首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the current study was to examine the relationships between quadriceps torque, vastus lateralis pennation angle (θ), and patella tendon stiffness (K) at 07:45 and 17:45 h. Using short‐duration static contractions, simultaneous recordings were made of vastus lateralis (VL) electromyograph (EMG), θ and patella tendon K. Peak isometric extension torque (Peak torque Extcorr) increased by 29.4±6.5% at a knee angle of 70° (p=0.03) in the evening compared to the morning. In the contracted muscle, a 35.0±11.0% (p=0.02) time‐of‐day (TOD)‐related change in θ (to a greater evening compared to morning θ) was observed. Morning and evening measures of θ were also made, both at rest and at a standardized force level (250 N), to separate architecture change effects from increased torque capacity effects. Significant increments in θ in both the resting muscle (13.0±5.1%, p=0.046) and during the standardized exertions (8.0±3.1%, p=0.04) were observed in the evening versus the morning. Increases in θ with TOD were significantly correlated with the 40% (p=0.018) decrease in K both during the standardized contractions (r=0.788, p<0.001) and at rest (r=0.77, p=0.026). These data show that TOD affects K and θ and that these two important factors involved in in‐vivo muscle torque generation capacity are associated. The data also show that despite the potentially deleterious effects of the direction of the changes in both K and θ with TOD, peak torque Extcorr still shows a significant upward shift in the evening relative to the morning.  相似文献   

2.
AIM: To examine the time-of-day (TOD) effect on torque-force/angle, fibre length (FL), tendon stiffness (K), stress, and strain using the quadriceps muscle-tendon complex as a model. METHODS: Twelve healthy young men (aged 27+/-2.0 years) were studied at AM (7h45) and PM (5h45). Maximal isometric contractions were carried out on an isokinetic dynamometer, with real-time recordings of vastus lateralis (VL) FL and patella tendon K using B-mode ultrasonography. Percutaneous electrical twitch doublets superimposed on maximal torque were used to test for muscle activation capacity (AC). RESULTS: At PM, torque and force increased by 16+/-3.0% (P<0.01) over 30-90 degrees knee angles. Where the load was standardised (at 250N) in order to discriminate between torque generation capacity and tendon K changes, PM relative to AM, there were 8% and 13% (P<0.01) reductions in relaxed and contracted FL, respectively. Average K decreased by 21% (P<0.001) and the maximal stress and strain were increased at PM by 11% and 16%, respectively (P<0.01). No TOD effect on AC was seen. CONCLUSION: The quadriceps torque or force-angle relationships shift upwards at PM vs. AM, with no shift in the position of the optimal knee angle. This torque or force increase appears not to be centrally modulated. Although K decreases with TOD thereby potentially shortening the working length of the sarcomeres, these changes overall do not affect the ability of the muscle to produce greater torque in the evening.  相似文献   

3.
The aim of this study was to examine the time-of-day (TOD) effects in myoelectric and mechanical properties of muscle during a maximal and prolonged isokinetic exercise. Twelve male subjects were asked to perform 50 maximal voluntary contractions (MVC) of the knee extensor muscles at a constant angular velocity of 2.09 rad . sec(-1), at 06 : 00 and 18 : 00 h. Torque and electromyographic (EMG) parameters were recorded for each contraction, and the ratio between these values was calculated to evaluate variations of the neuromuscular efficiency (NME) with fatigue and with TOD. The results indicated that maximal torque values (T(45)Max) was significantly higher (7.73%) in the evening than in the morning (p<0.003). The diurnal variation in torque decrease was used to define two phases. During the first phase (1st to the 26th repetition), torque values decreased fast and values were higher in the evening than in the morning, and during the second phase (27th to the 50th repetition), torque decreased slightly and reached a floor value that appeared constant with TOD. The EMG parameters (Root Mean Square; RMS) were modified with fatigue, but were not TOD dependent. The NME decrease-significantly with fatigue, showing that peripheral factors were mainly involved in the torque decrease. Furthermore, NME decrease was greater at 18 : 00 than at 06 : 00 h for the vastus medialis (p<0.05) and the vastus lateralis muscles (p<0.002), and this occurred during the first fatigue phase of the exercise. In conclusion, the diurnal variation of the muscle fatigue observed during a maximal and prolonged isokinetic exercise seems to reflect on the muscle, with a greater contractile capacity but a higher fatigability in the evening compared to the morning.  相似文献   

