首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polysulfone membrane is used for the first time for the preparation of electrochemical immunosensors. A disposable immunosensor based on a porous conductor polymer graphite-polysulfone-electrode has been developed using a phase inversion technique for the determination of anti-rabbit IgG (anti-RIgG) as a model analyte. To construct the sensor, a conductor membrane was deposited on the surface of working graphite-epoxy composite (GEC) electrode. The membrane was characterized by SEM. This sensor was based on the competitive assay between free and labeled anti-RIgG for the available binding sites of immobilized rabbit IgG (RIgG). Incubation parameters were optimized in this work. The immunological reaction was detected using an enzymatic-labeling procedure (HRP enzyme) combined with the amperometric detection using H(2)O(2) as substrate and hydroquinone as mediator. This sensor shows stability during a week and a good reproducibility. The current was monitored amperometrically at -0.1 V versus SCE and this method showed a linear range of the anti-RIgG from 1 to 6 microg/ml. The detection limit was determined to be 0.77 microg/ml.  相似文献   

2.
A sensitive amperometric immunosensor for carcinoembryonic antigen (CEA) was prepared. Firstly, a porous nano-structure gold (NG) film was formed on glassy carbon electrode (GCE) by electrochemical reduction of HAuCl4 solution, then nano-Au/Chit composite was immobilized onto the electrode because of its excellent membrane-forming ability, and finally the anti-CEA was adsorbed onto the surface of the bilayer gold nanoparticles to construct an anti-CEA/nano-Au/Chit/NG/GCE immunosensor. The characteristics of the modified electrode at different stages of modification were studied by cyclic voltammetry (CV). The gold colloid, chitosan and nano-Au/Chit were characterized by transmission electron microscopy and UV–vis spectroscopy. In addition, the performances of the immunosensor were studied in detail. The resulting immunosensor offers a high-sensitivity (1310 nA/ng/ml) for the detection of CEA and has good correlation for detection of CEA in the range of 0.2 to 120.0 ng/ml with a detection limit of 0.06 ng/ml estimated at a signal-to-noise ratio of 3. The proposed method can detect the CEA through one-step immunoassay and would be valuable for clinical immunoassay.  相似文献   

3.
The utility of a piezoquartz immunosensor coated with lipopolysaccharides (LPS) for the quantification of antibody specificities was demonstrated. Immunochemical reactions were monitored according to the changes in the weight of sensor bioreceptor layer with high sensitivity (detection limit, 1.3 microg/ml) and assay rate (10 min) without any additional labels. The capabilities of this sensor were demonstrated by the example of quantifying the cross-reactivity of blood serum antibodies with the LPS of Yersinia enterocolitica serotypes O:3, O:5, O:5.27, O:6.30, and O:6.31. The proposed approach is promising for clinical diagnostics of yersiniosis, an infectious intestinal disease.  相似文献   

4.
A new simple immunoassay method for carcinoembryonic antigen (CEA) detection using a disposable immunosensor coupled with a flow injection system was developed. The immunosensor was prepared by coating CEA/colloid Au/chitosan membrane at a screen-printed carbon electrode (SPCE). Using a competitive immunoassay format, the immunosensor inserted in the flow system with an injection of sample and horseradish peroxidase (HRP)-labeled CEA antibody was used to trap the labeled antibody at room temperature for 35 min. The current response obtained from the labeled HRP to thionine-H(2)O(2) system decreased proportionally to the CEA concentration in the range of 0.50-25 ng/ml with a correlation coefficient of 0.9981 and a detection limit of 0.22 ng/ml (S/N=3). The immunoassay system could automatically control the incubation, washing and current measurement steps with good stability and acceptable accuracy. Thus, the proposed method proved its potential use in clinical immunoassay of CEA.  相似文献   

5.
A disposable and mediatorless immunosensor based on a conducting polymer (5,2':5'2"-terthiophene-3'-carboxylic acid) coated screen-printed carbon electrode has been developed using a separation-free homogeneous technique for the detection of rabbit IgG as a model analyte. Horseradish peroxidase (HRP) and streptavidin were covalently bonded with the polymer on the electrode and biotinylated antibody was immobilized on the electrode surface using avidin-biotin coupling. This sensor was based on the competitive assay between free and labeled antigen for the available binding sites of antibody. Glucose oxidase was used as a label and in the presence of glucose, H(2)O(2) formed by the analyte-enzyme conjugate was reduced by the enzyme channeling via HRP bonded on the electrode. The catalytic current was monitored amperometrically at -0.35 V vs. Ag/AgCl and this method showed a linear range of RIgG concentrations from 0.5 to 2 microg/ml with standard deviation +/-0.0145 (n=4). Detection limit was determined to be 0.33 microg/ml.  相似文献   

