首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein phosphatase PP1gamma2 is critical in the regulation of sperm motility and fertility. Its activity is regulated by its binding proteins and by phosphorylation. We have recently shown that PP1gamma2 is phosphorylated and that the amount of phosphorylated PP1gamma2 increases during sperm epididymal maturation (Huang et al., Biol Reprod 2004; 70:439-447). Microsequencing revealed that protein 14-3-3 coeluted with phosphorylated PP1gamma2 during column chromatography of bovine sperm extracts. Western blot analyses confirmed the presence of protein 14-3-3 not only in bovine spermatozoa but also in spermatozoa of diverse species-bull, hamster, horseshoe crab, monkey, rat, turkey, and Xenopus. The binding between PP1gamma2 and protein 14-3-3 was confirmed by coimmunoprecipitation experiments and in pull-down assays with recombinant GST-14-3-3. Western blot analysis and protein 14-3-3 immunoprecipitates with antibodies against the consensus binding domain of protein 14-3-3 reveal that, in addition to PP1gamma2, at least two other protein 14-3-3 binding partners are present in spermatozoa. Fluorescence immunocytochemistry results indicate that phosphorylated PP1gamma2 and protein 14-3-3 both localize to the postacrosomal region of the head and principal piece of bovine spermatozoa. Together, these results provide conclusive evidence that protein 14-3-3 is present in mature spermatozoa and that PP1gamma2 is one of its binding partners.  相似文献   

2.
The cyclic AMP (cAMP)-dependent protein kinase (PKA) and the type 1 protein phosphatase (PP1) are broad-specificity signaling enzymes with opposing actions that catalyze changes in the phosphorylation state of cellular proteins. Subcellular targeting to the vicinity of preferred substrates is a means of restricting the specificity of each enzyme [1] [2]. Compartmentalization of the PKA holoenzyme is mediated through association of the regulatory subunits with A-kinase anchoring proteins (AKAPs), whereas a diverse family of phosphatase-targeting subunits directs the location of the PP1 catalytic subunit (PP1c) [3] [4]. Here, we demonstrate that the PKA-anchoring protein, AKAP220, binds PP1c with a dissociation constant (KD) of 12.1 +/- 4 nM in vitro. Immunoprecipitation of PP1 from cell extracts resulted in a 10.4 +/- 3.8-fold enrichment of PKA activity. AKAP220 co-purified with PP1c by affinity chromatography on microcystin sepharos Immunocytochemical analysis demonstrated that the kinase, the phosphatase and the anchoring protein had distinct but overlapping staining patterns in rat hippocampal neurons. Collectively, these results provide the first evidence that AKAP220 is a multivalent anchoring protein that maintains a signaling scaffold of PP1 and the PKA holoenzyme.  相似文献   

3.
Serine/threonine phosphatase PP1gamma2 is a testis-specific protein phosphatase isoform in spermatozoa. This enzyme appears to play a key role in motility initiation and stimulation. Catalytic activity of PP1gamma2 is higher in immotile compared with motile spermatozoa. Inhibition of PP1gamma2 activity causes both motility initiation and motility stimulation. Protein phosphatases, in general, are regulated by their binding proteins. The objective of this article is to understand the mechanisms by which PP1gamma2 is regulated, first by identifying its regulatory proteins. We had previously shown that a portion of bovine sperm PP1gamma2 is present in the cytosolic fraction of sperm sonicates. We purified PP1gamma2 from soluble bovine sperm extracts by immunoaffinity chromatography. Gel electrophoresis of the purified enzyme showed that it was complexed to a protein 43 M(r) x 10(-3) in size. Microsequencing revealed that this protein is a mammalian homologue of sds22, which is a yeast PP1 binding protein. Phosphatase activity measurements showed that PP1gamma2 complexed to sds22 is catalytically inactive. The complex cannot be activated by limited proteolysis. The complex is unable to bind to microcystin sepharose. This suggests that sds22 may block the microcystin binding site in PP1gamma2. A proportion of PP1gamma2 in sperm extracts, which is presumably not complexed to sds22, is catalytically active. Fluorescence immunocytochemistry was used to determine the intrasperm localization of PP1gamma2 and sds22. Both proteins are present in the tail. They are also present in distinct locations in the head. Our data suggest that PP1gamma2 binding to sds22 inhibits its catalytic activity. Mechanisms regulating sds22 binding to PP1gamma2 are likely to be important in understanding the biochemical basis underlying development and regulation of sperm function.  相似文献   