4.
The aim of this study was to examine the time‐of‐day (TOD) effects in myoelectric and mechanical properties of muscle during a maximal and prolonged isokinetic exercise. Twelve male subjects were asked to perform 50 maximal voluntary contractions (MVC) of the knee extensor muscles at a constant angular velocity of 2.09 rad · sec?1, at 06∶00 and 18∶00 h. Torque and electromyographic (EMG) parameters were recorded for each contraction, and the ratio between these values was calculated to evaluate variations of the neuromuscular efficiency (NME) with fatigue and with TOD. The results indicated that maximal torque values (T45Max) was significantly higher (7.73%) in the evening than in the morning (p<0.003). The diurnal variation in torque decrease was used to define two phases. During the first phase (1st to the 26th repetition), torque values decreased fast and values were higher in the evening than in the morning, and during the second phase (27th to the 50th repetition), torque decreased slightly and reached a floor value that appeared constant with TOD. The EMG parameters (Root Mean Square; RMS) were modified with fatigue, but were not TOD dependent. The NME decrease–significantly with fatigue, showing that peripheral factors were mainly involved in the torque decrease. Furthermore, NME decrease was greater at 18∶00 than at 06∶00 h for the vastus medialis (p<0.05) and the vastus lateralis muscles (p<0.002), and this occurred during the first fatigue phase of the exercise. In conclusion, the diurnal variation of the muscle fatigue observed during a maximal and prolonged isokinetic exercise seems to reflect on the muscle, with a greater contractile capacity but a higher fatigability in the evening compared to the morning.  相似文献   

5.
In vivo muscle forces are typically estimated using literature-based or subject-specific moment arms (MAs) because it is not possible to measure in vivo muscle forces non-invasively. However, even subject-specific muscle-tendon MAs vary across contraction levels and are impossible to determine at high contraction levels without techniques that use ionized radiation. Therefore, different generic MA functions are often used to estimate in vivo muscle forces, which may alter force predictions and the shape of the muscle’s force-length relationship. The aim of this study was to examine the influence of different literature-based patella tendon MA functions on the vastus lateralis (VL) force-angle relationship. Participants (n = 11) performed maximum voluntary isometric knee extension contractions at six knee flexion angles, ranging from 40° to 90°. To estimate in vivo VL muscle force, the peak knee extension torque at each joint angle was multiplied by the VL’s physiological cross-sectional area (PCSA) relative to the quadriceps’ PCSA (34%) and then divided by the angle-specific patella tendon MA for 19 different functions. Maximum VL force was significantly different across MA functions (p ≤ 0.039) and occurred at different knee flexion angles. The shape of the VL force-angle relationship also differed significantly (p < 0.01) across MA functions. According to the maximum force generated by VL based on its literature-derived PSCA, only the VL force-angle relationships estimated using geometric imaging-based MA functions are feasible across the knee angles studied here. We therefore recommend that an average of these MA functions is calculated to estimate quadriceps muscle forces if subject-specific MAs cannot be determined.  相似文献   

6.
The present study aimed to investigate the effect of isometric training on the elasticity of human tendon structures. Eight subjects completed 12 wk (4 days/wk) of isometric training that consisted of unilateral knee extension at 70% of maximal voluntary contraction (MVC) for 20 s per set (4 sets/day). Before and after training, the elongation of the tendon structures in the vastus lateralis muscle was directly measured using ultrasonography while the subjects performed ramp isometric knee extension up to MVC. The relationship between the estimated muscle force and tendon elongation (L) was fitted to a linear regression, the slope of which was defined as stiffness of the tendon structures. The training increased significantly the volume (7.6+/-4.3%) and MVC torque (33.9+/-14.4%) of quadriceps femoris muscle. The L values at force production levels beyond 550 N were significantly shorter after training. The stiffness increased significantly from 67.5+/-21.3 to 106.2+/-33.4 N/mm. Furthermore, the training significantly increased the rate of torque development (35.8 +/- 20.4%) and decreased electromechanical delay (-18.4+/-3.8%). Thus the present results indicate that isometric training increases the stiffness and Young's modulus of human tendon structures as well as muscle strength and size. This change in the tendon structures would be assumed to be an advantage for increasing the rate of torque development and shortening the electromechanical delay.  相似文献   