6.
In this work, protonated l-cysteine was entrapped in Nafion (Nf) membrane by cation exchange function, forming Nf-Cys (cysteine) composite membrane, which was more stable, compact, biocompatible, and favorable for mass and electron transfer compared with Nf film solely. Then gold (Au) nanoparticles were adsorbed onto the electrode surface by thiol groups on the composite membrane. After that, nano-Au monolayer was formed, onto which carcinoembryonic antibody was loaded to prepare carcinoembryonic antigen (CEA) immunosensor. The results indicated that the immunosensor had good current response for CEA using potassium ferricyanide as the redox probe. A linear concentration range of 0.01 to 100 ng/ml with a detection limit of 3.3 pg/ml (signal/noise = 3) was observed. Moreover, the morphology of the modified Au substrates was investigated with atomic force microscopy, and the electrochemical properties and performance of modified electrodes were investigated by cyclic voltammograms and electrochemical impendence spectroscopy. The results exhibited that the immunosensor has advantages of simple preparation, high sensitivity, good stability, and long life expectancy. Thus, the method can be used for CEA analysis.  相似文献   

7.
Yu H  Yan F  Dai Z  Ju H 《Analytical biochemistry》2004,331(1):98-105
A screen-printed three-electrode system is fabricated to prepare a novel disposable screen-printed immunosensor for rapid determination of alpha-1-fetoprotein (AFP) in human serum. The immunosensor is prepared by entrapping horseradish peroxidase (HRP)-labeled AFP antibody in chitosan membrane to modify the screen-printed carbon electrode. The membrane is characterized with scanning electron microscope and electrochemical methods. After the immunosensor is incubated with AFP at 30 degrees C for 35 min, the access of the active center of HRP catalyzing the oxidation reaction of thionine by H(2)O(2) is partly inhibited. In presence of 1.2 mM thionine and 6 mM H(2)O(2), the electrocatalytic current decreases linearly in two concentration ranges of AFP from 0 to 20 and from 20 to 150 ng/mL with a detection limit of 0.74 ng/mL. The immunosensor shows an acceptable accuracy compared with those obtained from immunoradiometric assays. The interassay coefficients of variation are 6.6 and 4.2% at 10 and 100 ng/mL, respectively. The storage stability is acceptable in pH 7.0 phosphate buffer solution at 4 degrees C for more than 10 days. The proposed method can detect the AFP through one-step immunoassay and would be valuable for clinical immunoassay.  相似文献   

8.
Label-free detection of bisphenol A based on the impedance measurement was achieved with an impedimetric immunosensor. The immunosensor was fabricated by the covalent bond formation between a polyclonal antibody and a carboxylic acid group functionalized onto a nano-particle comprised conducting polymer. By using a commercial reagent 4,4-bis(4-hydroxyphenyl) valeric acid (BHPVA), which has an analogous structure of BPA, we have prepared the antigen through the conjugation of BHPVA with bovine serum albumin (BSA) and then produced a specific polyclonal antibody. The immobilization of antibody and the interaction between antibody and antigen were studied using quartz crystal microbalance (QCM) and electrochemical impedance spectroscopic (EIS) techniques. The impedance and mass changes due to the specific immuno-interaction at the sensor surface were utilized to detect antigen and bisphenol A (BPA). The immunosensor showed specific recognition of BPA with less interference than 4.5% from other common phenolic compounds. Under an optimized condition, the linear dynamic range of BPA detection was between 1 and 100 ng/ml. The detection limit of bisphenol A was determined to be 0.3+/-0.07 ng/ml. The proposed immunosensor was applied to a human serum sample and the BPA concentration was determined by the standard addition method.  相似文献   

