首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The poly(A)-dependent translational regulation of maternal mRNAs is an important mechanism to execute stage-specific programs of protein synthesis during early development. This control underlies many crucial developmental events including the meiotic maturation of oocytes and activation of the mitotic cell cycle at fertilization. A recent report(1) demonstrates that the 3′ untranslated region of the cyclin A1, B1, B2 and c-mos mRNAs determines the timing and extent of their cytoplasmic polyadenylation and translational activation during Xenopus oocyte maturation. These studies further establish that protein synthesis can be temporally and quantitatively controlled by developmentally regulated changes in the polyadenylation of maternal mRNAs.  相似文献   

2.
3.
Meiotic progression requires the translational activation of stored maternal mRNAs, such as those encoding cyclin B1 or mos. The translation of these mRNAs is regulated by the cytoplasmic polyadenylation element (CPE) present in their 3'UTRs, which recruits the CPE-binding protein CPEB. This RNA-binding protein not only dictates the timing and extent of translational activation by cytoplasmic polyadenylation but also participates, together with the translational repressor Maskin, in the transport and localization, in a quiescent state, of its targets to subcellular locations where their translation will take place. During the early development of Xenopus laevis, CPEB localizes at the animal pole of oocytes and later on at embryonic spindles and centrosomes. Disruption of embryonic CPEB-mediated translational regulation results in abnormalities in the mitotic apparatus and inhibits embryonic mitosis. Here we show that spindle-localized translational activation of CPE-regulated mRNAs, encoding for proteins with a known function in spindle assembly and chromosome segregation, is essential for completion of the first meiotic division and for chromosome segregation in Xenopus oocytes.  相似文献   

4.
H Kuge  J D Richter 《The EMBO journal》1995,14(24):6301-6310
During the early development of many animal species, the expression of new genetic information is governed by selective translation of stored maternal mRNAs. In many cases, this translational activation requires cytoplasmic poly(A) elongation. However, how this modification at the 3' end of an mRNA stimulates translation from the 5' end is unknown. Here we show that cytoplasmic polyadenylation stimulates cap ribose methylation during progesterone-induced oocyte maturation in Xenopus laevis. Translational recruitment of a chimeric reporter mRNA that is controlled by cytoplasmic polyadenylation coincides temporally with cap ribose methylation during this period. In addition, the inhibition of cap ribose methylation by S-isobutyladenosine significantly reduces translational activation of a reporter mRNA without affecting the increase of general protein synthesis or polyadenylation during maturation. These results provide evidence for a functional interaction between the termini of an mRNA molecule and suggest that 2'-O-ribose cap methylation mediates the translational recruitment of maternal mRNA.  相似文献   

5.
6.
The translational activation of several maternal mRNAs in Xenopus laevis is dependent on cytoplasmic poly(A) elongation. Messages harboring the UUUUUAU-type cytoplasmic polyadenylation element (CPE) in their 3' untranslated regions (UTRs) undergo polyadenylation and translation during oocyte maturation. This CPE is bound by the protein CPEB, which is essential for polyadenylation. mRNAs that have the poly(U)12-27 embryonic-type CPE (eCPE) in their 3' UTRs undergo polyadenylation and translation during the early cleavage and blastula stages. A 36-kDa eCPE-binding protein in oocytes and embryos has been identified by UV cross-linking. We now report that this 36-kDa protein is ElrA, a member of the ELAV family of RNA-binding proteins. The proteins are identical in size, antibody directed against ElrA immunoprecipitates the 36-kDa protein, and the two proteins have the same RNA binding specificity in vitro. C12 and activin receptor mRNAs, both of which contain eCPEs, are detected in immunoprecipitated ElrA-mRNP complexes from eggs and embryos. In addition, this in vivo interaction requires the eCPE. Although a number of experiments failed to define a role for ElrA in cytoplasmic polyadenylation, the expression of a dominant negative ElrA protein in embryos results in an exogastrulation phenotype. The possible functions of ElrA in gastrulation are discussed.  相似文献   

