首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidemiological studies have demonstrated that genetic factors account for at least 50% of the liability for nicotine dependence (ND). Although several linkage studies have been conducted, all samples to date were primarily of European origin. In this study, we conducted a genomewide scan of 1,261 individuals, representing 402 nuclear families, of African American (AA) origin. We examined 385 autosomal microsatellite markers for ND, which was assessed by smoking quantity (SQ), the Heaviness of Smoking Index (HSI), and the Fagerstrom Test for ND (FTND). After performing linkage analyses using various methods implemented in the GENEHUNTER and S.A.G.E. programs, we found a region near marker D10S1432 on chromosome 10q22 that showed a significant linkage to indexed SQ, with a maximum LOD score of 4.17 at 92 cM and suggestive linkage to HSI, SQ, and log-transformed SQ. Additionally, we identified three regions that met the criteria for suggestive linkage to at least one ND measure: on chromosomes 9q31 at marker D9S1825, 11p11 between markers D11S1993 and D11S1344, and 13q13 between markers D13S325 and D13S788. Other locations on chromosomes 15p11, 17q25, and 18q12 exhibited some evidence of linkage for ND (LOD >1.44). The four regions with significant or suggestive linkage were positive for multiple ND measures by multiple statistical methods. Some of these regions have been linked to smoking behavior at nominally significant levels in other studies, which provides independent replication of the regions for ND in different cohorts. In summary, we found significant linkage on chromosome 10q22 and suggestive linkage on chromosomes 9, 11, and 13 for major genetic determinants of ND in an AA sample. Further analysis of these positive regions by fine mapping and/or association analysis is thus warranted. To our knowledge, this study represents the first genomewide linkage scan of ND in an AA sample.  相似文献   

2.
Chromosome 6p is one of the most commonly implicated regions in the genome-wide linkage scans of schizophrenia, whereas further association studies for markers in this region were inconsistent likely due to heterogeneity. This study aimed to identify more homogeneous subgroups of families for fine mapping on regions around markers D6S296 and D6S309 (both in 6p24.3) as well as D6S274 (in 6p22.3) by means of similarity in neurocognitive functioning. A total of 160 families of patients with schizophrenia comprising at least two affected siblings who had data for eight neurocognitive test variables of the continuous performance test (CPT) and the Wisconsin card sorting test (WCST) were subjected to cluster analysis with data visualization using the test scores of both affected siblings. Family clusters derived were then used separately in family-based association tests for 64 single nucleotide polymorphisms (SNPs) covering the region of 6p24.3 and 6p22.3. Three clusters were derived from the family-based clustering, with deficit cluster 1 representing deficit on the CPT, deficit cluster 2 representing deficit on both the CPT and the WCST, and a third cluster of nondeficit. After adjustment using false discovery rate for multiple testing, SNP rs13873 and haplotype rs1225934-rs13873 on BMP6-TXNDC5 genes were significantly associated with schizophrenia for the deficit cluster 1 but not for the deficit cluster 2 or nondeficit cluster. Our results provide further evidence that the BMP6-TXNDC5 locus on 6p24.3 may play a role in the selective impairments on sustained attention of schizophrenia.  相似文献   

3.
The BTNL2 gene is a member of the B7 receptor family that probably functions as a T-cell costimulatory molecule. It resides in the class II major histocompatibility complex (MHC) region of chromosome 6p and has recently been associated with sarcoidosis susceptibility in a white German population. We sought to replicate the BTNL2 association in an African American family-based study population (n=219 nuclear families) and two case-control populations--one African American (n=295 pairs) and one white (n=366 pairs). Ten SNPs were detected within a 490-bp region spanning exon/intron 5 of BTNL2. Haplotype variation within this region was significantly associated with sarcoidosis in all three study populations but more so in whites (P=.0006) than in the African American case-control (P=.02) or family-based (P=.03) samples. The previously reported BTNL2 SNP with the strongest sarcoidosis association, rs2076530, was also the SNP with the strongest association in our white population (P<.0001). The A allele of rs2076530 results in a premature exon-splice site and increases risk for sarcoidosis (odds ratio=2.03; 95% confidence interval 1.32-3.12). Although rs2076530 was not associated with sarcoidosis in either African American sample, a three-locus haplotype that included rs2076530 was associated with sarcoidosis across all three study samples. Multivariable logistic regression analyses showed that BTNL2 effects are independent of human leukocyte antigen class II genes in whites but may interact antagonistically in African Americans. Our results underscore the complexity of genetic risk for sarcoidosis emanating from the MHC region.  相似文献   