9.
The microorganisms Trichosporon cutaneum and Bacillus licheniformis were used to develop a microbial biochemical oxygen demand (BOD) sensor. It was found that T. cutaneum gave a greater response to glucose, whereas B. licheniformis gave a better response to glutamic acid. Hence, co-immobilized T. cutaneum and B. licheniformis were used to construct a glucose and glutamic acid sensor with improved sensitivity and dynamic range. A membrane loading of T. cutaneum at 1.1x10(8 )cells ml(-1) cm(-2) and B. licheniformis at 2.2x10(8) cells ml(-1) cm(-2) gave the optimum result: a linear range up to 40 mg BOD l(-1) with a sensitivity of 5.84 nA mg(-1) BOD l. The optimized BOD sensor showed operation stability for 58 intermittent batch measurements, with a standard deviation of 0.0362 and a variance of 0.131 nA. The response time of the co-immobilized microbial BOD sensor was within 5-10 min by steady-state measurement and the detection limit was 0.5 mg BOD l(-1). The BOD sensor was insensitive to pH in the range of pH 6.8-7.2.  相似文献   

10.
In this work, the direct electrochemical determination of poly-histidine tagged proteins using immunosensor based on anti-His (C-term) antibody immobilized on gold electrodes modified with 1,6-hexanedithiol, gold colloid particles or gold nanorods is described. The recombinant histidine-tagged silk proteinase inhibitor protein (rSPI2-His(6)) expressed in Pichia system selected as antigen for this immonosensor. An electrochemical impedance spectroscopy was used as label free detection technique for immune conjugation. The gold nanorods modified electrode layer showed better analytical response than gold nano particles. The linear calibration range was observed between 10pg/ml and 1ng/ml with limit of detection 5pg/ml (S/N=3). Up to four successive assay cycles with retentive sensitivity were achieved for the immunosensors regenerated with 0.2M glycine-HCl buffer, pH 2.8. The performance of this immnosensor were compared with immuoblotting techniques.  相似文献   

11.
A novel reagentless immunosensor was fabricated by immobilization of redox mediator 3,3',5,5'-tetramethylbenzidine (TMB) on the Nafion (Nf) film modified glassy carbon electrode. Gold nanoparticles were assembled onto the TMB/Nafion film modified electrode to provide active sites for the immobilization of antibody molecules. The antibody (anti-MIgG), in the present study, was fixed on the electrode for the rapid detection of antigen molecules (MIgG as a model analyte). The results showed that the immunosensor based on the immobilized TMB redox mediator exhibited good electrochemical response. A good linear relationship between peak current and the concentration of the MIgG was obtained in the concentration range from 4 to 120ng/mL. The detection limit was estimated to be 1ng/ml. Under the optimized conditions, the immunosensor exhibits good sensitivity, reproducibility and stability.  相似文献   

12.
A fluorescence-based continuous-flow immunosensor for sensitive, precise, accurate and fast determination of paclitaxel was developed. The sensor utilizes anti-paclitaxel antibody immobilized through its Fc region and crosslinked by dimethylpimelimidate to protein A attached covalently onto the silanized inner walls of a glass capillary column followed by saturation of the paclitaxel-binding sites with rhodamine-labeled paclitaxel. The assay is based on the displacement and detection downstream of the rhodamine-labeled paclitaxel, by a flow-through spectrofluorometer, as a result of the competition with paclitaxel introduced as a pulse into the stream of carrier buffer flowing through the system. The peak height of the fluorescence intensity profile of the displaced rhodamine-labeled paclitaxel was directly proportional to the concentration of paclitaxel applied and was a function of the carrier buffer flow rate. The sensitivity of the immunosensor response ranged from 0.31 relative fluorescence units (RFU)/ng/ml at a flow rate 0.1 ml/min to 0.52 RFU/ng/ml at 1 ml/min, while the lower detection limit ranged from 1 ng/ml at 0.1 ml/min to 4 ng/ml at 1 ml/min. The immunosensor response was very reproducible (RSD=4.8%; n=10) and linear up to 100 ng/ml. The assay time ranged from 2 min at 1 ml/min to 8 min at 0.1 ml/min. A technique developed to resaturate the antigen binding sites of the immobilized antibody with rhodamine-labeled paclitaxel was successful in regenerating the capillary column without affecting its performance, thus enhancing the economic viability of the immunosensor. The immunosensor was successfully applied for the determination of paclitaxel in human plasma.  相似文献   

