首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative pharmacokinetic and biodistribution investigation of polymer-protein conjugates prepared with various amphiphilic polymers was carried out using uricase as a model. Four polymer-uricase derivatives have been obtained by covalent binding of a similar number of polymer chains of (a) linear poly(ethylene glycol) (Mw 5000 Da); (b) branched poly(ethylene glycol) (Mw 10 000 Da); (c) poly(N-vinylpyrrolidone) (Mw 6000 Da); (d) poly(N-acryloilmorpholine) (Mw 6000 Da). By intravenous administration to Balb/c mice, the conjugates displayed different pharmacokinetic and organ distribution behaviors. (1) The unmodified enzyme and the poly(N-vinylpyrrolidone) conjugate were the enzyme forms with the shortest and the longest permanence in blood respectively (mean residence time 45 and 4378 min). (2) Native uricase was found to localize soon after administration significantly in heart, lungs, and liver from where it was also rapidly cleared. (3) The poly(N-acryloilmorpholine) derivative showed the highest concentration levels in liver (up to 25.5% of the dose) and considerable accumulation took also place in the other considered organs. (4) Poly(N-vinylpyrrolidone)-uricase displayed a relevant tropism for liver but low uptake indexes were found for the other organs. (5) The branched poly(ethylene glycol) derivative accumulated preferentially in liver and spleen. (6) The linear poly(ethylene glycol) conjugate was, among the various uricase forms, the species with the lowest distribution levels in all the examined organs. (7) Finally, all the enzyme forms slowly disposed in kidneys with higher levels for the poly(N-acryloilmorpholine) derivative (15% after 2880 min) and unmodified uricase (14% after 1440 min).  相似文献   

2.
Avidin was modified with poly(ethylene glycol) in the presence of a biotin binding site protective agent synthesised by imminobiotin conjugation to branched 20 kDa PEG. Avidin was incubated with imminobiotin–PEG and reacted with high amounts of 5, 10 or 20 kDa PEG to modify the protein amino groups. Circular dichroism demonstrated that the extensive PEGylation does not alter the protein conformational structure. The affinity of avidin–PEG conjugates for biotin and biotinylated antibodies depended on the PEG size or the use of a protective agent. Avidin–PEG 10 and 20 kDa prepared in the presence of imminobiotin–PEG maintained 100% of the native affinity for biotin. The 5 kDa PEG derivative and the ones obtained without biotin site protection maintained 79–85% of the native affinity. The affinity for biotinylated antibodies decreased to 35% when the conjugation was performed without imminobiotin–PEG, while the conjugates obtained with high-molecular-weight PEGs in the presence of protective agent displayed high residual affinity. All conjugates possessed negligible antigenicity and immunogenicity. PEGylation greatly prolonged the avidin permanence in the circulation, reduced its disposition in the liver and kidneys and promoted accumulation into solid tumors. PEGylation was found to prevent the protein cell uptake, either by phagocytosis or pinocytosis.  相似文献   

3.
Four new poly(hydroxyethylaspartamide)-based copolymers bearing (a) poly(ethylene glycol) 2000, (b) poly(ethylene glycol) 5000, (c) poly(ethylene glycol) 2000 and hexadecylalkyl, (d) poly(ethylene glycol) 5000 and hexadecylalkyle, as pendant groups were synthesised. The copolymers were obtained by partial aminolysis of polysuccinimide with poly(ethylene glycol) and hexadecylalkyl amino derivatives followed by reaction with ethanolamine. Naked polyhydroxyaspartamide was obtained by polysuccinimide reaction with ethanolamine. The nuclear magnetic resonance, infrared, light scattering and elemental analysis allowed for the extensive physico-chemical characterisation of the carriers. The molecular mass of all the polymers was in the range of 27000-34000 Da, and the polydispersivity was in the range of 1.5-1.7. By intravenous injection to mice bearing a solid tumour, all the polymeric carriers displayed a bi-compartmental pharmacokinetic behaviour. Both the poly(ethylene glycol) and the hexadecylalkyle conjugation prolonged and enhanced the distribution phase of poly(hydroxyethylaspartamide). The poly(ethylene glycol) conjugation was found to promote the carrier elimination by kidney ultrafiltration and to prevent partially the accumulation in the spleen and in the liver. The poly(ethylene glycol)/hexadecylalkyle conjugates localised preferentially in the liver were over 30% of the dose/g of tissue was determined after 144 h from administration. In the tumour all the polymers displayed a relevant accumulation that significantly increased throughout the time to reach high concentrations after 24 h. In particular, the poly(ethylene glycol)/hexadecylalkyle conjugates achieved a concentration of 15-25% of the dose/g of tissue after 24 h from administration that was maintained up to 144 h.  相似文献   