7.
The calf muscles, compared with the thigh, are less responsive to resistance exercise in ambulatory and bed-rested individuals, apparently due to muscle-specific differences in protein metabolism. We chose to evaluate the efficacy of using amino acids to elevate protein synthesis in the soleus, because amino acids have been shown to have a potent anabolic effect in the vastus lateralis. Mixed muscle protein synthesis in the soleus and vastus lateralis was measured before and after infusion of mixed amino acids in 10 individuals (28 +/- 1 yr). Phosphorylation of ribosomal protein p70 S6 kinase (p70S6K; Thr389) and eukaryotic initiation factor 4E-binding protein-1 (4E-BP1; Thr37/46) was also evaluated at rest and after 3 h of amino acid infusion. Basal protein synthesis was similar (P = 0.126), and amino acids stimulated protein synthesis to a similar extent (P = 0.004) in the vastus lateralis (0.043 +/- 0.011%/h) and soleus (0.032 +/- 0.017%/h). Phosphorylation of p70S6K (P = 0.443) and 4E-BP1 (P = 0.192) was not increased in either muscle; however, the soleus contained more total (P = 0.002) and phosphorylated (P = 0.013) 4E-BP1 than the vastus lateralis. These data support the need for further study of amino acid supplementation as a means to compensate for the reduced effectiveness of calf resistance exercise in ambulatory individuals and those exposed to extended periods of unloading. The greater 4E-BP1 in the soleus suggests that there is a muscle-specific distribution of general translational initiation machinery in human skeletal muscle.  相似文献   

8.
Previous studies have demonstrated increases in peak torque (PT) and decreases in acceleration time (ACC) after only 2 days of resistance training, and other studies have reported improvements in isokinetic performance after 5 days of creatine supplementation. Consequently, there may be a combined benefit of creatine supplementation and short-term resistance training for eliciting rapid increases in muscle strength, which may be important for short-term rehabilitation and return-to-play for previously injured athletes. The purpose of this study, therefore, was to examine the effects of 3 days of isokinetic resistance training combined with 8 days of creatine monohydrate supplementation on PT, mean power output (MP), ACC, surface electromyography (EMG), and mechanomyography (MMG) of the vastus lateralis muscle during maximal concentric isokinetic leg extension muscle actions. Twenty-five men (mean age +/- SD = 21 +/- 3 years, stature = 177 +/- 6 cm, and body mass = 80 +/- 12 kg) volunteered to participate in this 9-day, double-blind, placebo-controlled study and were randomly assigned to either the creatine (CRE; n = 13) or placebo (PLA; n = 12) group. The CRE group ingested the treatment drink (280 kcal; 68 g carbohydrate; 10.5 g creatine), whereas the PLA group received an isocaloric placebo (70 g carbohydrate). Two servings per day (morning and afternoon) were administered in the laboratory on days 1-6, with only 1 serving on days 7-8. Before (pre; day 1) and after (post; day 9) the resistance training, maximal voluntary concentric isokinetic leg extensions at 30, 150, and 270 degrees x s(-1) were performed on a calibrated Biodex System 3 dynamometer. Three sets of 10 repetitions at 150 degrees x s(-1) were performed on days 3, 5, and 7. Peak torque increased (p = 0.005; eta(2) = 0.296), whereas ACC decreased (p < 0.001; eta(2) = 0.620), from pretraining to posttraining for both the CRE and PLA groups at each velocity (30, 150, and 270 degrees x s(-1)). Peak torque increased by 13% and 6%, whereas ACC decreased by 42% and 34% for the CRE and PLA groups, respectively, but these differences were not statistically significant (p > 0.05). There were no changes in MP, EMG, or MMG amplitude; however, EMG median frequency (MDF) increased, and MMG MDF increased at 30 degrees x s(-1), from pretraining to posttraining for both the CRE and PLA groups. These results indicated that 3 days of isokinetic resistance training was sufficient to elicit small, but significant, improvements in peak strength (PT) and ACC for both the CRE and PLA groups. Although the greater relative improvements in PT and ACC for the CRE group were not statistically significant, these findings may be useful for rehabilitation or strength and conditioning professionals who may need to rapidly increase the strength of a patient or athlete within 9 days.  相似文献   

