首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Vascular permeability factor (VPF) is mitogenic for bovine aortic endothelial (BAE) cells, whereas tumor necrosis factor (TNF) is cytostatic and was found to completely block the mitogenic response to VPF. In contrast to the apparently antagonistic mitogenic effects that these two factors elicit, chronic exposure of BAE cells to either VPF of TNF resulted in significant (about 3-fold) increases in the rates of hexose transport. The concentrations required for half-maximal stimulation were 2 ng/ml (40 pM) for TNF and 4 ng/ml (100 pM) for VPF. Exposure to both factors simultaneously resulted in a greater stimulation of transport (about 7-fold) than exposure to either factor alone. Northern blot analysis indicated that the amount of message for the GLUT-1/erythrocyte form of the glucose transporter was specifically increased by treatment with VPF (5-fold), TNF (25-fold), or to both cytokines together (35-fold). Expression of mRNAs for the insulin-sensitive muscle/adipose transporter (GLUT-4), brain/fetal skeletal muscle transporter (GLUT-3), or the hepatic transporter (GLUT-2) were not detected in either control or treated cells. Acute or chronic exposure to insulin (10(-9) to 10(-6) M) did not activate hexose transport in BAE cells. Thus, glucose transport in aortic endothelial cells can be up-regulated by either VPF, a growth stimulator, or by TNF, a growth inhibitor, but not by insulin. The additive effect of the two cytokines together may be important in the control of increased glucose metabolism at sites of inflammation.  相似文献   

6.
Vascular permeability factor (VPF) also known as vascular endothelial growth factor (VEGF), is a dimeric protein that affects endothelial cell (EC) and vascular functions including enhancement of microvascular permeability and stimulation of EC growth. To investigate the structural features of VPF/VEGF necessary for efficient dimerization, secretion, and biological activities, we employed site-directed mutagenesis with a Cos-1 cell expression system. Several cysteine residues essential for VPF dimerization were identified by mutation analysis of the Cys-25, Cys-56, and Cys-67 residues. Mutant VPF isoforms lacking either of these cysteines were secreted as monomers and were completely inactive in both vascular permeability and endothelial cell mitotic assays. VPF Cys-145 mutant protein was efficiently secreted as a glycosyaated, dimeric polypeptide, but had a reduction in biological activities. The site of N-linked glycosylation was directly identified as Asn-74, which, when mutated produced an inefficiently secreted dimeric protein without post-translational glycosylation, yet maintained full vascular permeability activity. Finally, we found that one VPF mutant isoform Cys-101 was not secreted and this mutant functioned as a dominant-negative suppressor of wild-type VPF secretion as demonstrated by co-expression assays in Cos-1 cells.  相似文献   

7.
Specific binding of vascular permeability factor to endothelial cells   总被引:12,自引:0,他引:12  
Vascular permeability factor (VPF), also known as vascular endothelial cell growth factor, has recently been purified from guinea pig, human, and bovine sources. We show that various fetal or adult endothelial cell strains originating from either capillary or large vessels possess specific high affinity and saturable binding sites for guinea pig tumor-derived [125I]VPF. Two classes of sites with KDs of approximately 10 pM and 1 nM were detected for all endothelial cell types examined. Guinea pig [125I]VPF binding to endothelial cells was inhibited by human VPF (ID50 = 0.8 ng/ml) and by suramin (ID50 = 75 micrograms/ml) but not by heparin. Cross-linking experiments revealed specific [125I]VPF-receptor complexes of two types. Most of the complexes migrated very slowing in SDS-PAGE, indicating that they were of very high molecular weight and probably highly cross-linked. A portion of the molecules migrated as 270 kDa complexes, indicating that the molecular weight of the endothelial cell VPF receptor is about 230 kDa.  相似文献   

8.
血管内皮细胞生长因子(vascular endothelial growth factor,VEGF或VEGF-A),又称为血管通透因子(vascular permeable factor,VPF)是一种具有多种功能的生物大分子,它是分泌性糖蛋白生长因子超家族中的一员.VEGF主要通过两个高亲和力的酪氨酸激酶受体来传递各种信号:VEGF受体1和2(VEGFR1,VEGFR2),从而引起细胞的多种生理反应.在胚胎时期,VEGF可以促进血管内皮细胞的增殖、迁移、管状形成和提高内皮细胞的存活率,对于血管新生和发育十分关键;而在成体时期,VEGF则主要参与正常血管结构的维持,并调节生理和病理性血管新生.近几年来的临床试验表明,使用多种阻断VEGF作用的抑制剂能有效促进肿瘤血管的退化和减小肿瘤的体积,但是同时在部分病人中也观察到了多方面的副作用.这些结果显示,VEGF也具有非血管新生方面的重要功能.因此,在研制基于拮抗VEGF作用的抗癌药物时,这些功能更不容忽视.研究表明,在成体的小肠、胰岛、甲状腺、肾脏和肝脏等器官组织中,VEGF都发挥着十分重要的作用,如果VEGF水平降低,这些器官组织的毛细血管网状结构将部分退化.VEGF还可以促进骨髓形成、组织修复与再生、促进卵巢囊泡成熟,并且参与血栓、炎症反应和缺氧缺血的病理过程.本文主要对VEGF在血管新生之外的功能及其分子机制进行了简要探讨.  相似文献   