4.
Sustained nigrostriatal dopamine depletion increases the serine/threonine phosphorylation of multiple striatal proteins that play a role in corticostriatal synaptic plasticity, including Thr(286) phosphorylation of calcium/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha). Mechanisms underlying these changes are unclear, but protein phosphatases play a critical role in the acute modulation of striatal protein phosphorylation. Here we show that dopamine depletion for periods ranging from 3 weeks to 10 months significantly reduces the total activity of protein phosphatase (PP) 1, but not of PP2A, in whole lysates of rat striatum, as measured using multiple substrates, including Thr(286)-autophosphorylated CaMKIIalpha. Striatal PP1 activity is partially inhibited by a fragment of the PP1-binding protein neurabin-I, Nb-(146-493), because of the selective inhibition of the PP1gamma(1) isoform. The fraction of PP1 activity that is insensitive to Nb-(146-493) was unaffected by dopamine depletion, demonstrating that dopamine depletion specifically reduces the activity of PP1 isoforms that are sensitive to Nb-(146-493) (i.e. PP1gamma(1)). However, total striatal levels of PP1gamma(1) or any other PP1 isoform were unaffected by dopamine depletion, and our previous studies showed that total levels of the PP1 regulatory/targeting proteins DARPP-32, spinophilin, and neurabin were also unchanged. Rather, co-immunoprecipitation experiments demonstrated that dopamine depletion increases the association of PP1gamma(1) with spinophilin in striatal extracts. In combination, these data demonstrate that striatal dopamine depletion inhibits a specific synaptic phosphatase by increasing PP1gamma(1) interaction with spinophilin, perhaps contributing to hyperphosphorylation of synaptic proteins and disruptions of synaptic plasticity and/or dendritic morphology.  相似文献   

5.
Testis- and sperm-specific protein phosphatase, PP1gamma2, is a key enzyme regulating sperm function. Its activity decreases during sperm maturation in the epididymis. Inhibition of PP1gamma2 leads to motility initiation and stimulation. Our laboratory is focused on identifying mechanisms responsible for the decline in PP1gamma2 activity during sperm motility initiation in the epididymis. Previously, using immuno-affinity chromatography, we showed that a mammalian homologue of yeast sds22 is bound to PP1gamma2 in motile caudal spermatozoa (Huang Z, et al. Biol Reprod 2002; 67:1936-1942). The objectives of this study were to determine: 1) stoichiometry of PP1gamma2-sds22 binding and 2) whether PP1gamma2 in immotile caput epididymal spermatozoa is bound to sds22. The enzyme from caudal and caput sperm extracts was purified by column chromatography. Immunoreactive PP1gamma2 and sds22 from both caudal and caput spermatozoa were found in the flow-through fraction of a DEAE-cellulose column. However, PP1gamma2 from caudal spermatozoa was inactive, whereas in caput spermatozoa it was active. The DEAE-cellulose flow-through fractions were next passed through a SP-sepharose column. Caudal sperm sds22 and PP1gamma2 coeluted in the gradient fraction. In contrast, caput sperm sds22 and PP1gamma2 were separated in the flow-through and gradient fractions, respectively. Further purification through a Superose 6 column showed that PP1gamma2-sds22 complex from caudal sperm was 88 kDa in size. Caput sperm sds22 and PP1gamma2 eluted at 60 kDa and 39 kDa, respectively. SDS-PAGE of these purified fractions revealed that in caudal sperm, the 88-kDa species is composed of sds22 (43 kDa) and PP1gamma2 (39 kDa), suggesting a 1:1 complex between these two proteins. PP1gamma2 bound to sds22 in this complex was inactive. Caput sperm sds22 eluting as a 60-kDa species was found to be associated with a 17-kDa protein (p17). This suggests that dissociation of sds22 from p17 or some other posttranslational modification of sds22 is required for its binding and inactivation of PP1gamma2. Studies are currently underway to determine the mechanisms responsible for development of sds22 binding to PP1gamma2 during epididymal sperm maturation.  相似文献   