4.
This study describes the synthesis, characterization, and reactivity of new methoxypoly(ethylene glycol) (mPEG) derivatives containing a thioimidoester reactive group. These activated polymers are able to react with the lysyl epsilon-amino groups of suitable proteins, generating an amidinated linkage and thereby preserving the protein's positive charge. mPEG derivatives of molecular weight 2000 and 5000 Da were used, and two spacer arms were prepared, introducing chains of different lengths between the hydroxyl group of the polymer and the thioimidate group. These mPEG derivatives were used to modify gelonin, a cytotoxic single-chain glycoprotein widely used in preparation of antitumoral conjugates, whose biological activity is strongly influenced by charge modification. The reactivity of mPEG thioimidates toward lysil epsilon-amino groups of gelonin was evaluated, and the results showed an increased degree of derivatization in proportion to the molar excesses of the polymer used and to the length of the alkyl spacer. Further studies showed that the thioimidate reactive is able to maintain gelonin's significant biological activity and immunogenicity. On the contrary, modification of the protein with N-hydroxysuccinimide derivative of mPEG strongly reduces the protein's cytotoxic activity. Evaluation of the pharmacokinetic behavior of native and PEG-grafted gelonin showed a marked increase in plasma half-life after protein PEGylation; in particular, the circulating life of the conjugates increased with increased molecular weight of the polymer used. The biodistribution test showed lower organ uptake after PEGylation, in particular by the liver and spleen.  相似文献   

5.
There is considerable clinical interest in the use of "second-generation" therapeutic proteins produced by conjugation of the native protein with various polymers including poly(ethylene glycol) (PEG). One of the challenges in the production of polymer-protein conjugates is the need to remove residual polymer, native (unreacted) protein, and any reaction byproducts from the final therapeutic formulation. The overall objective of this study was to evaluate the possibility of using ultrafiltration for the purification of a model PEGylated protein. Sieving data were obtained using PEGylated alpha-lactalbumin, the native protein, and the poly(ethylene glycol) over a range of pH, ionic strength, and filtrate flux using both neutral and charge-modified composite regenerated cellulose membranes. Purification of the PEGylated protein was achieved using a two-stage diafiltration process. The first stage used a neutral membrane to remove the unreacted protein and any small reaction byproducts while retaining the large PEGylated product. The second stage used a negatively charged membrane to remove the neutral poly(ethylene glycol) while retaining the PEGylated alpha-lactalbumin as a result of strong electrostatic interactions. These results clearly demonstrate the potential of using membrane-based separations for the purification of second-generation therapeutic proteins.  相似文献   

6.
Coupling anticancer drugs to synthetic polymers is a promising approach of enhancing the antitumor efficacy and reducing the side-effects of these agents. Doxorubicin maleimide derivatives containing an amide or acid-sensitive hydrazone linker were therefore coupled to alpha-methoxy-poly(ethylene glycol)-thiopropionic acid amide (MW 20000 Da), alpha,omega-bis-thiopropionic acid amide poly(ethylene glycol) (MW 20000 Da) or alpha-tert-butoxy-poly(ethylene glycol)-thiopropionic acid amide (MW 70000 Da) and the resulting polyethylene glycol (PEG) conjugates isolated through size-exclusion chromatography. The polymer drug derivatives were designed as to release doxorubicin inside the tumor cell by acid-cleavage of the hydrazone bond after uptake of the conjugate by endocytosis. The acid-sensitive PEG conjugates containing the carboxylic hydrazone bonds exhibited in vitro activity against human BXF T24 bladder carcinoma and LXFL 529L lung cancer cells with IC70 values in the range 0.02-1.5 microm (cell culture assay: propidium iodide fluorescence or colony forming assay). In contrast, PEG doxorubicin conjugates containing an amide bond between the drug and the polymer showed no in vitro activity. Fluorescence microscopy studies in LXFL 529 lung cancer cells revealed that free doxorubicin accumulates in the cell nucleus whereas doxorubicin of the acid-sensitive PEG doxorubicin conjugates is primarily localized in the cytoplasm. Nevertheless, the acid-sensitive PEG doxorubicin conjugates retain their ability to bind to calf thymus DNA as shown by fluorescence and visible spectroscopy studies. Results regarding the effect of an acid-sensitive PEG conjugate of molecular weight 20000 in the chorioallantoic membrane (CAM) assay indicate that this conjugate is significantly less embryotoxic than free doxorubicin although antiangiogenic effects were not observed.  相似文献   