7.
Cell cycle progression during oocyte maturation requires the strict temporal regulation of maternal mRNA translation. The intrinsic basis of this temporal control has not been fully elucidated but appears to involve distinct mRNA 3′ UTR regulatory elements. In this study, we identify a novel translational control sequence (TCS) that exerts repression of target mRNAs in immature oocytes of the frog, Xenopus laevis, and can direct early cytoplasmic polyadenylation and translational activation during oocyte maturation. The TCS is functionally distinct from the previously characterized Musashi/polyadenylation response element (PRE) and the cytoplasmic polyadenylation element (CPE). We report that TCS elements exert translational repression in both the Wee1 mRNA 3′ UTR and the pericentriolar material-1 (Pcm-1) mRNA 3′ UTR in immature oocytes. During oocyte maturation, TCS function directs the early translational activation of the Pcm-1 mRNA. By contrast, we demonstrate that CPE sequences flanking the TCS elements in the Wee1 3′ UTR suppress the ability of the TCS to direct early translational activation. Our results indicate that a functional hierarchy exists between these distinct 3′ UTR regulatory elements to control the timing of maternal mRNA translational activation during oocyte maturation.  相似文献   

8.
9.
Meiotic cell cycle progression during vertebrate oocyte maturation requires the correct temporal translation of maternal mRNAs encoding key regulatory proteins. The mechanism by which specific mRNAs are temporally activated is unknown, although both cytoplasmic polyadenylation elements (CPE) within the 3'-untranslated region (3'-UTR) of mRNAs and the CPE-binding protein (CPEB) have been implicated. We report that in progesterone-stimulated Xenopus oocytes, the early cytoplasmic polyadenylation and translational activation of multiple maternal mRNAs occur in a CPE- and CPEB-independent manner. We demonstrate that polyadenylation response elements, originally identified in the 3'-UTR of the mRNA encoding the Mos proto-oncogene, direct CPE- and CPEB-independent polyadenylation of an early class of Xenopus maternal mRNAs. Our findings refute the hypothesis that CPE sequences alone account for the range of temporal inductions of maternal mRNAs observed during Xenopus oocyte maturation. Rather, our data indicate that the sequential action of distinct 3'-UTR-directed translational control mechanisms coordinates the complex temporal patterns and extent of protein synthesis during vertebrate meiotic cell cycle progression.  相似文献   

10.
During early development gene expression is controlled principally at the translational level. Oocytes of the surf clam Spisula solidissima contain large stockpiles of maternal mRNAs that are translationally dormant or masked until meiotic maturation. Activation of the oocyte by fertilization leads to translational activation of the abundant cyclin and ribonucleotide reductase mRNAs at a time when they undergo cytoplasmic polyadenylation. In vitro unmasking assays have defined U-rich regions located approximately centrally in the 3' UTRs of these mRNAs as translational masking elements. A clam oocyte protein of 82 kDa, p82, which selectively binds the masking elements, has been proposed to act as a translational repressor. Importantly, mRNA-specific unmasking in vitro occurs in the absence of poly(A) extension. Here we show that clam p82 is related to Xenopus CPEB, an RNA-binding protein that interacts with the U-rich cytoplasmic polyadenylation elements (CPEs) of maternal mRNAs and promotes their polyadenylation. Cloned clam p82/CPEB shows extensive homology to Xenopus CPEB and related polypeptides from mouse, goldfish, Drosophila and Caenorhabditis elegans, particularly in their RNA-binding C-terminal halves. Two short N-terminal islands of sequence, of unknown function, are common to vertebrate CPEBs and clam p82. p82 undergoes rapid phosphorylation either directly or indirectly by cdc2 kinase after fertilization in meiotically maturing clam oocytes, prior to its degradation during the first cell cleavage. Phosphorylation precedes and, according to inhibitor studies, may be required for translational activation of maternal mRNA. These data suggest that clam p82 may be a functional homolog of Xenopus CPEB.  相似文献   