9.
Survival and proliferation of endothelial cells requires both growth factors and an appropriate extracellular matrix to which cells can attach. In the absence of either, endothelial cells rapidly undergo apoptosis. Thus, when human microvascular endothelial cells (HDMEC) are plated on a hydrophobic surface such as untreated polystyrene, they rapidly undergo apoptosis and die. The present study demonstrates that vascular permeability factor/vascular endothelial growth factor (VPF/VEGF), an endothelial cell-selective cytokine, inhibits apoptosis of HDMEC cultured on untreated polystyrene and induces these cells to adhere, spread, and proliferate. VPF/VEGF-induced HDMEC adhesion was time-dependent, requiredde novoprotein synthesis, and was inhibited by a soluble RGD peptide but not by an inhibitor of collagen synthesis. Under the conditions of these experiments, VPF/VEGF downregulated expression of collagen IV and fibronectin but did not change collagen I mRNA levels. VPF/VEGF-induced HDMEC adhesion was inhibited by antibodies to αvβ5 and vitronectin but not by antibodies to αvβ3. Other endothelial growth factors and cytokines such as bFGF, HGF, and TGFβ did not reproduce the VPF/VEGF effect. We suggest that VPF/VEGF induces endothelial cells to deposit a scaffolding (likely involving vitronectin) that allows them to attach to and proliferate on an otherwise nonsupportive surface (hydrophobic polystyrene) and in this manner serves as both a survival factor and a growth factor.  相似文献   

10.
Vascular endothelial growth factor (VEGF), also known as vascular permeability factor (VPF), has been shown to increase potently the permeability of endothelium and is highly expressed in breast cancer cells. In this study, we investigated the role of VEGF/VPF in breast cancer metastasis to the brain. Very little is known about the role of endothelial integrity in the extravasation of breast cancer cells to the brain. We hypothesized that VEGF/VPF, having potent vascular permeability activity, may support tumor cell penetration across blood vessels by inducing vascular leakage. To examine this role of VEGF/VPF, we used a Transwell culture system of the human brain microvascular endothelial cell (HBMEC) monolayer as an in vitro model for the blood vessels. We observed that VEGF/VPF significantly increased the penetration of the highly metastatic MDA-MB-231 breast cancer cells across the HBMEC monolayer. We found that the increased transendothelial migration (TM) of MDA-MB-231 cells resulted from the increased adhesion of tumor cells onto the HBMEC monolayer. These effects (TM and adhesion of tumor cells) were inhibited by the pre-treatment of the HBMEC monolayer with the VEGF/VPF receptor (KDR/Flk-1) inhibitor, SU-1498, and the calcium chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (acetoxymethyl)ester. These treatments of the HBMEC monolayer also inhibited VEGF/VPF-induced permeability and the cytoskeletal rearrangement of the monolayer. These data suggest that VEGF/VPF can modulate the TM of tumor cells by regulating the integrity of the HBMEC monolayer. Taken together, these findings indicate that VEGF/VPF might contribute to breast cancer metastasis by enhancing the TM of tumor cells through the down-regulation of endothelial integrity.  相似文献   

11.
Vascular endothelial cell growth factor (VEGF) was originally described as a potent vascular permeability factor (VPF) that importantly contributes to vascular pathobiology. The signaling pathways that underlie VEGF/VPF-induced permeability are not well defined. Furthermore, endogenous vascular peptides that regulate this important VPF function are currently unknown. We report here that VPF significantly enhances permeability in aortic endothelial cells via a linked signaling pathway, sequentially involving Src, ERK, JNK, and phosphatidylinositol 3-kinase/AKT. This leads to the serine/threonine phosphorylation and redistribution of actin and the tight junction (TJ) proteins, zona occludens-1 and occludin, and the loss of the endothelial cell barrier architecture. Atrial natriuretic peptide (ANP) inhibited VPF signaling, TJ protein phosphorylation and localization, and VPF-induced permeability. This involved both guanylate cyclase and natriuretic peptide clearance receptors. In vivo, transgenic mice that overexpress ANP showed significantly less VPF-induced kinase activation and vascular permeability compared with non-transgenic littermates. Thus, ANP acts as an anti-permeability factor by inhibiting the signaling functions of VPF that we define here and by preserving the endothelial cell TJ functional morphology.  相似文献   