9.
The purpose of this study was to examine the influence of myosin heavy chain (MHC) isoform composition and training status on the mechanomyographic (MMG) amplitude versus isometric torque relationship for the vastus lateralis. Five resistance-trained (mean +/- SD age = 23.2 +/- 3.7 years), 5 aerobically trained (mean +/- SD age = 32.6 +/- 5.2 years), and 5 sedentary (mean +/- SD age = 23.4 +/- 4.1 years) men performed isometric muscle actions of the leg extensors in 20% increments from 20% to 100% of the maximum voluntary contraction. Biopsies from the vastus lateralis revealed that the MHC composition for the resistance-trained subjects was 59.0 +/- 4.2% Type IIa, 0.1 +/- 0.1% Type IIx, and 40.9 +/- 4.3% Type I. The aerobically-trained subjects had 27.4 +/- 7.8% Type IIa, 0.0 +/- 0.0% Type IIx, and 72.6 +/- 7.8% Type I MHC. The sedentary subjects had 42.1 +/- 7.8% Type IIa, 17.8 +/- 6.4% Type IIx, and 40.1 +/- 10.9% Type I MHC. There were no consistent patterns of responses for the resistance-trained, aerobically trained, or sedentary subjects for MMG amplitude versus torque. Thus, differences in MHC isoform composition and training status did not explain the unique torque-related patterns for MMG amplitude.  相似文献   

10.
Fatigue resistance of knee extensor muscles is higher during voluntary isometric contractions at short compared with longer muscle lengths. In the present study we hypothesized that this would be due to lower energy consumption at short muscle lengths. Ten healthy male subjects performed isometric contractions with the knee extensor muscles at a 30, 60, and 90 degrees knee angle (full extension = 0 degrees ). At each angle, muscle oxygen consumption (m.VO2) of the rectus femoris, vastus lateralis, and vastus medialis muscle was obtained with near-infrared spectroscopy. m.VO2 was measured during maximal isometric contractions and during contractions at 10, 30, and 50% of maximal torque capacity. During all contractions, blood flow to the muscle was occluded with a pressure cuff (450 mmHg). m.VO2 significantly (P < 0.05) increased with torque and at all torque levels, and for each of the three muscles. m.VO2 was significantly lower at 30 degrees compared with 60 degrees and 90 degrees and m.VO2 was similar (P > 0.05) at 60 degrees and 90 degrees . Across all torque levels, average (+/- SD) m.VO2 at the 30 degrees angle for vastus medialis, rectus femoris, and vastus lateralis, respectively, was 70.0 +/- 10.4, 72.2 +/- 12.7, and 75.9 +/- 8.0% of the average m.VO2 obtained for each torque at 60 and 90 degrees . In conclusion, oxygen consumption of the knee extensors was significantly lower during isometric contractions at the 30 degrees than at the 60 degrees and 90 degrees knee angle, which probably contributes to the previously reported longer duration of sustained isometric contractions at relatively short muscle lengths.  相似文献   

11.

Introduction

Although vastus medialis and lateralis are important determinants of patellofemoral joint function, their relationship with patellofemoral joint structure is unknown. The aim of this study was to examine potential determinants of vastus medialis and lateralis cross-sectional areas and the relationship between the cross-sectional area and patella cartilage and bone volumes.

Methods

Two hundred ninety-seven healthy adult subjects had magnetic resonance imaging of their dominant knee. Vastus medialis and lateralis cross-sectional areas were measured 37.5 mm superior to the quadriceps tendon insertion at the proximal pole of the patella. Patella cartilage and bone volumes were measured from these images. Demographic data and participation in vigorous physical activity were assessed by questionnaire.