6.
The regulatory-targeting subunit (RGL), also called GM) of the muscle-specific glycogen-associated protein phosphatase PP1G targets the enzyme to glycogen where it modulates the activity of glycogen-metabolizing enzymes. PP1G/RGL has been postulated to play a central role in epinephrine and insulin control of glycogen metabolism via phosphorylation of RGL. To investigate the function of the phosphatase, RGL knockout mice were generated. Animals lacking RGL show no obvious defects. The RGL protein is absent from the skeletal and cardiac muscle of null mutants and present at approximately 50% of the wild-type level in heterozygotes. Both the level and activity of C1 protein are also decreased by approximately 50% in the RGL-deficient mice. In skeletal muscle, the glycogen synthase (GS) activity ratio in the absence and presence of glucose-6-phosphate is reduced from 0.3 in the wild type to 0.1 in the null mutant RGL mice, whereas the phosphorylase activity ratio in the absence and presence of AMP is increased from 0.4 to 0.7. Glycogen accumulation is decreased by approximately 90%. Despite impaired glycogen accumulation in muscle, the animals remain normoglycemic. Glucose tolerance and insulin responsiveness are identical in wild-type and knockout mice, as are basal and insulin-stimulated glucose uptakes in skeletal muscle. Most importantly, insulin activated GS in both wild-type and RGL null mutant mice and stimulated a GS-specific protein phosphatase in both groups. These results demonstrate that RGL is genetically linked to glycogen metabolism, since its loss decreases PP1 and basal GS activities and glycogen accumulation. However, PP1G/RGL is not required for insulin activation of GS in skeletal muscle, and rather another GS-specific phosphatase appears to be involved.  相似文献   

7.
We have previously found the 78-kDa glucose-regulated protein (Grp78) to be a subunit of protein phosphatase1(PP1)gamma2. To determine the role of Grp78 in PP1gamma2 holoenzyme, we compared the two forms of this enzyme, PP1gamma2 holoenzyme containing Grp78 and Grp78-dissociated PP1gamma2 in rat testes in terms of their kinetic constants and sensitivities to inhibitors of this enzyme. The enzymatic activity of the Grp78-dissociated enzyme was much lower at whole range of concentrations of a substrate (phosphorylase a) than that of the holoenzyme; the Km value was about ten-fold higher in Grp78-dissociated enzyme than in holoenzyme, while the Vmax was similar. IC50s of the Grp78-dissociated enzyme for three inhibitors (microcystin-LR, inhibitor-2, and okadaic acid) were more than ten-fold higher than those of the holoenzyme. These results indicate that the Grp78 subunit modulates the activity of PP1gamma2 through its actions to control the binding of substrates or inhibitors to PP1gamma2.  相似文献   

8.
PTPA, an essential and specific activator of protein phosphatase 2A (PP2A), functions as a peptidyl prolyl isomerase (PPIase). We present here the crystal structures of human PTPA and of the two yeast orthologs (Ypa1 and Ypa2), revealing an all alpha-helical protein fold that is radically different from other PPIases. The protein is organized into two domains separated by a groove lined by highly conserved residues. To understand the molecular mechanism of PTPA activity, Ypa1 was cocrystallized with a proline-containing PPIase peptide substrate. In the complex, the peptide binds at the interface of a peptide-induced dimer interface. Conserved residues of the interdomain groove contribute to the peptide binding site and dimer interface. Structure-guided mutational studies showed that in vivo PTPA activity is influenced by mutations on the surface of the peptide binding pocket, the same mutations that also influenced the in vitro activation of PP2Ai and PPIase activity.  相似文献   

9.
The enzyme PP1gamma2 is a testis- and sperm-specific isoform of type 1 protein phosphatase (PP1), and it is the only isoform of PP1 in spermatozoa. The enzyme PP1gamma2 is essential for spermatogenesis and is also a key enzyme in the development and regulation of sperm motility. The carboxy terminus of the enzyme contains a consensus amino acid sequence for phosphorylation by cyclin-dependent kinases. Using antibodies specific to this phosphorylated amino acid sequence domain, we found that phosphorylated PP1gamma2 is present in bovine epididymal spermatozoa. The level of phosphorylated PP1gamma2 is significantly higher in motile caudal compared to immotile caput epididymal spermatozoa. A number of treatments, such as 2-chloro adenosine, cAMP analogues, cAMP phosphodiesterase inhibitors, and calcium, which stimulate sperm motility, did not alter the level of phosphorylated PP1gamma2. However, calyculin A, which is an inhibitor of protein phosphatase subtypes PP1 and PP2A, significantly increases the level of phosphorylated PP1gamma2 in both caput and caudal epididymal spermatozoa. Partial purification by column chromatography showed that phosphorylated PP1gamma2 is catalytically active. Phosphorylated PP1gamma2 is the only spontaneously catalytically active form of the enzyme in caudal sperm extracts. Western blot analysis shows that the enzyme cyclin-dependent kinase 2, one of the enzymes that phosphorylates the consensus domain at the carboxy terminus in PP1 isoforms, is present in spermatozoa. Western blot analysis of proteins extracted from purified head and tail fragments of spermatozoa showed that phosphorylated PP1gamma2 is present predominantly in the sperm head. Fluorescence immunocytochemistry also showed that phosphorylated PP1gamma2 is present predominantly in the posterior region of the sperm head. The distinct subcellular localization and changes in its level during sperm maturation suggest a possible role for sperm phosphorylated PP1gamma2 in signaling events during fertilization.  相似文献   