13.
An amperometric immunosensor for polycyclic aromatic hydrocarbons (PAHs) was developed. The immunosensor was based on disposable screen-printed carbon electrodes. The coating antigen used was phenanthrene-9-carboxaldehyde coupled to bovine serum albumin (BSA) via adipic acid dihydrazide. Antibodies were monoclonal mouse anti-phenanthrene. The enzyme alkaline phosphatase (AP) was used in combination with the substrate p-aminophenyl phosphate (pAPP) for detection at +300 mV (vs. Ag/AgCl). Various assay types were compared. Good results were achieved with an indirect co-exposure competition assay with a LOD of 0.8 ng/ml (800 ppt) and an IC(50) of 7.1 ng/ml (7.1 ppb) for phenanthrene. An indirect competition assay could detect phenanthrene with a LOD of 2 ng/ml (IC(50): 15 ng/ml) and an indirect displacement assay with a LOD of 2 ng/ml (IC(50): 11 ng/ml) at a 5 microl surface coating of 8.8 microg/ml phenanthrene-BSA conjugate. A coating concentration of 2.2 microg/ml allowed detection with a LOD of 0.25 ng/ml (250 ppt) with the indirect competition assay. The influence of the coating concentration on the sensor performance was investigated. Cross-reactivities were tested for 16 important PAHs. Anthracene and chrysene showed strong cross-reactivity, whereas benzo[g,h,i]perylene and dibenzo[a,h]anthracene showed no cross-reactivity.  相似文献   

14.
An electrochemical immunosensor based on the adsorption of anti-complement III antibody onto an electrochemical pretreated carbon-paraffin electrode has been proposed for the detection of complement III (C(3)). The competitive immunoassay format was adopted with horseradish peroxide-C(3) (HRP-C(3)) as a tracer, 3,3'5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide as the enzyme substrates. In order to measure the amount of HRP-C(3) binding onto the electrode surface, the product of the enzyme catalytic reaction was detected at 100 mV (vs. Ag/AgCl reference electrode). The system was optimized to realize a reliable determination of C(3) in the range of 0.06-10 microg/ml. It exhibits some advantages, such as simplicity of fabrication, rapidity of measurement, and satisfactory sensitivity and reproducibility.  相似文献   

15.
A direct, rapid, and label-free electrochemical immunoassay method for testosterone has been described based on encapsulating testosterone antibody into polyvinyl butyral sol–gel film doped with gold nanowires. Gold nanowires prepared by using nanopore polycarbonate membrane were used to conjugate testosterone antibody onto the probe surface. The presence of gold nanowires provided a biocompatible microenvironment for biomolecules, greatly amplified the immobilized amount of biomolecules on the electrode surface, and improved the sensitivity of the immunosensor. In comparison with gold nanoparticle-conjugating probe, the gold nanowire-functionalized probe could avoid the leakage of biomolecules from the composite film, and enhanced the stability of the sensor. The performance and factors influencing the performance of the resulting immunosensor were investigated in detail. Under optimal conditions, the developed immunosensor exhibited a good linear relationship with testosterone ranging from 1.2 to 83.5 ng mL− 1 with a detection limit of 0.1 ng mL− 1 (at 3δ). Moreover, the proposed immunosensor exhibited high sensitivity, good reproducibility and long-term stability. The as-prepared immunosensors were used to analyze testosterone in human serum specimens. Analytical results suggest that the developed immunoassay has a promising alternative approach for detecting testosterone in the clinical diagnosis. Compared with the conventional ELISAs, the proposed immunoassay method was simple and rapid without multiple labeling and separation steps. Importantly, the route provides an alternative approach to incorporate gold nanowires into the solid matrix for biosensing application.  相似文献   

16.
Detection of sulfamethoxazole by a piezoquarz immunosensor]   总被引:1,自引:0,他引:1  
A mass susceptible immunosensor for FIA of sulfamethoxazole residues in liquid products was designed. The immunosensor is based on piezoelectric transducer. Hapten-protein conjugate (SMX-Diazo-BSA) immobilized on the preliminarily silanized electrode surface of piezoelectric quartz crystal was used as the bioreceptor coating. Optimization of the FIA conditions permitted to develop a simple and express procedure for one-step detection of sulfamethoxazole in a sample and further regeneration of the bioreceptor layer. The measuring ranges are 1 to 50 ng/ml and the detection limit is 0.15 ng/ml. The detection results were compared with the HPLC data. The advantages of the new procedure are its simplicity and rapid provision of the analysis results, possible direct detection of the analyte without additional label and repeated use of the bioreceptor layer. The new immunosensor was applied to testing of various milk specimens. It was shown that the quantity of sulfamethoxazole in all the specimens was lower than the recommended Euroresidue standards (100 ng/ml).  相似文献   