Results

The determinants of increased vastus medialis and lateralis cross-sectional areas were older age (P ≤ 0.002), male gender (P < 0.001), and greater body mass index (P ≤ 0.07). Participation in vigorous physical activity was positively associated with vastus medialis cross-sectional area (regression coefficient [beta] 90.0; 95% confidence interval [CI] 38.2, 141.7) (P < 0.001) but not with vastus lateralis cross-sectional area (beta 10.1; 95% CI -18.1, 38.3) (P = 0.48). The cross-sectional area of vastus medialis only was positively associated with patella cartilage volume (beta 0.6; 95% CI 0.23, 0.94) (P = 0.001) and bone volume (beta 3.0; 95% CI 1.40, 4.68) (P < 0.001) after adjustment for potential confounders.

Conclusions

Our results in a pain-free community-based population suggest that increased cross-sectional area of vastus medialis, which is associated with vigorous physical activity, and increased patella cartilage and bone volumes may benefit patellofemoral joint health and reduce the long-term risk of patellofemoral pathology.  相似文献   

12.
EMG analysis has indicated that the vastus lateralis and vastus medialis contribute less to the quadriceps moment during knee extension than the physiological cross-sectional areas (PCSA's) of the muscles indicate. Both PCSA- and EMG-based quadriceps force distributions were utilized while computationally simulating knee extension. For both distributions, a 10 degrees increase in the Q-angle and a 50% decrease in the force applied by the vastus medialis were simulated, and the influence of these changes on the resultant force and moment applied by the quadriceps muscles and the patella tendon was quantified. For both quadriceps force distributions, increasing the Q-angle increased the lateral force and the moment acting to rotate the distal patella laterally. Due to the relatively large forces initially attributed to the vastus medialis and vastus lateralis for the PCSA-based quadriceps force distribution, decreasing the vastus medialis force created a large force imbalance between these two muscles. For the PCSA-based quadriceps force distribution, decreasing the vastus medialis force increased the lateral rotation moment and the moment acting to tilt the patella laterally. For the EMG-based quadriceps force distribution, decreasing the vastus medialis force produced relatively little change in the tilt and rotation moments. For both quadriceps force distributions, increasing the Q-angle increased the maximum and mean cartilage pressure during flexion, but decreasing the vastus medialis force only increased the cartilage pressures for the PCSA-based quadriceps distribution. The choice of the initial quadriceps distribution can influence the outcome of patellofemoral simulation when manipulating quadriceps muscle forces.  相似文献   

13.
Muscle force recovery from short term intense exercise was examined in 16 physically active men. They performed 50 consecutive maximal voluntary knee extensions. Following a 40-s rest period five additional maximal contractions were executed. The decrease in torque during the 50 contractions and the peak torque during the five contractions relative to initial torque were used as indices for fatigue and recovery, respectively. Venous blood samples were collected repeatedly up to 8 min post exercise for subsequent lactate analyses. Muscle biopsies were obtained from m. vastus lateralis and analysed for fiber type composition, fiber area, and capillary density. Peak torque decreased 67 (range 47-82%) as a result of the repeated contractions. Following recovery, peak torque averaged 70 (47-86%) of the initial value. Lactate concentration after the 50 contractions was 2.9 +/- 1.3 mmol X 1(-1) and the peak post exercise value averaged 8.7 +/- 2.1 mmol X 1(-1). Fatigue and recovery respectively were correlated with capillary density (r = -0.71 and 0.69) but not with fiber type distribution. A relationship was demonstrated between capillary density and post exercise/peak post exercise blood lactate concentration (r = 0.64). Based on the present findings it is suggested that lactate elimination from the exercising muscle is partly dependent upon the capillary supply and subsequently influences the rate of muscle force recovery.  相似文献   

14.
The relationship between torque-velocity characteristics of the knee extensors during isokinetic contractions and muscle fiber type of the vastus lateralis, determined from two muscle biopsy samples, was investigated in 12 male and 18 female subjects. Peak torque, corrected for the effect of gravity and impact artifact, was classified as corrected peak torque. The torque measured 30 degrees from full extension and, corrected for gravity, was classified as corrected torque at 30 degrees. No significant correlations were found between the percentage of fast-twitch fibers (%FT) or the relative area of FT fibers (%FTA) and corrected peak torque values for any of the velocities tested or the knee angles where corrected peak torques were measured. However, significant inverse relationships were determined for corrected torque at 30 degrees at all but the fastest velocity (270 degrees/s) and both %FT and %FTA for the male subjects. These results reveal that muscle fiber type of the vastus lateralis, based on duplicate muscle samples, is not related to the peak torque actually generated by the knee extensors but may influence the shape of the torque output for maximal contractions sustained over the entire range of motion.  相似文献   