4.
Prostate cancer (PCa) is a complex disease that disproportionately affects African Americans and other individuals of African descent. A number of regions across the genome have been associated to PCa, most of them with moderate effects. A few studies have reported chromosomal changes on 12p and 12q that occur during the onset and development of PCa but to date no consistent association of the disease with chromosome 12 polymorphic variation has been identified. In order to unravel genetic risk factors that underlie PCa health disparities we investigated chromosome 12 using ancestry informative markers (AIMs), which allow us to distinguish genomic regions of European or West African origin, and tested them for association with PCa. Additional SNPs were genotyped in those areas where significant signals of association were detected. The strongest signal was discovered at the SNP rs12827748, located upstream of the PAWR gene, a tumor suppressor, which is amply expressed in the prostate. The most frequent allele in Europeans was the risk allele among African Americans. We also examined vitamin D related genes, VDR and CYP27B1, and found a significant association of PCa with the TaqI polymorphism (rs731236) in the former. Although our results warrant further investigation we have uncovered a genetic susceptibility factor for PCa in a likely candidate by means of an approach that takes advantage of the differential contribution of parental groups to an admixed population.  相似文献   

5.
The Metabochip is a custom genotyping array designed for replication and fine mapping of metabolic, cardiovascular, and anthropometric trait loci and includes low frequency variation content identified from the 1000 Genomes Project. It has 196,725 SNPs concentrated in 257 genomic regions. We evaluated the Metabochip in 5,863 African Americans; 89% of all SNPs passed rigorous quality control with a call rate of 99.9%. Two examples illustrate the value of fine mapping with the Metabochip in African-ancestry populations. At CELSR2/PSRC1/SORT1, we found the strongest associated SNP for LDL-C to be rs12740374 (p = 3.5 × 10(-11)), a SNP indistinguishable from multiple SNPs in European ancestry samples due to high correlation. Its distinct signal supports functional studies elsewhere suggesting a causal role in LDL-C. At CETP we found rs17231520, with risk allele frequency 0.07 in African Americans, to be associated with HDL-C (p = 7.2 × 10(-36)). This variant is very rare in Europeans and not tagged in common GWAS arrays, but was identified as associated with HDL-C in African Americans in a single-gene study. Our results, one narrowing the risk interval and the other revealing an associated variant not found in Europeans, demonstrate the advantages of high-density genotyping of common and rare variation for fine mapping of trait loci in African American samples.  相似文献   

6.
Genetic studies in Turkish, Native American, European American, and African American (AA) families have linked chromosome 18q21.1–23 to susceptibility for diabetes-associated nephropathy. In this study, we have carried out fine linkage mapping in the 18q region previously linked to diabetic nephropathy in AAs by genotyping both microsatellite and single nucleotide polymorphisms (SNPs) for linkage analysis in an expanded set of 223 AA families multiplexed for type 2 diabetes associated ESRD (T2DM-ESRD). Several approaches were used to evaluate evidence of linkage with the strongest evidence for linkage in ordered subset analysis with an earlier age of T2DM diagnosis compared to the remaining pedigrees (LOD 3.9 at 90.1 cM, ∆P = 0.0161, NPL P value = 0.00002). Overall, the maximum LODs and LOD-1 intervals vary in magnitude and location depending upon analysis. The linkage mapping was followed up by performing a dense SNP map, genotyping 2,814 SNPs in the refined LOD-1 region in 1,029 AA T2DM-ESRD cases and 1,027 AA controls. Of the top 25 most associated SNPs, 10 resided within genic regions. Two candidate genes stood out: NEDD4L and SERPINB7. SNP rs512099, located in intron 1 of NEDD4L, was associated under a dominant model of inheritance [P value = 0.0006; Odds ratio (95% Confidence Interval) OR (95% CI) = 0.70 (0.57–0.86)]. SNP rs1720843, located in intron 2 of SERPINB7, was associated under a recessive model of inheritance [P value = 0.0017; OR (95% CI) = 0.65 (0.50–0.85)]. Collectively, these results suggest that multiple genes in this region may influence diabetic nephropathy susceptibility in AAs.  相似文献   

