首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
Isolation and characterization of a human U3 small nucleolar RNA gene   总被引:11,自引:0,他引:11  
U3 RNA is an abundant, capped, small nucleolar RNA, implicated in the processing of preribosomal RNA. In this study, a DNA clone coding for U3 RNA (clone U3-1) was isolated from a human genomic library and characterized. The DNA sequence was identical to that of human U3 RNA isolated from HeLa cells. The flanking regions showed homology to the enhancer, promoter, and 3'-processing signal found in U1 and U2 snRNA genes. Further, the recently identified "U3 box" (GATTGGCTGCN10TATGTTAATTATGG) of rat U3 genes (Stroke and Weiner, (1985) J. Mol. Biol. 184, 183-193), was also found in the human U3 gene. This gene was transcribed in Xenopus oocytes; it is the first cloned true human U3 gene.  相似文献   

4.
Almost all small eukaryotic RNAs are processed from transiently stabilized 3'-extended forms. A key question is how and why such intermediates are stabilized and how they can then be processed to the mature RNA. Here we report that yeast U3 is also processed from a 3'-extended precursor. The major 3'-extended forms of U3 (U3-3'I and -II) lack the cap trimethylation present in mature U3 and are not associated with small nucleolar RNP (snoRNP) proteins that bind mature U3, i.e., Nop1p, Nop56p, and Nop58p. Depletion of Nop58p leads to the loss of mature U3 but increases the level of U3-3'I and -II, indicating a requirement for the snoRNP proteins for final maturation. Pre-U3 is cleaved by the endonuclease Rnt1p, but U3-3'I and -II do not extend to the Rnt1p cleavage sites. Rather, they terminate at poly(U) tracts, suggesting that they might be bound by Lhp1p (the yeast homologue of La). Immunoprecipitation of Lhp1p fused to Staphylococcus aureus protein A resulted in coprecipitation of both U3-3'I and -II. Deletion of LHP1, which is nonessential, led to the loss of U3-3'I and -II. We conclude that pre-U3 is cleaved by Rnt1p, followed by exonuclease digestion to U3-3'I and -II. These species are stabilized against continued degradation by binding of Lhp1p. Displacement of Lhp1p by binding of the snoRNP proteins allows final maturation, which involves the exosome complex of 3'-->5' exonucleases.  相似文献   

5.
6.
7.
8.
Nucleotide sequence of nucleolar U3B RNA.   总被引:6,自引:0,他引:6  
U3A, U3B, and U3C are three distinct molecular weight nucleolar RNAs present in Novikoff hepatoma ascites cells. The primary nucleotide sequence of U3B, the most prominent of these U3 species, was determined. Purified U3B RNA was subjected to various enzymatic digestion procedures, including digests of 32P-labeled U3B RNA, RNA ligase, and polynucleotide kinase labeling, for determination of its primary sequence which is: (formula: see text). The 5'-terminus of the RNA has a "cap" and localized purine-rich regions were found near the 3'-terminus, which have been incorporated into a hydrogen-bonded region in a proposed secondary structure of the molecule.  相似文献   

9.
U3 small nucleolar RNA (snoRNA) is one of the members of the box C/D class of snoRNA and is essential for ribosomal RNA (rRNA) processing to generate 18S rRNA in the nucleolus. Although U3 snoRNA is abundant, and is well conserved from yeast to mammals, the genes encoding U3 snoRNA in C. elegans have long remained unidentified. A recent RNomics study in C. elegans predicted five distinct U3 snoRNA genes. However, characterization of these candidates for U3 snoRNA has yet to be performed. In this study, we isolated and characterized four candidate RNAs for U3 snoRNA from the immunoprecipitated RNAs of C. elegans using an antibody against the 2,2,7-trimethylguanosine (TMG) cap. The sequences were identical to the predicted U3 sequences in the RNomics study. Here, we show the several lines of evidence that the isolated RNAs are the true U3 snoRNAs of C. elegans. Moreover, we report the novel expression pattern of U3 snoRNA and fibrillarin, which is an essential component of U3 small nucleolar ribonucleoprotein complex, during early embryo development of C. elegans. To our knowledge, this is the first observation of the inconsistent localization U3 snoRNA and fibrillarin during early embryogenesis, providing novel insight into the mechanisms of nucleologenesis and ribosome production during early embryogenesis.  相似文献   

10.
11.
The nucleotide sequence of chick pre-rRNA between 5.8S and 28S rRNAs is 85% G + C and has the potential to form many different secondary structures. A model is presented in which a small nucleolar RNA, U3, and its associated proteins act as an RNA isomerase to position the pre-rRNA for processing. Cleavage could be performed either by a nuclease present in the U3RNP or by a ribonuclease directed to the proper form of the pre-rRNA.  相似文献   

12.
13.
A common core structure for U3 small nucleolar RNAs.   总被引:7,自引:1,他引:6       下载免费PDF全文
  相似文献   

14.
In eukaryotes, many small nuclear RNAs contain either a trimethylguanosine cap structure of a gamma-monomethyl (me) cap structure. Previously, we reported the characterization of anti-mepppG antibodies which recognize methyl-capped RNAs with G as the initiation nucleotide. We report here the preparation of antibodies against mepppN cap structure. Anti-mepppN antibodies recognized only mepppN from a mixture of mepppN and pppN and immunoprecipitated mepppA-capped U3 small nucleolar RNA from a mixture of cowpea cell RNAs. These anti-mepppN antibodies recognized methylated nucleoside triphosphates (mepppA, mepppC, mepppG and mepppU) with nearly equal efficiency; however, these antibodies did not recognize methyl phosphate or methylated mononucleotides. These antibodies will be useful in the identification and characterization of all methyl-capped RNAs no matter which is the initiation nucleotide.  相似文献   