10.
We used Western blot analysis to examine the effect of dietary K intake on the expression of serine/threonine protein phosphatase in the kidney. K restriction significantly decreased the expression of catalytic subunit of protein phosphatase (PP)2B but increased the expression of PP2B regulatory subunit in both rat and mouse kidney. However, K depletion did not affect the expression of PP1 and PP2A. Treatment of M-1 cells, mouse cortical collecting duct (CCD) cells, or 293T cells with glucose oxidase (GO), which generates superoxide anions through glucose metabolism, mimicked the effect of K restriction on PP2B expression and significantly decreased expression of PP2B catalytic subunits. However, GO treatment increased expression of regulatory subunit of PP2B and had no effect on expression of PP1, PP2A, and protein tyrosine phosphatase 1D. Moreover, deletion of gp91-containing NADPH oxidase abolished the effect of K depletion on PP2B. Thus superoxide anions or related products may mediate the inhibitory effect of K restriction on the expression of PP2B catalytic subunit. We also used patch-clamp technique to study the effect of inhibiting PP2B on renal outer medullary K (ROMK) channels in the CCD. Application of cyclosporin A or FK506, inhibitors of PP2B, significantly decreased ROMK channels, and the effect of PP2B inhibitors was abolished by blocking p38 mitogen-activated protein kinase (MAPK) and ERK. Furthermore, Western blot demonstrated that inhibition of PP2B with cyclosporin A or small interfering RNA increased the phosphorylation of ERK and p38 MAPK. We conclude that K restriction suppresses the expression of PP2B catalytic subunits and that inhibition of PP2B decreases ROMK channel activity through stimulation of MAPK in the CCD.  相似文献   

11.
Defects of kinase-phosphatase signaling in cardiac myocytes contribute to human heart disease. The activity of one phosphatase, PP2A, is governed by B targeting subunits, including B56gamma1, expressed in heart cells. As the role of PP2A/B56gamma1 on the heart function remains largely unknown, this study sought to identify protein partners through unbiased, affinity purification-based proteomics combined with the functional validation. The results reveal multiple interactors that are localized in strategic cardiac sites to participate in Ca2+ homeostasis and gene expression, exemplified by the Ca pump, SERCA2a, and the splicing factor ASF/SF2. These results are corroborated by confocal imaging where adenovirally overexpressed B56gamma1 is found in z-line/t-tubule region and nuclear speckles. Importantly, overexpression of B56gamma1 in cultured myocytes dramatically impairs cell contractility. These results provide a global view of B56gamma1-regulated local signaling and heart function.  相似文献   

12.
Xie XJ  Huang W  Xue CZ  Wei Q 《IUBMB life》2009,61(2):178-183
The protein phosphatase 1 catalytic subunit (PP1c) and the protein phosphatase 2B (PP2B or calcineurin) catalytic subunit (CNA) contain nonconserved N-terminal regions followed by conserved phosphatase cores. To examine the role of the N-termini of these two phosphatases, we substituted the residues 1-8 of PP1c with residues 1-42 of CNA, which is designated CNA(1-42)-PP1(9-330). The activities of CNA(1-42)-PP1(9-330) were similar to those of PP2B and different from those of PP1. The chimera was at least fourfold less sensitive to inhibition by okadaic acid, but was stimulated by nickel ions and chlorogenic acid, characteristics of PP2B not of PP1. These observations suggest that the N-terminus of CNA shifts the properties of PP1 toward those of PP2B. Our findings provide evidence that the nonconserved N-terminus of PP2B not only functions as important regulatory domain but also confers itself particular characteristics. This region may be targeted for regulation of PP2B activities in vivo.  相似文献   

13.

Background

Protein phosphatase 4 (PP4) has been known to have critical functions in DNA double strand break (DSB) repair and cell cycle by the regulation of phosphorylation of its target proteins, such as H2AX, RPA2, KAP-1, 53BP1. However, it is largely unknown how PP4 itself is regulated.