17.
Highly sensitive amperometric enzyme immunosensors for human immunoglobulin G (IgG) were prepared on the basis of electrogenerated polytyramine (PTy, tyramine = p-(2-aminoethyl)-phenol) modified electrodes. Properties of PTy films changed depending on electrolysis conditions. On the basis of the found properties of the films, an effective IgG sensor was prepared: a PTy film was formed first from an acid solution on a Pt electrode, and the surface was further covered with a PTy film from an alkaline methanol solution to give a PTy doubly coated electrode on which anti-IgG was then immobilized. This electrode provided a large surface area with little non-specific adsorption of proteins. By means of the competitive enzyme immunoassay technique using glucose oxidase (GOD) labeled IgG conjugates, IgG was determined in the concentration range of c. 10 pg/ml-1 mg/ml from the oxidation current of H2O2 generated by the enzyme (GOD) reaction using the above IgG sensor. Also, an anti-IgG immobilized electrode, prepared by using a Pt electrode singly covered with a PTy film from an alkaline methanol solution, acted as an effective IgG sensor with a detection limit for IgG of c. 100 pg/ml.  相似文献   

18.
To develop a general method for the detection of histidine-tagged proteins, the interactions of the histidine epitope tag of MutH and MutL proteins with the epitope specific monoclonal anti-His6 antibody were monitored by a label-free direct method using impedance spectroscopy. The immunosensor was fabricated by covalent coupling of the antibody on a conducting polymer coated electrode surface. The impedance of the antibody modified electrode was decreased after binding to the histidine-tagged proteins. The specificity of the sensor was demonstrated by showing that no impedance change was occurred when the sensor was exposed to both of non-tagged MutH and MutL proteins. The specific interaction was further characterized using quartz crystal microbalance studies. Based on impedance measurements, the linear ranges were obtained from 50.0 to 125.0 and 50.0 to 250.0 micorg/ml, for His-tag MutH and His-tag MutL proteins, respectively. The detection limits were determined to be 37.8 and 59.1 microg/ml, for His-tag MutH and His-tag MutL proteins, respectively.  相似文献   

19.
The detection of cancer biomarkers is as important tool for the diagnosis and prognosis of cancer such as brain cancer. Murine double minute 2 (MDM2) has been widely studied as prognostic marker for brain tumor. Here we describe development of a new sensitive label free impedimetric immunosensor for the detection of MDM2 based on cysteamine self assembled monolayers on a clean polycrystalline Au electrode surface. The amine-modified electrodes were further functionalized with antibody using homobifunctional 1,4-phenylene diisothiocyanate (PDITC) linker. The assembly processes of the immunosensor had been monitored with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques using Fe(CN)(6)(3-/4-) solution as redox probe. The impedance changes upon binding of MDM2 protein to the sensor surface was utilized for the detection of MDM2. The increase in relative electron-transfer resistance (ΔR/R(0)%) values was linearly proportional to the concentration of tumor marker MDM2 in the wide dynamic range of 1pg/ml-1μg/ml. The limit of detection was 0.29pg/ml in phosphate buffer saline (PBS) and 1.3pg/ml in mouse brain tissue homogenate, respectively. The immunosensor showed a good performance in comparison with ELISA for the analysis of the MDM2 in the cancerous mouse brain tissue homogenates. Moreover, the immunosensor had a good selectivity against epidermal growth factor receptor (EGFR) protein, long-storage stability and reproducibility. It might be become a promising assay for clinical diagnosis and early detection of tumors.  相似文献   

20.
A new current amplified immunosensor for the determination of carcinoembryonic antigen (CEA) was demonstrated in this work. The electrode architecture was fabricated by positively charged toluidine blue (TB) coated on negatively charged poly-sulfanilic acid (PSAA) modified glassy carbon electrode (GCE) surface through electrostatic interactions to form a TB/PSAA film, which provided an interface containing amine groups to assemble gold nanoparticles (nano-Au) for immobilization of carcinoembryonic antibody (anti-CEA) and horseradish peroxidase (HRP) instead of bovine serum albumin (BSA) to block sites against non-specific binding. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were employed to characterize the electrochemical properties of the modified processes. The CVs reduction current of the immunosensor charged linearly in two concentration ranges of CEA from 0.5 to 5.0 and 5.0 to 120.0 ng/ml in presence of 0.3mM H2O2 in analyte solution, and the detection limit was 0.2 ng/ml at three times background noise. The proposed method is economical, efficient and potentially attractive for clinical immunoassays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号