7.
Asthma originates from genetic and environmental factors with about half the risk of disease attributable to heritable causes. Genome-wide association studies, mostly in populations of European ancestry, have identified numerous asthma-associated single nucleotide polymorphisms (SNPs). Studies in populations with diverse ancestries allow both for identification of robust associations that replicate across ethnic groups and for improved resolution of associated loci due to different patterns of linkage disequilibrium between ethnic groups. Here we report on an analysis of 745 African-American subjects with asthma and 3,238 African-American control subjects from the Candidate Gene Association Resource (CARe) Consortium, including analysis of SNPs imputed using 1,000 Genomes reference panels and adjustment for local ancestry. We show strong evidence that variation near RAD50/IL13, implicated in studies of European ancestry individuals, replicates in individuals largely of African ancestry. Fine mapping in African ancestry populations also refined the variants of interest for this association. We also provide strong or nominal evidence of replication at loci near ORMDL3/GSDMB, IL1RL1/IL18R1, and 10p14, all previously associated with asthma in European or Japanese populations, but not at the PYHIN1 locus previously reported in studies of African-American samples. These results improve the understanding of asthma genetics and further demonstrate the utility of genetic studies in populations other than those of largely European ancestry.  相似文献   

8.
GWAS of prostate cancer have been remarkably successful in revealing common genetic variants and novel biological pathways that are linked with its etiology. A more complete understanding of inherited susceptibility to prostate cancer in the general population will come from continuing such discovery efforts and from testing known risk alleles in diverse racial and ethnic groups. In this large study of prostate cancer in African American men (3,425 prostate cancer cases and 3,290 controls), we tested 49 risk variants located in 28 genomic regions identified through GWAS in men of European and Asian descent, and we replicated associations (at p≤0.05) with roughly half of these markers. Through fine-mapping, we identified nearby markers in many regions that better define associations in African Americans. At 8q24, we found 9 variants (p≤6×10−4) that best capture risk of prostate cancer in African Americans, many of which are more common in men of African than European descent. The markers found to be associated with risk at each locus improved risk modeling in African Americans (per allele OR = 1.17) over the alleles reported in the original GWAS (OR = 1.08). In summary, in this detailed analysis of the prostate cancer risk loci reported from GWAS, we have validated and improved upon markers of risk in some regions that better define the association with prostate cancer in African Americans. Our findings with variants at 8q24 also reinforce the importance of this region as a major risk locus for prostate cancer in men of African ancestry.  相似文献   