12.
13.
Vascular endothelial growth factor (VEGF), also known as a vascular permeability factor (VPF), is an endothelial specific mitogen and is a potent inducer of angiogenesis. Recently it has been reported that hypoxia induces VEGF mRNA expression in various cells. Since both oxygen and glucose are required for efficient production of energy, we examined the effect of glucose deprivation on VEGF mRNA expression and VEGF protein production in U-937 (a human monocytic cell line) cells. Both the mRNA expression and secretion of VEGF increased after exposure to low glucose. Addition of L-glucose, the L-stereoisomer of D-glucose, did not prevent the up-regulation of VEGF expression. The conditioned medium from glucose-deprived cells, followed by supplementation with glucose, did not up-regulate VEGF mRNA expression in U-937 cells. The low glucose-induced VEGF mRNA expression returned to the control level after supplementation with D-glucose. Furthermore, oligomycin, a mitochondrial ATP synthase inhibitor, increased VEGF protein production. The results suggest that the up-regulation of VEGF mRNA in U-937 cells in response to glucose deprivation is not mediated by autocrine factors from the cells nor is the osmotic change of the medium mediated by the deficiency of glucose metabolism in the cells. Our results also suggest that the intracellular ATP depletion due to glucose deprivation may be one of the causes for increased VEGF mRNA expression. We speculate that local hypoglycemia may act as an essential trigger for angiogenesis through the VEGF gene expression.  相似文献   

14.
Vascular permeability factor (VPF) is an approximately 40-kDa disulfide-linked dimeric glycoprotein that is active in increasing blood vessel permeability, endothelial cell growth and angiogenesis. Little is known about VPF gene regulation. In this study, we investigated the effects of a variety of cytokines and inducing agents on VPF mRNA levels in the monocyte-like U937 cell line. Transforming growth factor-beta 1 caused a 1.8-fold increase in VPF mRNA levels after 4 hours, followed by a decline to basal levels by 18 hours. Phorbol 12-myristate 13-acetate, a potent inducer of the differentiation of U937 cells, caused a 12.5-fold increase in VPF mRNA levels at 24 hours, coinciding with the differentiation of these monocyte-like cells into macrophage-like cells.  相似文献   

15.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) exerts its multiple functions by activating two receptor tyrosine kinases, Flt-1 (VEGFR-1) and KDR (VEGFR-2), both of which are selectively expressed on primary vascular endothelium. To dissect the respective signaling pathways and biological functions mediated by these receptors in primary endothelial cells with two receptors intact, we, recently developed chimeric receptors (EGDR and EGLT) in which the extracellular domain of the epidermal growth factor receptor was fused to the transmembrane domain and intracellular domain of KDR and Flt-1, respectively. With these fusion receptors, we have shown that KDR is solely responsible for VPF/VEGF-induced human umbilical vein endothelial cell (HUVEC) proliferation and migration, whereas Flt-1 showed an inhibitory effect on KDR-mediated proliferation but not migration. To further characterize the VPF/VEGF-stimulated HUVEC proliferation and migration here, we have created several EGDR mutants by site-directed mutagenesis. We show that tyrosine residues 1059 and 951 of KDR are essential for VPF/VEGF-induced HUVEC proliferation and migration, respectively. Furthermore, the mutation of tyrosine 1059 to phenylanaline results in the complete loss of KDR/EGDR-mediated intracellular Ca(2+) mobilization and MAPK phosphorylation, but the mutation of tyrosine 951 to phenylanaline did not affect these events. Our results suggest that KDR mediates different signaling pathways for HUVEC proliferation and migration and, moreover, intracellular Ca(2+) mobilization and MAPK phosphorylation are not essential for VPF/VEGF-induced HUVEC migration.  相似文献   