Methods

We examined the PP4C methylation on L307 at C-terminal by using methylated-leucine specific antibody. Then with PP4C L307A mutant, we explored that how nonmethylated form of PP4C affects its known cellular functions by immunoprecipitation, immunofluorescence, and DNA DSB repair assays.

Results

Here we show that PP4C is methylated on its C-terminal leucine residue in vivo and this methylation is important for cellular functions mediated by PP4. In the cells PP4C L307A mutant has significantly low activity of dephosphorylation against its known target proteins, and the loss of interaction between L307A PP4 mutant and regulatory subunits, R1, R2, or R3α/β causes the dissociation from its target proteins. Moreover, PP4C L307A mutant loses its role in both DSB repair pathways, HR (homologous recombination) and NHEJ (non-homologous end joining), which phenocopies PP4C depletion.

Conclusion

Our results demonstrate the key site of PP4C methylation and establish the physiological importance of this regulation.  相似文献   

14.
Recombinant I(1)(PP2A) and I(2)(PP2A) did not affect the activity of the catalytic subunit of protein phosphatase 1 (PP1(C)) with (32)P-labeled myelin basic protein, histone H1, and phosphorylase when assayed in the absence of divalent cations. However, in the presence of Mn(2+), I(1)(PP2A) and I(2)(PP2A) stimulated PP1(C) activity by 15-20-fold with myelin basic protein and histone H1 but not phosphorylase. Half-maximal stimulation occurred at 2 and 4 nM I(1)(PP2A) and I(2)(PP2A), respectively. Moreover, I(1)(PP2A) and I(2)(PP2A) reduced the Mn(2+) requirement by about 30-fold to 10 microM. In contrast, PP1(C) activity was unaffected by I(1)(PP2A) and I(2)(PP2A) in the presence of Co(3+) (0.1 mM), Mg(2+) (2 mM), Ca(2+) (0.5 mM), and Zn(2+) (0.1 mM). Following gel filtration chromatography on Sephacryl S-200 in the presence of Mn(2+), PP1(C) coeluted with I(1)(PP2A) and I(2)(PP2A) in the void volume. However, when I(1)(PP2A) and I(2)(PP2A) or Mn(2+) were omitted, PP1(C) emerged with a V(e)/V(0) of approximately 1.6. The results demonstrate that I(1)(PP2A) and I(2)(PP2A) associate with and modify the substrate specificity of PP1(C) in the presence of physiological concentrations of Mn(2+). A novel role is suggested for I(1)(PP2A) and I(2)(PP2A) in the reciprocal regulation of two major mammalian serine/threonine phosphatases, PP1 and PP2A.  相似文献   

15.
16.
The Doc2 (double C2) family consists of two isoforms (Doc2alpha and Doc2beta) characterized by an N-terminal Munc13-1 interacting domain (Mid) and two C2 domains that interact with Ca(2+) and phospholipid at the C-terminus. This Ca(2+)-binding property is thought to be important to the regulation of neurotransmitter release. In this paper, we report a third isoform of mouse Doc2, named Doc2gamma. Doc2gamma also contains a putative Mid domain and two C2 domains, and it is 45.6 and 43.2% identical to mouse Doc2alpha and Doc2beta, respectively, at the amino acid level. In contrast to the other Doc2 isoforms, the C2 domains of Doc2gamma impair Ca(2+)-dependent phospholipid binding activity. The highest expression of Doc2gamma mRNA was found in the heart, but occurs ubiquitously, the same as Doc2beta. These findings indicate that Doc2gamma may also function as an effector for Munc13-1 and that it may be involved in the regulation of vesicular trafficking.  相似文献   

17.
The Arabidopsis thaliana type 1 protein phosphatase (PP1) catalytic subunit was released from its endogenous regulatory subunits by ethanol precipitation and purified by anion exchange and microcystin affinity chromatography. The enzyme was identified by MALDI-TOF mass spectrometry from a tryptic digest of the purified protein as a mixture of PP1 isoforms (TOPP 1-6) indicating that at least 4-6 of the eight known PP1 proteins are expressed in sufficient quantities for purification from A. thaliana suspension cells. The enzyme had a final specific activity of 8950 mU/mg using glycogen phosphorylase a as substrate, had a subunit molecular mass of 35 kDa as determined by SDS-PAGE and behaved as a monomeric protein of approx. 39 kDa on Superose 12 gel filtration chromatography. Similar to the mammalian type 1 protein phosphatases, the A. thaliana enzyme was potently inhibited by Inhibitor-2 (IC(50)=0.65 nM), tautomycin (IC(50)=0.06 nM), microcystin-LR (IC(50)=0.01 nM), nodularin (IC(50)=0.035 nM), calyculin A (IC(50)=0.09 nM), okadaic acid (IC(50)=20 nM) and cantharidin (IC(50)=60 nM). The enzyme was also inhibited by fostriecin (IC(50)=22 microM), NaF (IC(50)=2.1 mM), Pi (IC(50)=9.5 mM), and PPi (IC(50)=0.07 mM). Purification of the free catalytic subunit allowed it to be used to probe protein phosphatase holoenzyme complexes that were enriched on Q-Sepharose and a microcystin-Sepharose affinity matrix and confirmed several proteins to be PP1 targeting subunits.  相似文献   