9.
Gallbladder disease (GBD) is one of the major digestive diseases. Its risk factors include age, sex, obesity, type 2 diabetes, and metabolic syndrome (MS). The prevalence of GBD is high in minority populations, such as Native and Mexican Americans. Ethnic differences, familial aggregation of GBD, and the identification of susceptibility loci for gallstone disease by use of animal models suggest genetic influences on GBD. However, the major susceptibility loci for GBD in human populations have not been identified. Using ultrasound-based information on GBD occurrence and a 10-cM gene map, we performed multipoint variance-components analysis to localize susceptibility loci for GBD. Phenotypic and genotypic data from 715 individuals in 39 low-income Mexican American families participating in the San Antonio Family Diabetes/Gallbladder Study were used. Two GBD phenotypes were defined for the analyses: (1) clinical or symptomatic GBD, the cases of cholecystectomies due to stones confirmed by ultrasound, and (2) total GBD, the clinical GBD cases plus the stone carriers newly diagnosed by ultrasound. With use of the National Cholesterol Education Program/Adult Treatment Panel III criteria, five MS risk factors were defined: increased waist circumference, hypertriglyceredemia, low high-density lipoprotein cholesterol, hypertension, and high fasting glucose. The MS risk-factor score (range 0-5) for a given individual was used as a single, composite covariate in the genetic analyses. After accounting for the effects of age, sex, and MS risk-factor score, we found stronger linkage signals for the symptomatic GBD phenotype. The highest LOD scores (3.7 and 3.5) occurred on chromosome 1p between markers D1S1597 and D1S407 (1p36.21) and near marker D1S255 (1p34.3), respectively. Other genetic locations (chromosomes 2p, 3q, 4p, 8p, 9p, 10p, and 16q) across the genome exhibited some evidence of linkage (LOD >or=1.2) to symptomatic GBD. Some of these chromosomal regions corresponded with the genetic locations of Lith loci, which influence gallstone formation in mouse models. In conclusion, we found significant evidence of major genetic determinants of symptomatic GBD on chromosome 1p in Mexican Americans.  相似文献   

10.
To facilitate genetic analyses of Rhizobium meliloti genes that are involved in symbiosis, we determined the map positions of 11 symbiotic loci on the R. meliloti chromosome by using a combination of the Tn5-Mob conjugational transfer method described by Klein et al. (S. Klein, K. Lohmann, G. C. Walker, and E. R. Signer. J. Bacteriol. 174:324-326, 1992) and co-transduction of genetic markers by bacteriophage phi M12. Loci involved in effective nodule formation (fix-379, fix-382, fix-383, fix-385, and fix-388), polysaccharide synthesis (exoR, exoS, exoC, and ndvB), nodule invasion (exoD), and nitrogen regulation (ntrA) were ordered with respect to previously mapped markers and each other. The positions of two other loci, degP and pho-1, were also determined.  相似文献   

11.
A recent genome-wide association study (GWAS) in African descent populations identified novel loci associated with skin pigmentation. However, how genomic variations affect skin pigmentation and how these skin pigmentation gene variants affect serum 25(OH) vitamin D variation has not been explored in African Americans (AAs). In order to further understand genetic factors that affect human skin pigmentation and serum 25(OH)D variation, we performed a GWAS for skin pigmentation with 395 AAs and a replication study with 681 AAs. Then, we tested if the identified variants are associated with serum 25(OH) D concentrations in a subset of AAs (n = 591). Skin pigmentation, Melanin Index (M-Index), was measured using a narrow-band reflectometer. Multiple regression analysis was performed to identify variants associated with M-Index and to assess their role in serum 25(OH)D variation adjusting for population stratification and relevant confounding variables. A variant near the SLC24A5 gene (rs2675345) showed the strongest signal of association with M-Index (P = 4.0 x 10−30 in the pooled dataset). Variants in SLC24A5, SLC45A2 and OCA2 together account for a large proportion of skin pigmentation variance (11%). The effects of these variants on M-Index was modified by sex (P for interaction = 0.009). However, West African Ancestry (WAA) also accounts for a large proportion of M-Index variance (23%). M-Index also varies among AAs with high WAA and high Genetic Score calculated from top variants associated with M-Index, suggesting that other unknown genomic factors related to WAA are likely contributing to skin pigmentation variation. M-Index was not associated with serum 25(OH)D concentrations, but the Genetic Score was significantly associated with vitamin D deficiency (serum 25(OH)D levels less than 12 ng/mL) (OR, 1.30; 95% CI, 1.04–1.64). The findings support the hypothesis suggesting that skin pigmentation evolved responding to increased demand for subcutaneous vitamin D synthesis in high latitude environments.  相似文献   