16.
Hypoxia, a strong inducer for vascular endothelial growth factor (VEGF)/vascular permeable factor (VPF) expression, regulates leukocyte infiltration through the up-regulation of adhesion molecules and chemokine release. To determine whether VEGF/VPF is directly involved in chemokine secretion, we analyzed its effects on chemokine expression in human brain microvascular endothelial cells (HBMECs) by using a human cytokine cDNA array kit. Cytokine array analysis revealed a significant increase in expression of monocyte chemoattractant protein-1 and the chemokine receptor CXCR4 in HBMECs, a result similar to that described previously in other endothelial cells. Interestingly, we also observed that VEGF/VPF induced interleukin-8 (IL-8) expression in HBMECs and that IL-8 mRNA was maximal after 1 h of VEGF/VPF treatment of the cells. Enzyme-linked immunosorbent assay data and immunoprecipitation analysis revealed that although VEGF/VPF induced IL-8 expression at the translational level in HBMECs, basic fibroblast growth factor failed to induce this protein expression within 12 h. VEGF/VPF increased IL-8 production in HBMECs through activation of nuclear factor-KB via calcium and phosphatidylinositol 3-kinase pathways, whereas the ERK pathway was not involved in this process. Supernatants of the VEGF/VPF-treated HBMECs significantly increased neutrophil migration across the HBMEC monolayer compared with those of the untreated control. Furthermore, addition of anti-IL-8 antibody blocked this increased migration, indicating that VEGF/VPF induced the functional expression of IL-8 protein in HBMECs. Taken together, these data demonstrate for the first time that VEGF/VPF induces IL-8 expression in HBMECs and contributes to leukocyte infiltration through the expression of chemokines, such as IL-8, in endothelial cells.  相似文献   

17.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF), one of the crucial pro-angiogenic factors, functions as a potent inhibitor of endothelial cell (EC) apoptosis. Previous progress has been made towards delineating the VPF/VEGF survival signaling downstream of the activation of VEGFR-2. Here, we seek to define the function of NRP-1 in VPF/VEGF-induced survival signaling in EC and to elucidate the concomitant molecular signaling events that are pivotal for our understanding of the signaling of VPF/VEGF. Utilizing two different in vitro cell culture systems and an in vivo zebrafish model, we demonstrate that NRP-1 mediates VPF/VEGF-induced EC survival independent of VEGFR-2. Furthermore, we show here a novel mechanism for NRP-1-specific control of the anti-apoptotic pathway in EC through involvement of the NRP-1-interacting protein (NIP/GIPC) in the activation of PI-3K/Akt and subsequent inactivation of p53 pathways and FoxOs, as well as activation of p21. This study, by elucidating the mechanisms that govern VPF/VEGF-induced EC survival signaling via NRP-1, contributes to a better understanding of molecular mechanisms of cardiovascular development and disease and widens the possibilities for better therapeutic targets.  相似文献   

18.
Several oncogenes and growth factors are found to be mutated and overexpressed in adenocarcinoma of the pancreas, and may correlate with its highly aggressive nature. Insulin-like growth factor (IGF-I) and its receptor (IGF-IR) are highly expressed in this tumor type. We examined the IGF-IR-mediated signaling pathways in relation to cell proliferation, invasiveness, and expression pattern of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) in the pancreatic cancer line ASPC-1. Our findings show that IGF-IR is an important growth factor receptor for cell proliferation and invasion, and VPF/VEGF expression in ASPC-1. Further experiments indicate that IGF-IR mediates different signaling pathways to execute its functions. Activation of Ras by IGF-IR was found to be required for the cell invasion. On the other hand Src activation through IGF-IR is required for the cell proliferation, invasion, and also VPF/VEGF expression. Taken together, our data indicate the importance of IGF-IR in growth and invasiveness of the pancreatic cancer cell lines and also point out the multiple signaling pathways channeled through this receptor.  相似文献   

19.
20.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) interacts with two high-affinity tyrosine kinase receptors, VEGFR-1 and VEGFR-2, to increase microvascular permeability and induce angiogenesis. Both receptors are selectively expressed by vascular endothelial cells and are strikingly increased in tumor vessels. We used a specific antibody to localize VEGFR-2 (FLK-1, KDR) in microvascular endothelium of normal mouse kidneys and in the microvessels induced by the TA3/St mammary tumor or by infection with an adenoviral vector engineered to express VPF/VEGF. A pre-embedding method was employed at the light and electron microscopic levels using either nanogold or peroxidase as reporters. Equivalent staining was observed on both the luminal and abluminal surfaces of tumor- and adenovirus-induced vascular endothelium, but plasma membranes at interendothelial junctions were spared except at sites connected to vesiculovacuolar organelles (VVOs). VEGFR-2 was also localized to the membranes and stomatal diaphragms of some VVOs. This staining distribution is consistent with a model in which VPF/VEGF increases microvascular permeability by opening VVOs to allow the transendothelial cell passage of plasma and plasma proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号