15.
Weber MJ 《PLoS genetics》2006,2(12):e205
Small nucleolar RNAs (snoRNAs) of the H/ACA box and C/D box categories guide the pseudouridylation and the 2'-O-ribose methylation of ribosomal RNAs by forming short duplexes with their target. Similarly, small Cajal body-specific RNAs (scaRNAs) guide modifications of spliceosomal RNAs. The vast majority of vertebrate sno/scaRNAs are located in introns of genes transcribed by RNA polymerase II and processed by exonucleolytic trimming after splicing. A bioinformatic search for orthologues of human sno/scaRNAs in sequenced mammalian genomes reveals the presence of species- or lineage-specific sno/scaRNA retroposons (sno/scaRTs) characterized by an A-rich tail and an approximately 14-bp target site duplication that corresponds to their insertion site, as determined by interspecific genomic alignments. Three classes of snoRTs are defined based on the extent of intron and exon sequences from the snoRNA parental host gene they contain. SnoRTs frequently insert in gene introns in the sense orientation at genomic hot spots shared with other genetic mobile elements. Previously characterized human snoRNAs are encoded in retroposons whose parental copies can be identified by phylogenic analysis, showing that snoRTs can be faithfully processed. These results identify snoRNAs as a new family of mobile genetic elements. The insertion of new snoRNA copies might constitute a safeguard mechanism by which the biological activity of snoRNAs is maintained in spite of the risk of mutations in the parental copy. I furthermore propose that retroposition followed by genetic drift is a mechanism that increased snoRNA diversity during vertebrate evolution to eventually acquire new RNA-modification functions.  相似文献   

16.
U3 small nucleolar RNA (snoRNA) is an abundant small RNA involved in the processing of pre-ribosomal RNA of eukaryotic cells. U3 snoRNA has been previously characterized from several sources, including human, rat, mouse, frog, fruit fly, dinoflagellates, slime mold, and yeast; in all these organisms, U3 snoRNA contains trimethylguanosine cap structure. In all instances where investigated, the trimethylguanosine-capped snRNAs including U3 snoRNA, are synthesized by RNA polymerase II. However, in higher plants, the U3 snoRNA is synthesized by RNA polymerase III and contains a cap structure different from trimethylguanosine (Kiss, T., and Solymosy, F. (1990) Nucleic Acids Res. 18, 1941-1949; Marshallsay, C., Kiss, T., and Filipowicz, W. (1990) Nucleic Acids Res. 18, 3451-3458; Kiss, T., Marshallsay, C., and Filipowicz, W. (1991) Cell 65, 517-526). In this study, we present evidence that cowpea and, most likely, tomato plant U3 snoRNA contains a methyl-pppA cap structure. These data show that the same U3 snoRNA contains different cap structures in different species and suggest that the kind of cap structure that an uridylic acid-rich small nuclear RNA contains is dependent on the RNA polymerase responsible for its synthesis. In vitro synthesized plant U3 snoRNA, with pppA or pppG as its 5' end, was converted to methyl-pppA/G cap structure in vitro when incubated with extracts prepared from wheat germ or HeLa cells. These data show that the capping machinery is conserved in organisms as evolutionarily distant as plants and mammals. Nucleotides 1-45 of tomato U3 snoRNA, which are capable of forming a stem-loop structure, are sufficient to direct the methyl cap formation in vitro.  相似文献   

17.
Jády BE  Kiss T 《The EMBO journal》2001,20(3):541-551
In eukaryotes, two distinct classes of small nucleolar RNAs (snoRNAs), namely the fibrillarin-associated box C/D snoRNAs and the Gar1p-associated box H/ACA snoRNAs, direct the site-specific 2'-O-ribose methylation and pseudouridylation of ribosomal RNAs (rRNAs), respectively. We have identified a novel evolutionarily conserved snoRNA, called U85, which possesses the box elements of both classes of snoRNAs and associates with both fibrillarin and Gar1p. In vitro and in vivo pseudouridylation and 2'-O-methylation experiments provide evidence that the U85 snoRNA directs 2'-O-methylation of the C45 and pseudouridylation of the U46 residues in the invariant loop 1 of the human U5 spliceosomal RNA. The U85 is the first example of a snoRNA that directs modification of an RNA polymerase II-transcribed spliceosomal RNA and that functions both in RNA pseudouridylation and 2'-O-methylation.  相似文献   

18.
19.
20.
The 15.5K protein directly binds to the 5' stem-loop of the U4 small nuclear RNA, the small nucleolar (sno) RNA box C/D motif, and the U3 snoRNA-specific box B/C motif. The box B/C motif has also been shown to be essential for the association of the U3 small nucleolar ribonucleoprotein-specific protein hU3-55K. We therefore set out to determine how 15.5K and hU3-55K recognize the box B/C motif. By using an in vitro assembly assay, we show that hU3-55K effectively binds a sub-fragment of the U3 snoRNA surrounding the B/C motif that we have named the U3BC RNA. The association of hU3-55K with the U3BC RNA is dependent on the binding of 15.5K to the box B/C motif. The association of hU3-55K with the U3BC RNA was found to be also dependent on a conserved RNA structure that flanks the box B/C motif. Furthermore, we show that hU3-55K, a WD 40 repeat containing protein, directly cross-links to the U3BC RNA. Our data support a new structural model of the box B/C region of the U3 snoRNA in which the box B/C motif is base-paired to form a structure highly similar to that of both the U4 5' stem-loop and the box C/D motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号