12.
Zöllner S  Pritchard JK 《Genetics》2005,169(2):1071-1092
We outline a general coalescent framework for using genotype data in linkage disequilibrium-based mapping studies. Our approach unifies two main goals of gene mapping that have generally been treated separately in the past: detecting association (i.e., significance testing) and estimating the location of the causative variation. To tackle the problem, we separate the inference into two stages. First, we use Markov chain Monte Carlo to sample from the posterior distribution of coalescent genealogies of all the sampled chromosomes without regard to phenotype. Then, averaging across genealogies, we estimate the likelihood of the phenotype data under various models for mutation and penetrance at an unobserved disease locus. The essential signal that these models look for is that in the presence of disease susceptibility variants in a region, there is nonrandom clustering of the chromosomes on the tree according to phenotype. The extent of nonrandom clustering is captured by the likelihood and can be used to construct significance tests or Bayesian posterior distributions for location. A novelty of our framework is that it can naturally accommodate quantitative data. We describe applications of the method to simulated data and to data from a Mendelian locus (CFTR, responsible for cystic fibrosis) and from a proposed complex trait locus (calpain-10, implicated in type 2 diabetes).  相似文献   

13.
Red blood cell, white blood cell, and platelet measures, including their count, sub-type and volume, are important diagnostic and prognostic clinical parameters for several human diseases. To identify novel loci associated with hematological traits, and compare the architecture of these phenotypes between ethnic groups, the CARe Project genotyped 49,094 single nucleotide polymorphisms (SNPs) that capture variation in ~2,100 candidate genes in DNA of 23,439 Caucasians and 7,112 African Americans from five population-based cohorts. We found strong novel associations between erythrocyte phenotypes and the glucose-6 phosphate dehydrogenase (G6PD) A-allele in African Americans (rs1050828, P<2.0×10(-13), T-allele associated with lower red blood cell count, hemoglobin, and hematocrit, and higher mean corpuscular volume), and between platelet count and a SNP at the tropomyosin-4 (TPM4) locus (rs8109288, P=3.0×10(-7) in Caucasians; P=3.0×10(-7) in African Americans, T-allele associated with lower platelet count). We strongly replicated many genetic associations to blood cell phenotypes previously established in Caucasians. A common variant of the α-globin (HBA2-HBA1) locus was associated with red blood cell traits in African Americans, but not in Caucasians (rs1211375, P<7×10(-8), A-allele associated with lower hemoglobin, mean corpuscular hemoglobin, and mean corpuscular volume). Our results show similarities but also differences in the genetic regulation of hematological traits in European- and African-derived populations, and highlight the role of natural selection in shaping these differences.  相似文献   

14.
Wan X  Weng J  Zhai H  Wang J  Lei C  Liu X  Guo T  Jiang L  Su N  Wan J 《Genetics》2008,179(4):2239-2252
Rice grain width and shape play a crucial role in determining grain quality and yield. The genetic basis of rice grain width was dissected into six additive quantitative trait loci (QTL) and 11 pairs of epistatic QTL using an F(7) recombinant inbred line (RIL) population derived from a single cross between Asominori (japonica) and IR24 (indica). QTL by environment interactions were evaluated in four environments. Chromosome segment substitution lines (CSSLs) harboring the six additive effect QTL were used to evaluate gene action across eight environments. A major, stable QTL, qGW-5, consistently decreased rice grain width in both the Asominori/IR24 RIL and CSSL populations with the genetic background Asominori. By investigating the distorted segregation of phenotypic values of rice grain width and genotypes of molecular markers in BC(4)F(2) and BC(4)F(3) populations, qGW-5 was dissected into a single recessive gene, gw-5, which controlled both grain width and length-width ratio. gw-5 was narrowed down to a 49.7-kb genomic region with high recombination frequencies on chromosome 5 using 6781 BC(4)F(2) individuals and 10 newly developed simple sequence repeat markers. Our results provide a basis for map-based cloning of the gw-5 gene and for marker-aided gene/QTL pyramiding in rice quality breeding.  相似文献   