15.
Soluble extracts of human skeletal muscle have a fumarase activity of 31.2 +/- 7.27 (M. vastus lateralis quadricipitis) or 30.9 +/- 8.0 U/g wet weight at 37 degrees C (M. deltoideus). The distribution of activities in the 36 muscle samples studies is not gaussian. There is a significant correlation between the activities of citrate synthase and fumarase (r = + 0.881; p less than 0.001) in all investigated muscles, excepting M. vastus lateralis quadricipitis.  相似文献   

16.
The purpose of this study was to investigate knee muscle activity patterns in experienced Tai-Chi (TC) practitioners during normal walking and TC stepping. The electromyographic (EMG) activity of vastus lateralis (VL), vastus medialis (VM), bicep femoris (BF), and gastrocnemius (GS) muscles of 11 subjects (five females and six males) during the stance phase of normal walking was compared to stance phase of a TC step. Knee joint motion was also monitored by using an Optotrak motion analysis system. Raw EMG was processed by root-mean-square (RMS) technique using a time constant of 50 ms, and normalized to maximum of voluntary contraction for each muscle, referred to as normalized RMS (nRMS). Peak nRMS and co-contraction (quantified by co-contraction index) during stance phase of a gait cycle and a TC step were calculated. Paired t-tests were used to compare the difference for each muscle group peak and co-contraction pair between the tasks. The results showed that only peak values of nRMS in quadriceps and co-contraction were significantly greater in TC stepping compared to normal walking (Peak values of nRMS for VL were 26.93% for normal walking and 52.14% for TC step, p=0.001; VM are 29.12% for normal walking and 51.93% for TC stepping, p=0.028). Mean co-contraction index for VL-BF muscle pairs was 13.24+/-11.02% during TC stepping and 9.47+/-7.77% in stance phase of normal walking (p=0.023). There was no significant difference in peak values of nRMS in the other two muscles during TC stepping compared to normal walking. Preliminary EMG profiles in this study demonstrated that experienced TC practitioners used relatively higher levels of knee muscle activation patterns with greater co-contraction during TC exercise compared to normal walking.  相似文献   

17.
A method for measuring the maximal velocity of knee extension exercise is described using a very light lever arm. Instrumentation of the lever arm with a potentiometer and accelerometer also allows for the measurement of peak acceleration, time to peak acceleration, the average rate of development of acceleration (jerk) and peak torque. With this apparatus and surface electromyography, electromechanical delay (EMD) was also determined. This apparatus was tested using 17 female and 10 male subjects, and the measures obtained were related to the percentage of fast twitch fibres (% FT) and the relative area of fast twitch fibres (% FTA) in the vastus lateralis determined from duplicate muscle biopsy samples. Peak velocity of unloaded knee extension averaged 12.1 +/- 1.2 and 12.2 +/- 1.7 rad.s-1 for females and males, respectively, and were not significantly different. As well, peak acceleration, time to peak acceleration jerk and EMD values were not significantly different between the female and male subjects, but the mean peak torque for the female subjects (73.5 +/- 14.7 N.m) was significantly lower than that for the males (98.4 +/- 31.5 N.m). Peak acceleration was significantly correlated with %FT (r = 0.40, P = 0.04) for the total subject population. None of the other measures was significantly related to either %FT or %FTA for the male and female subjects or the combined population of subjects.  相似文献   