7.
Poly(ethylene glycol) 6000 affected many of the properties of skeletal-muscle actin. It accelerated the rate and increased the extent of actin polymerization as measured by light-scattering and sedimentation studies respectively. Moreover, intrinsic-fluorescence measurements showed that addition of poly(ethylene glycol) 6000 decreased the rate of EDTA-induced denaturation of actin monomer and increased the temperature at which irreversible conformational changes occur in actin monomer. These effects occurred without any apparent direct binding interaction and are postulated to be a consequence of the effect of excluded volume on the thermodynamic activity of actin. A relationship based on spherical geometry was formulated which described the co-volume increment that occurs upon addition of a monomer to a long linear polymer in the presence of a space-filling macromolecule. The application of this relationship to the poly(ethylene glycol) 6000-actin system was not without assumption, but it permitted quantitative estimation of the co-volume increment which proved to be of the sign and magnitude required to explain the increased extent of actin polymerization found experimentally in the presence of various concentrations of poly(ethylene glycol) 6000. It is suggested that, in vivo, excluded volume may play a role in actin-filament formation and in the maintenance of the native G-actin structure.  相似文献   

8.
Jain A  Ashbaugh HS 《Biomacromolecules》2011,12(7):2729-2734
Hybrid polymer-peptide conjugates offer the potential for incorporating biological function into synthetic materials. The secondary structure of short helical peptides, however, frequently becomes less stable when expressed independent of longer protein sequences or covalently linked with a conformationally disordered synthetic polymer. Recently, new amphipathic peptide-poly(ethylene glycol) conjugates were introduced (Shu, J., et al. Biomacromolecules 2008, 9, 2011), which displayed enhanced peptide helicity upon polymer functionalization while retaining tertiary coiled-coil associations. We report here a molecular simulation study of peptide helix stabilization by conjugation with poly(ethylene glycol). The polymer oxygens are shown to favorably interact with the cationic lysine side chains, providing an alternate binding site that protects against disruption of the peptide hydrogen-bonds that stabilize the helical conformation. When the peptide lysine charges are neutralized or poly(ethylene glycol) is conjugated with polyalanine, the polymer exhibits a negligible effect on the secondary structure. We also observe the interactions of poly(ethylene glycol) with the amphipathic peptide lysines tends to segregate the polymer away from the nonpolar face of the helix, suggesting no disruption of the interactions that drive tertiary contacts between helicies.  相似文献   

9.
In order to quantify the amount of ligands or poly(ethylene glycol) (PEG) on each vector, here we developed a system in which poly-L-glutamic acid (PLG) was used as surface modification loading backbone, to which one PEG (MW 5000, 10000, 20000) or epidermal growth factor (EGF) was linked. The PLG conjugates can electro-statically adsorb upon DNA/ polycation complex with positive charge, and, the amount of EGF or PEG on the surface of complexes could be varied. We have made a series of complexes containing the various PLG conjugates and examined their physicochemical properties, and made a comparison of properties and transfection efficiency between these complexes. EGF- and PEG-modified complexes showed 10-25-folds higher cell transfection efficiency than unmodified complexes in medium with or without serum.  相似文献   