15.
16.
Mutations in the Patched (Ptch1) gene are responsible for various familial and sporadic cancers. Ptch1(neo67/+) mice, in which exons 6 and 7 are deleted, show genetic background-dependent susceptibility to the development of muscle tumors resembling human rhabdomyosarcoma (RMS); BALB/c (BALB) is a susceptible strain whereas C57BL/6 (B6) shows resistance. A genome-wide linkage analysis was carried out using Ptch1(neo67/+)mice produced from B6 x (BALB x B6) backcrosses to identify loci involved in the control of RMS susceptibility. Quantitative trait locus mapping with the censored tumor latency time as the quantitative parameter was used to detect a significant RMS susceptibility modifier locus, Parms1 (Patched-Associated RMS 1), on chromosome 2 between D2Mit37 and D2Mit102 (LRS = 10). A Kaplan-Meier survival curve revealed that mice with the B6/BALB genotype develop tumors more frequently and much faster as compared to mice homozygous for the B6 allele (P = 0.02). Additional loci not reaching linkage significance were also detected for medulloblastoma resistance.  相似文献   

17.
以单核苷酸多态性(Single-nucleotide polymorphism, SNP)为遗传标记, 采用全基因组关联研究(Genome-wide association studies, GWAS)的策略, 已经在660多种疾病(或性状)中发现了3800多个遗传易感基因区域。但是, 其中最显著关联的遗传变异或致病性的遗传变异位点及其生物学功能并不完全清楚。这些位点的鉴定有助于阐明复杂疾病的生物学机制, 以及发现新的疾病标记物。后GWAS时代的主要任务之一就是通过精细定位研究找到复杂疾病易感基因区域内最显著关联的易感位点或致病性的易感位点并阐明其生物学功能。针对常见变异, 可通过推断或重测序增加SNP密度, 寻找最显著关联的SNP位点, 并通过功能元件分析、表达数量性状位点(Expression quantitative trait locus, eQTL)分析和单体型分析等方法寻找功能性的SNP位点和易感基因。针对罕见变异, 则可采用重测序、罕见单体型分析、家系分析和负荷检验等方法进行精细定位。文章对这些策略和所面临的问题进行了综述。  相似文献   

18.
19.
Multipoint mapping studies of six loci on chromosome 11   总被引:1,自引:0,他引:1  
The six loci, beta-globin (HBBC), parathyroid hormone (PTH), oncogene c-Ha-ras-1 (HRAS1), insulin (INS), calcitonin (CAL) and catalase (CAT) loci, have been mapped to 11p in the order: CAT-CAL-PTH-HBBC-(HRAS1-INS). The purpose of the current study was to examine the linkage relationships, especially the multipoint relationships of these loci in detail. In the 18 families studied, a significant sex difference in recombination was found for the HBBC: HRAS1 linkage with more recombination in the male parent than the female parent (22 vs. 2%). The results of the multipoint analyses provided further evidence for the order CAT-CAL-PTH-HBBC-(HRAS1-INS); however, the order of the last two tightly linked loci is still not clear.  相似文献   

20.
Pulmonary hypertension syndrome (PHS), also referred to as ascites syndrome, is a growth-related disorder of chickens frequently observed in fast-growing broilers with insufficient pulmonary vascular capacity at low temperature and/or at high altitude. A cross between two genetically different broiler dam lines that originated from the White Plymouth Rock breed was used to produce a three-generation population. This population was used for the detection and localization of quantitative trait loci (QTL) affecting PHS-related traits. Ten full-sib families consisting of 456 G2 birds were typed with 420 microsatellite markers covering 24 autosomal chromosomes. Phenotypic observations were collected on 4202 G3 birds and a full-sib across family regression interval mapping approach was used to identify QTL. There was statistical evidence for QTL on chicken chromosome 2 (GGA2), GGA4 and GGA6. Suggestive QTL were found on chromosomes 5, 8, 10, 27 and 28. The most significant QTL were located on GGA2 for right and total ventricular weight as percentage of body weight (%RV and %TV respectively). A related trait, the ratio of right ventricular weight as percentage to total ventricular weight (RATIO), reached the suggestive threshold on this chromosome. All three QTL effects identified on GGA2 had their maximum test statistic in the region flanked by markers MCW0185 and MCW0245 (335-421 cM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号