18.
Objectives:Tensiomyography (TMG) derived contraction time (Tc) and amplitude (Dm) are related to muscle fibre composition and to muscle atrophy/tone, respectively. However, the link between mobility and TMG-derived skeletal muscle contractile properties in older persons is unknown. The aim of the study was to correlate lower limb skeletal muscle contractile properties with balance and mobility measures in senior female residents of retirement homes in Austria.Methods:Twenty-eight female participants (aged from 67-99 years) were included in measurements of contractile properties (TMG) of four skeletal muscles: vastus lateralis, vastus medialis, biceps femoris and gastrocnemius medialis. Their balance and mobility performance was measured using a timed up and go test (TUG).Results:Time needed to complete TUG is negatively correlated to biceps femoris (r= -0.490; p= 0.008), vastus lateralis (r= -0.414; p=0.028) and vastus medialis (r= -0.353; p=0.066) Dm and positively correlated to vastus lateralis Tc (r=0.456; p=0.015). Overall, vastus lateralis Tc and vastus medialis Dm explained 37% of TUG time variance.Conclusions:Our study demonstrates that TMG-derived quadriceps muscle contractile parameters are correlated with the balance and mobility function in female nursing home residents.  相似文献   

19.
In this study, we have determined power output reached at maximal oxygen uptake during incremental cycling exercise (P(I, max)) performed at low and at high pedaling rates in nineteen untrained men with various myosin heavy chain composition (MyHC) in the vastus lateralis muscle. On separate days, subjects performed two incremental exercise tests until exhaustion at 60 rev min(-1) and at 120 rev min(-1). In the studied group of subjects P(I, max) reached during cycling at 60 rev min(-1) was significantly higher (p=0.0001) than that at 120 rev min(-1) (287+/-29 vs. 215+/-42 W, respectively for 60 and 120 rev min(-1)). For further comparisons, two groups of subjects (n=6, each) were selected according to MyHC composition in the vastus lateralis muscle: group H with higher MyHC II content (56.8+/-2.79 %) and group L with lower MyHC II content in this muscle (28.6+/-5.8 %). P(I, max) reached during cycling performed at 60 rev min(-1) in group H was significantly lower than in group L (p=0.03). However, during cycling at 120 rev min(-1), there was no significant difference in P(I, max) reached by both groups of subjects (p=0.38). Moreover, oxygen uptake (VO(2)), blood hydrogen ion [H(+)], plasma lactate [La(-)] and ammonia [NH(3)] concentrations determined at the four highest power outputs completed during the incremental cycling performed at 60 as well as 120 rev min(-1), in the group H were significantly higher than in group L. We have concluded that during an incremental exercise performed at low pedaling rates the subjects with lower content of MyHC II in the vastus lateralis muscle possess greater power generating capabilities than the subjects with higher content of MyHC II. Surprisingly, at high pedaling rate, power generating capabilities in the subjects with higher MyHC II content in the vastus lateralis muscle did not differ from those found in the subjects with lower content of MyHC II in this muscle, despite higher blood [H(+)], [La(-)] and [NH(3)] concentrations. This indicates that at high pedaling rates the subjects with higher percentage of MyHC II in the vastus lateralis muscle perform relatively better than the subjects with lower percentage of MyHC II in this muscle.  相似文献   

20.
The aim of this study was to investigate the reliability of peak torque and surface electromyography (EMG) variable's root mean square (RMS) and mean frequency (MNF) during an endurance test consisting of repetitive maximum concentric knee extensions. Muscle fatigue has been quantified in several ways, and in isokinetic testing it is based on a set of repetitive contractions. To assess test-retest reliability, two sets of 100 dynamic maximum concentric knee extensions were performed using an isokinetic dynamometer. The two series were separated by 7-8 days. The subjects relaxed during the passive flexion phase. Twenty (10 men and 10 women) clinically healthy subjects volunteered.Peak torque and EMG from rectus femoris, vastus medialis, vastus lateralis and biceps femoris were recorded. RMS and MNF were calculated from the EMG signal. The reliability was calculated with intraclass correlation coefficient ICC (1.1) and standard error of measurements (SEM). The reliability of peak torque was good (ICC=0.93) and SEM showed low values. ICC was good for absolute RMS of rectus femoris (ICC>/=0.80), vastus medialis (ICC>/=0.88) and vastus lateralis (ICC>/=0.82) and MNF of rectus femoris (ICC>/=0.82) and vastus medialis (ICC>/=0.83). Peak torque, and MNF and RMS of rectus femoris and vastus medialis are reliable variables obtained from an isokinetic endurance test of the knee extensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号