groups differ in their direct physiological target, the type or extent of disease that is likely to be susceptible, and the treatment schedule. VDAs target the established tumor blood vessels, resulting in tumor ischemia and necrosis. These agents show more immediate effects compared to antiangiogenic agents and may have more efficacy against advanced bulky disease. VDAs can be divided into two groups--ligand-bound and small molecule agents. Both VDA groups have demonstrated antitumor effects and tumor core necrosis, but consistently leave a thin rim of viable tumor cells at the periphery of the tumor. More evidence suggests VDAs will have their greatest effect in combination with conventional chemotherapy or other modes of treatment that attack this outer rim of cells.  相似文献   

16.
VEGF: an update on biological and therapeutic aspects   总被引:39,自引:0,他引:39  
Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen and an angiogenic inducer as well as a mediator of vascular permeability. VEGF is essential for developmental angiogenesis and is also required for female reproductive functions and endochondral bone formation. Substantial evidence also implicates VEGF in tumors and intraocular neovascular syndromes. Currently, several clinical trials are ongoing to test the hypothesis that the inhibition of VEGF activity may be beneficial for these conditions.  相似文献   

17.
The tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEG FR2) is a key regulator of angiogenesis. Here we show that VEGFR2 is acetylated in endothelial cells both at four lysine residues forming a dense cluster in the kinase insert domain and at a single lysine located in the receptor activation loop. These modifications are under dynamic control of the acetyltransferase p300 and two deacetyiases HDAC5 and HDAC6. We demonstrate that VEGFR2 acetylation essentially regulates receptor phosphorylation. In par- ticular, VEGFR2 acetylation significantly alters the kinetics of receptor phosphorylation after ligand binding, allowing receptor phos- phoryiation and intraceUular signaling upon proLonged stimulation with VEGF. Molecular dynamics simulations indicate that acetylation of the lysine in the activation loop contributes to the transition to an open active state, in which tyrosine phosphorylation is favored by better exposure of the kinase target residues. These findings indicate that post-translational modification by acetyiation is a critical mechanism that directLy affects VEGFR2 function.  相似文献   

18.
Platelet-derived endothelial cell growth factor (PD-ECGF) is a 45 kDa single chain polypeptide which stimulates endothelial cell growth and chemotaxis in vitro and angiogenesis in vivo. Analysis of a full length PD-ECGF cDNA revealed an open reading frame coding for 482 amino acids without homology to other known proteins. No signal sequence was observed, and analysis of the biosynthesis and processing of PD-ECGF in a thyroid carcinoma cell line revealed that PD-ECGF is released only very slowly. PD-ECGF becomes covalently associated with nucleotide triphosphates (e.g., ATP) in vivo, as well as in vitro. The physiological significance of this posttranslational modification remains to be elucidated. The tissue distribution and target cell specificity of PD-ECGF suggest roles in angiogenesis (e.g., during wound healing and in the developing placenta), as well as in the maintenance of the integrity of the endothelial cell lining of large vessels.  相似文献   

19.
Previous NMR structural studies of the heparin-binding domain of vascular endothelial growth factor (VEGF165) revealed a novel fold comprising two subdomains, each containing two disulfide bridges and a short two-stranded antiparallel -sheet. The mutual orientation of the two subdomains was poorly defined by the NMR data. Heteronuclear relaxation data suggested that this disorder resulted from a relative lack of experimental restraints due to the limited size of the interface, rather than inherent high-frequency flexibility. Refinement of the structure using 1HN-15N residual dipolar coupling restraints results in significantly improved definition of the relative subdomain orientations.  相似文献   

20.
We previously reported that treatment of mid‐pregnant mice with KRN633, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, caused fetal growth restriction resulting from diminished vascularization in the placenta and fetal organs. In this study, we examined how the treatment of mid‐pregnant mice with KRN633 affects the development and morphology of vascular components (endothelial cells, pericytes, and basement membrane) in the retinas of their newborn pups. Pregnant mice were treated with KRN633 (5 mg/kg) once daily from embryonic day 13.5 until the day of delivery. Vascular components were examined using immunohistochemistry with specific markers for each component. Radial vascular growth in the retina was slightly delayed until postnatal day 4 (P4) in the newborn pups of KRN633‐treated mothers. On P8, compared with the pups of control mothers, the pups of KRN633‐treated mothers exhibited decreased numbers of central arteries and veins and abnormal branching of the central arteries. No apparent differences in pericytes or basement membrane were observed between the pups of control and KRN633‐treated mothers. These results suggest that a critical period for determining retinal vascular patterning is present at the earliest stages of retinal vascular development, and that the impaired vascular endothelial growth factor signaling during this period induces abnormal architecture in the retinal vascular network  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号