10.
Polymer-drug conjugates (polymer therapeutics) are finding increasing use as novel anticancer agents. Here a series of poly(ethylene glycol) PEG-doxorubicin (Dox) conjugates were synthesized using polymers of linear or branched architecture (molecular weight 5000-20000 g/mol) and with different peptidyl linkers (GFLG, GLFG, GLG, GGRR, and RGLG). The resultant conjugates had a drug loading of 2.7-8.0 wt % Dox and contained <2.0% free drug (% total drug). All conjugates containing a GFLG linker showed approximately 30% release of Dox at 5 h irrespective of PEG molecular weight or architecture. The GLFG linker was degraded more quickly (approximately 57% Dox release at 5 h), and the other linkers more slowly (<16% release at 5 h), by lysosomal enzymes in vitro. In vitro there was no clear relationship between cytotoxicity toward B16F10 cells and the observed Dox release rate. All PEG conjugates were more than 10-fold less toxic (IC50 values > 2 microg/mL) than free Dox (IC50 value = 0.24 microg/mL). Biodistribution in mice bearing sc B16F10 tumors was assessed after administration of PEGs (5000, 10000, or 20000 g/mol) radioiodinated using the Bolton and Hunter reagent or PEG-Dox conjugates by HPLC. The 125I-labeled PEGs showed a clear relationship between Mw and blood clearance and tumor accumulation. The highest Mw PEG had the longest plasma residence time and consequently the greatest tumor targeting. The PEG-Dox conjugates showed a markedly prolonged plasma clearance and greater tumor targeting compared to free Dox, but there was no clear molecular weight-dependence on biodistribution. This was consistent with the observation that the PEG-Dox conjugates formed micelles in aqueous solution comprising 2-20 PEG-Dox molecules depending on polymer Mw and architecture. Although PEG-Dox showed greater tumor targeting than free Dox, PEG conjugation led to significantly lower anthracycline levels in heart. Preliminary experiments to assess antitumor activity against sc B16F10 in vivo showed the PEG5000linear (L)-GFLG-Dox and PEG10000branched (B)-GLFG-Dox (both 5 mg/kg Dox-equiv) to be the most active with T/C values of 146 and 143%, respectively. Free Dox did not show significant activity in this model (T/C = 121%). Dose escalation of PEG5000(L)-GFLG-Dox to 10 mg/kg Dox-equiv prolonged further animal survival (T/C = 161%). Using the Dox-sensitive model ip L1210 (where Dox displayed a T/C = 150% after single ip dose), the PEG5000(L)-GFLG-Dox displayed a maximum T/C of 141% (10 mg/kg Dox-equiv) using a once a day (x3) schedule. Further studies are warranted with PEG5000(L)-GFLG-Dox to determine its spectrum of antitumor activity and also the optimum dosing schedule before clinical testing.  相似文献   

11.
A new protein derivatization method was developed with a block copolymer to reduce the immunogenicity of therapeutic proteins. The block copolymer consisted of polyethylene glycol (PEG) and polysialic acid (PSA), a nonimmunogenic and biodegradable biopolymer. Uricase was used as a model protein. Molecular weight analysis results indicated that the uricase–PEG–PSA conjugate was linked with 2.5 copolymers for each uricase unit. The residual enzyme activity of the uricase with modification by the PEG–PSA copolymer was 72.4%. The tolerance and stability to heat, acid, alkaline, and trypsin treatments significantly improved compared with the native uricase. The immunogenicity of uricase modified with PEG–PSA copolymer was remarkably reduced. The transmission electron microscopy results of the uricase–PEG–PSA conjugate showed a spherical hydrated shell with a larger particle size. These findings proved that the PSA–PEG–protein conjugate is a formulation that can potentially be used to deliver the protein and peptide-based drugs.  相似文献   

12.
Hydrolysis of N-trans-cynnamoylimidazole catalyzed by conjugates and complexes of alpha-chymotrypsin (ChT) with poly(ethylene glycol) (PEG) of different molecular mass (from 300 to 5000 daltons) was studied in the system of the hydrated reversed micelles of aerosol OT (AOT) in octane at 25 degrees C. The plot of the deacylation constant k3 for PEG--ChT conjugates and complexes versus the degree of hydration of reversed micelles (w0 = [H2O]/[AOT]) was studied. These plots are bell-shaped with maxima shifted to higher degrees of micelle hydration compared to the corresponding value of the shift for ChT. As for PEG--ChT conjugates, the value of the shift of w0 increases with increasing of molecular mass of the attached PEG and/or with the number of polymer chains per ChT molecule. Another picture was observed for PEG--ChT complexes for which the position of the maximum on k3 versusw0 curves was practically the same for all compounds. The values of the thickness of the polymer layer for PEG--ChT conjugates and complexes were calculated. Thus, polymer chains in conjugates placed in hydrated micelles are highly packed, whereas in the case of complexes they form a flat layer on the surface of the protein.  相似文献   