11.
12.
Groisman I  Huang YS  Mendez R  Cao Q  Theurkauf W  Richter JD 《Cell》2000,103(3):435-447
In Xenopus development, the expression of several maternal mRNAs is regulated by cytoplasmic polyadenylation. CPEB and maskin, two factors that control polyadenylation-induced translation are present on the mitotic apparatus of animal pole blastomeres in embryos. Cyclin B1 protein and mRNA, whose translation is regulated by polyadenylation, are colocalized with CPEB and maskin. CPEB interacts with microtubules and is involved in the localization of cyclin B1 mRNA to the mitotic apparatus. Agents that disrupt polyadenylation-induced translation inhibit cell division and promote spindle and centrosome defects in injected embryos. Two of these agents inhibit the synthesis of cyclin B1 protein and one, which has little effect on this process, disrupts the localization of cyclin B1 mRNA and protein. These data suggest that CPEB-regulated mRNA translation is important for the integrity of the mitotic apparatus and for cell division.  相似文献   

13.
A strict temporal order of maternal mRNA translation is essential for meiotic cell cycle progression in oocytes of the frog Xenopus laevis. The molecular mechanisms controlling the ordered pattern of mRNA translational activation have not been elucidated. We report a novel role for the neural stem cell regulatory protein, Musashi, in controlling the translational activation of the mRNA encoding the Mos proto-oncogene during meiotic cell cycle progression. We demonstrate that Musashi interacts specifically with the polyadenylation response element in the 3' untranslated region of the Mos mRNA and that this interaction is necessary for early Mos mRNA translational activation. A dominant inhibitory form of Musashi blocks maternal mRNA cytoplasmic polyadenylation and meiotic cell cycle progression. Our data suggest that Musashi is a target of the initiating progesterone signaling pathway and reveal that late cytoplasmic polyadenylation element-directed mRNA translation requires early, Musashi-dependent mRNA translation. These findings indicate that Musashi function is necessary to establish the temporal order of maternal mRNA translation during Xenopus meiotic cell cycle progression.  相似文献   

14.
Meiotic progression is driven by the sequential translational activation of maternal messenger RNAs stored in the cytoplasm. This activation is mainly induced by the cytoplasmic elongation of their poly(A) tails, which is mediated by the cytoplasmic polyadenylation element (CPE) present in their 3′ untranslated regions. Although polyadenylation in prophase I and metaphase I is mediated by the CPE‐binding protein 1 (CPEB1), this protein is degraded during the first meiotic division. Thus, raising the question of how the cytoplasmic polyadenylation required for the second meiotic division is achieved. In this work, we show that CPEB1 generates a positive loop by activating the translation of CPEB4 mRNA, which, in turn, replaces CPEB1 and drives the transition from metaphase I to metaphase II. We further show that CPEB1 and CPEB4 are differentially regulated by phase‐specific kinases, generating the need of two sequential CPEB activities to sustain cytoplasmic polyadenylation during all the meiotic phases. Altogether, this work defines a new element in the translational circuit that support an autonomous transition between the two meiotic divisions in the absence of DNA replication.  相似文献   

15.
The translational regulation of maternal mRNAs is the primary mechanism by which stage-specific programs of protein synthesis are executed during early development. Translation of a variety of maternal mRNAs requires either the maintenance or cytoplasmic elongation of a 3' poly(A) tail. Conversely, deadenylation results in translational inactivation. Although its precise function remains to be elucidated, the highly conserved poly(A) binding protein I (PABP) mediates poly(A)-dependent events in translation initiation and mRNA stability. Xenopus oocytes contain less than one PABP per poly(A) binding site suggesting that the translation of maternal mRNAs could be either limited by or independent of PABP. In this report, we have analyzed the effects of overexpressing PABP on the regulation of mRNAs during Xenopus oocyte maturation. Increased levels of PABP prevent the maturation-specific deadenylation and translational inactivation of maternal mRNAS that lack cytoplasmic polyadenylation elements. Overexpression of PABP does not interfere with maturation-specific polyadenylation, but reduces the recruitment of some mRNAs onto polysomes. Deletion of the C-terminal basic region and a single RNP motif from PABP significantly reduces both its binding to polyadenylated RNA in vivo and its ability to prevent deadenylation. In contrast to a yeast PABP-dependent poly(A) nuclease, PABP inhibits Xenopus oocyte deadenylase in vitro. These results indicate that maturation-specific deadenylation in Xenopus oocytes is facilitated by a low level of PABP consistent with a primary function for PABP to confer poly(A) stability.  相似文献   