18.
PNUTS, Phosphatase 1 NUclear Targeting Subunit, is a recently described protein that targets protein phosphatase 1 (PP1) to the nucleus. In the present study, we characterized the biochemical properties of PNUTS. A variety of truncation and site-directed mutants of PNUTS was prepared and expressed either as glutathione S-transferase fusion proteins in Escherichia coli or as FLAG-tagged proteins in 293T cells. A 50-amino acid domain in the center of PNUTS mediated both high affinity PP1 binding and inhibition of PP1 activity. The PP1-binding domain is related to a motif found in several other PP1-binding proteins but is distinct in that Trp replaces Phe. Mutation of the Trp residue essentially abolished the ability of PNUTS to bind to and inhibit PP1. The central PP1-binding domain of PNUTS was an effective substrate for protein kinase A in vitro, and phosphorylation substantially reduced the ability of PNUTS to bind to PP1 in vitro and following stimulation of protein kinase A in intact cells. In vitro RNA binding experiments showed that a C-terminal region including several RGG motifs and a novel repeat domain rich in His and Gly interacted with mRNA and single-stranded DNA. PNUTS exhibited selective binding for poly(A) and poly(G) compared with poly(U) or poly(C) ribonucleotide homopolymers, with specificity being mediated by distinct regions within the domain rich in His and Gly and the domain containing the RGG motifs. Finally, a PNUTS-PP1 complex was isolated from mammalian cell lysates using RNA-conjugated beads. Together, these studies support a role for PNUTS in protein kinase A-regulated targeting of PP1 to specific RNA-associated complexes in the nucleus.  相似文献   

19.
Protein phosphatase (PP2B) whose activity is stimulated 12-20-fold by Ca2+/calmodulin (CaM) was partially purified by CaM-Sepharose and heparin-agarose chromatographies from cell extract of the yeast Saccharomyces cerevisiae. PP2B activity was not detectable in a mutant in which two genes (CMP1 and CMP2) encoding homologs of mammalian PP2B catalytic subunit were disrupted. We have previously shown that the double gene disruption has no significant effect on the growth of yeast [1991, Mol. Gen. Genet. 227, 52-59]. The results indicated that CMP1 and CMP2 are the only genes that encode the PP2B catalytic polypeptide in S. cerevisiae, and PP2B activity is not essential for the growth of the yeast under normal conditions.  相似文献   

20.
Human lung fibroblasts utilize integrins to attach and proliferate on type I collagen. β1 integrin is the major integrin subunit for this attachment. Integrins coordinate cellular responses to cell-cell and cell-extracellular matrix interactions that regulate a variety of biological processes. Although β1 integrin-mediated signaling pathways in lung fibroblasts have been studied, a detailed molecular mechanism regulating translational control of gene expression by 4EBP-1 is not understood. 4EBP-1 inhibits cap-dependent translation by binding to the eIF4E translation initiation factor. We found that when lung fibroblasts attach to collagen via β1 integrin, high Src activity suppresses 4EBP-1 expression via PP2A, and the decrease of 4EBP-1 is due to protein degradation. The inhibition of Src activity dramatically increases PP2A and 4EBP-1 expression. Furthermore ectopic expression of PP2A, or PP2A silencing using PP2A siRNA confirmed that 4EBP-1 is regulated by PP2A. In addition, we found that 4EBP-1 inhibition by fibroblast attachment to collagen increases cap-dependent translation. Our study showed that when lung fibroblasts are attached to collagen matrix, the β1 integrin/Src/PP2A-mediated 4EBP-1 regulatory pathway is activated. We suggest that β1 integrin-mediated signaling pathway may be a crucial event in regulating fibroblast translational control machinery on collagen matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号