首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Towards revolutionary biomarkers, a considerable amount of research funds and time have been dedicated to proteomics. Although the discovery of novel biomarkers at the dawn of proteomics was a promising development, only a few identified biomarkers seemed to be beneficial for cancer patients. We may need to approach this issue differently, instead of only extending the conventional approaches that have been used historically. The study of biomarkers is essentially a study of diseases and the biochemistry relating to peptide, protein and post-translational modifications is only a tool. A problem-oriented approach should be needed in biomarker development. Clinician participation in the study of biomarkers will lead to realistic, practical and interesting biomarker candidates, which justify the time and expense involved in validation studies. Although discussion in this article is focused on cancer biomarkers, it can generally be applied to biomarker studies for other diseases.  相似文献   

2.
3.
4.
The advancement of synthetic biology is thanks, in large part, to continuing improvements in DNA synthesis. The expansion of synthetic biology into the realm of metabolic engineering has shifted the focus from simply making novel synthetic biological parts to answering the question of how we employ these biological parts to construct genomes that ultimately give rise to useful phenotypes. Much like protein engineering, the answer to this will be arrived at following the combination of rational design and evolutionary approaches. This review will highlight some of the new DNA synthesis-enabled search methods and discuss the application of such methods to the creation of synthetic gene networks and genomes.  相似文献   

5.
6.
7.
Mass spectrometry (MS)-based proteomics has significantly contributed to the development of systems biology, a new paradigm for the life sciences in which biological processes are addressed in terms of dynamic networks of interacting molecules. Because of its advanced analytical capabilities, MS-based proteomics has been used extensively to identify the components of biological systems, and it is the method of choice to consistently quantify the effects of network perturbation in time and space. Herein, we review recent contributions of MS to systems biology and discuss several examples that illustrate the importance of mass spectrometry to elucidate the components and interactions of molecular networks.  相似文献   

8.
With complete genome sequences now available for several prokaryotic and eukaryotic organisms, biological researchers are charged with the task of assigning molecular and cellular functions to thousands of predicted gene products. To address this problem, the field of proteomics seeks to develop and apply methods for the global analysis of protein expression and protein function. Here we review a promising new class of proteomic strategies that utilizes synthetic chemistry to create tools and assays for the characterization of protein samples of high complexity. These approaches include the development of chemical affinity tags to measure the relative expression level and post-translational modification state of proteins in cell and tissue proteomes. Additionally, we discuss the emerging field of activity-based protein profiling, which aims to synthesize and apply small molecule probes that monitor dynamics in protein function in complex proteomes.  相似文献   

9.
The variety of life-history patterns exhibited by the five species of wrasse common in Northern Europe are reviewed. The two larger wrasse species, the ballan, Labrus bergylta Ascanius, and cuckoo, Labrus mixtus (L.), are exploited through sport angling. The three smaller species, the corkwing, Symphodus (Crenilabrus) melops (L.), rock cook, Centrolabrus exoletus (L.) and goldsinny, Ctenolabrus rupestris (L.), are being exploited by a new fishery for use as parasite cleaners of farmed salmon.
The nature of salmon farming limits the wrasse fishery to a minimum size, restricted areas and the warmer months of the year. The fishery may be expected to alter population structure through selective removal of larger fish. Removal of dominant territorial males may affect social structures and removal of nest-guarding males would reduce egg survival. Quantitative models incorporating stock size and fishery requirements are now required.  相似文献   

10.
11.
The field of activity-based proteomics is a relatively new discipline that makes use of small molecules, termed activity-based probes (ABPs), to tag and monitor distinct sets of proteins within a complex proteome. These activity-dependant labels facilitate analysis of systems-wide changes at the level of enzyme activity rather than simple protein abundance. While the use of small molecule inhibitors to label enzyme targets is not a new concept, the past ten years have seen a rapid expansion in the diversity of probe families that have been developed. In addition to increasing the number and types of enzymes that can be targeted by this method, there has also been an increase in the number of methods used to visualize probes once they are bound to target enzymes. In particular, the use of small organic fluorophores has created a wealth of applications for ABPs that range from biochemical profiling of diverse proteomes to direct imaging of active enzymes in live cells and even whole animals. In addition, the advent of new bioorthogonal coupling chemistries now enables a diverse array of tags to be added after targets are labeled with an ABP. This strategy has opened the door to new in vivo applications for activity-based proteomic methods.  相似文献   

12.
Lee YH  Tan HT  Chung MC 《Proteomics》2010,10(22):3935-3956
Developments in subcellular fractionation strategies have provided the means to profile and analyze the protein composition of organelles and cellular structures by proteomics. Here, we review the application of classical (e.g. density gradient centrifugation) and emerging sophisticated techniques (fluorescent-assisted organelle sorting) in the fractionation, and statistical/bioinformatics tools for the prediction of protein localization in subcellular proteomics. We also review the validation methods currently used (such as microscopy, RNA interference and multiple reaction monitoring) and discuss the importance of verification of the results obtained in subcellular proteomics. Finally, the numerous challenges facing subcellular proteomics including the dynamics of organelles are being examined. However, complementary approaches such as modern statistics, bioinformatics and large-scale integrative analysis are beginning to emerge as powerful tools to proteomics for analyzing subcellular organelles and structures.  相似文献   

13.
Quantitative proteomics as a new piece of the systems biology puzzle   总被引:2,自引:0,他引:2  
  相似文献   

14.
Quantitative proteomics and its applications for systems biology   总被引:1,自引:0,他引:1  
  相似文献   

15.
通过对2008年课改先行省份高考试题的分析,并结合《普通高中生物课程标准》、考试说明和笔者多年高三教学实践经验,提出新课程生物学高考的几点复习策略。  相似文献   

16.
17.
Recently, multicolour FACS combined with phosphospecific antibodies has been developed, enabling the determination of the relative phosphorylation of signal transduction intermediates in individual cells. It has become clear that, when stimulated with cytokines, individual leukemia cells exhibit marked differences in phosphoprotein patterns and that these patterns correlate with disease outcome. Thus, single cell phosphoproteomic techniques might be superior to other proteomic approaches for the molecular diagnosis of disease and instrumental for the development of personalised medicine.  相似文献   

18.
19.
Post-translational modifications (PTMs) are involved in the regulation of a wide range of biological processes, and affect e.g. protein structure, activity and stability. Several hundred PTMs have been described in the literature, but relatively few have been studied using mass spectrometry and proteomics. In general, methods for PTM characterization are developed to study yeast and mammalian biology and later adopted to investigate plants. Our point of view is that it is advantageous to enrich for PTMs on the peptide level as part of a quantitative proteomics strategy to not only identify the PTM, but also to determine the functional relevance in the context of regulation, response to abiotic stress etc. Protein phosphorylation is the only PTM that has been studied extensively at the proteome wide level in plants using mass spectrometry based methods.  相似文献   

20.
Our genomic DNA sequence provides a unique glimpse of the provenance and evolution of our species, the migration of peoples, and the causation of disease. Understanding the genome may help resolve previously unanswerable questions, including perhaps which human characteristics are innate or acquired. Such an understanding will make it possible to study how genomic DNA sequence varies among populations and among individuals, including the role of such variation in the pathogenesis of important illnesses and responses to pharmaceuticals. The study of the genome and the associated proteomics of free-living organisms will eventually make it possible to localize and annotate every human gene, as well as the regulatory elements that control the timing, organ-site specificity, extent of gene expression, protein levels, and post-translational modifications. For any given physiological process, we will have a new paradigm for addressing its evolution, development, function, and mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号