16.
17.
Poly(A) can be added to mRNAs both in the nucleus and in the cytoplasm. During oocyte maturation and early embryonic development, cytoplasmic polyadenylation of preexisting mRNAs provides a common mechanism of translational control. In this report, to begin to understand the regulation of polyadenylation activities during early development, we analyze poly (A) polymerases (PAPs) in oocytes and early embryos of the frog, Xenopus laevis. We have cloned and sequenced a PAP cDNA that corresponds to a maternal mRNA present in frog oocytes. This PAP is similar in size and sequence to mammalian nuclear PAPs. By immunoblotting using monoclonal antibodies raised against human PAP, we demonstrate that oocytes contain multiple forms of PAP that display different electrophoretic mobilities. The oocyte nucleus contains primarily the slower migrating forms of PAP, whereas the cytoplasm contains primarily the faster migrating species. The nuclear forms of PAP are phosphorylated, accounting for their retarded mobility. During oocyte maturation and early postfertilization development, preexisting PAPs undergo regulated phosphorylation and dephosphorylation events. Using the cloned PAP cDNA, we demonstrate that the complex changes in PAP forms seen during oocyte maturation may be due to modifications of a single polypeptide. These results demonstrate that the oocyte contains a cytoplasmic polymerase closely related to the nuclear enzyme and suggest models for how its activity may be regulated during early development.  相似文献   

18.
Translational control by cytoplasmic polyadenylation in Xenopus oocytes   总被引:2,自引:0,他引:2  
Elongation of the poly(A) tails of specific mRNAs in the cytoplasm is a crucial regulatory step in oogenesis and early development of many animal species. The best studied example is the regulation of translation by cytoplasmic polyadenylation elements (CPEs) in the 3' untranslated region of mRNAs involved in Xenopus oocyte maturation. In this review we discuss the mechanism of translational control by the CPE binding protein (CPEB) in Xenopus oocytes as follows: Finally we discuss some of the remaining questions regarding the mechanisms of translational regulation by cytoplasmic polyadenylation and give our view on where our knowledge is likely to be expanded in the near future.  相似文献   

19.
During early metazoan development, certain maternal mRNAs are translationally activated by elongation of their poly(A) tails. Bicoid ( bcd ) mRNA is a Drosophila maternal mRNA that is translationally activated by cytoplasmic polyadenylation during the first hour after egg deposition. The sequences necessary and sufficient to promote its poly(A) elongation, and hence translation, are contained within its 3'-untranslated region (UTR). The mechanism by which poly(A) elongation at the 3'-end affects translational initiation at the 5'-end remains unknown. To investigate this question, we have analyzed a bicoid mRNA whose 5'-UTR contains a short antisense sequence directed against a portion of the coding region. This mutated RNA is efficiently translated in vitro. After injection into Drosophila embryos, this RNA is stable and polyadenylated, but inefficiently translated. These experiments show that structural modification of the 5'-end of an mRNA can perturb the translational activation normally conferred by polyadenylation in vivo.  相似文献   

20.
Polyadenylation of eukaryotic mRNAs in the nucleus promotes their translation following export to the cytoplasm and is an important determinant of mRNA stability. An additional level of control of gene expression is provided by cytoplasmic polyadenylation, which activates translation of a number of mRNAs important in orchestrating cell cycle events in oocytes. Recent studies indicate that cytoplasmic polyadenylation may be a mechanism of translational activation that is more widespread in eukaryotic cells. Here we discuss the roles of a recently identified family of nucleotidyl transferases (encoded by the cid1 gene family) in cell cycle regulation. To date, this family has been characterised mainly in yeasts, but it is conserved throughout the eukaryotes. Biochemical studies have indicated that a subset of members of this family function as cytoplasmic poly(A) polymerases targeting specific mRNAs for translation. This form of translational control appears to be particularly important for cell cycle regulation following inhibition of DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号