13.
Protein conjugates of polysaccharides or their breakdown products are being used as improved "T-dependent" vaccines. We tried to define optimal characteristics of future conjugate vaccines by testing the immunogenicity of thirteen conjugates of alpha 1-6 dextran and chicken serum albumin in mice (BALB/c and CBA). All conjugates induced stronger antidextran antibody responses than the polysaccharide, and a fair proportion of these antibodies were IgG. However, there was a range of antigenicities. Consistently strong responses were obtained with conjugates that carried small dextran molecules (m.w. 1000 to 4000) coupled to the protein via the reducing end. Modification of such an "optimal" conjugate either by increasing the size of the saccharide to 40,000 Da, or by permitting multiple attachments of the saccharide molecule to the protein, reduced its antigenicity. Carbohydrate/protein ratios varying from 0.17 to 0.49 were associated with excellent antidextran responses.  相似文献   

14.
本文报道了用活化的单甲氧基聚乙二醇PEG_2在底物保护的条件下修饰天冬酰胺酶。结果,修饰酶在抗原抗体结合能力完全消失的同时,酶活力保持30%以上,且修饰酶的抗胰蛋白酶水解能力明显增强,体外半衰期延长17倍,免疫原性显著下降。  相似文献   

15.
After modification with monomethoxyl-poly(ethylene glycol)-5000, a recombinant intracellular uricase from Bacillus fastidiosus ATCC 29604 showed residual activity of about 65%, a thermo-inactivation half-life >85 h, a circulating half-life about 20 h in rats in vivo, consistent effects of common cations, and consistent optima for reaction temperature and pH. Thus, this uricase can be formulated via modification with monomethoxyl-poly(ethylene glycol).  相似文献   

16.
The dynamic viscosities of dilute aqueous poly(ethylene glycol) and dextran, and poly(ethylene glycol)-dextran-water solutions have been measured. The poly(ethylene glycol) and dextran samples had average molecular masses of 8000 Da and 580 000 Da, respectively. To estimate the values of viscosity of poly(ethylene glycol)-dextran-water solutions, a Grunberg like equation has been proposed which takes into account the influence of poly(ethylene glycol) and dextran concentrations. The relative errors vary between 0.76 and 11.64 in absolute value.  相似文献   

17.
Cowpea mosaic virus was derivatized with poly(ethylene glycol) to give well-controlled loadings of polymer on the outer surface of the coat protein assembly. The resulting conjugates displayed altered densities and immunogenicities, consistent with the known chemical and biological properties of PEG. These studies make CPMV potentially useful as a tailored vehicle for drug delivery.  相似文献   

18.
Grafting of poly(ethylene glycol) (PEG) is a common strategy for reducing nonspecific interactions of surfaces with proteins. We have used grafting at "cloud point" solution conditions that ensures maximum grafting density of linear methoxy terminated PEG-aldehyde (mPEG-ald, M(w) = 5000 and 30000). In an alternative approach, surfaces were modified with layers prepared from isocyanate terminated, star shaped poly(ethylene glycol-stat-propylene glycol) prepolymers (80% ethylene glycol, six arms, M(w) = 3000, 12,000, and 18,000; this compound will be referred to as "Star PEG" in the text). Due to the highly reactive endgroups, these molecules form a dense network on the substrate with a high polymer surface coverage. The two systems were compared regarding their ability to prevent unspecific adsorption of insulin and lysozyme. The layers were analyzed by ellipsometry, contact angle measurements, and XPS. Protein adsorption was monitored by surface MALDI-TOF MS and fluorescence microscopy. No protein adsorption could be detected on Star PEG coatings and on mPEG-ald 5000, whereas mPEG-ald 30,000 could only prevent adsorption of lysozyme but not of the smaller insulin.  相似文献   

19.
In this review, the binding and loading efficacy (LE) of anticancer drugs doxorubicin (DOX), tamoxifen (Tam) and its metabolites 4-hydroxytamoxifen (4-Hydroxytam) and endoxifen (Endox) with several synthetic polymers poly(ethylene glycol) (PEG), methoxypoly (ethylene glycol) polyamidoamine (mPEG-PAMAM-G3), and polyamidoamine (PAMAM-G4) dendrimers were compared in aqueous solution at pH 7.4. The results of multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling of conjugated drug–polymer were examined. Structural analysis showed that drug–polymer conjugation occurs mainly via H-bonding and hydrophobic contacts. The order of binding is PAMAM-G4 > mPEG-PAMAM-G3 > PEG-6000 with 4-hydroxttamoxifen forming more stable conjugate than tamoxifen and endoxifen. Doxorubicin shows stronger affinity for PAMAM-G4 than tamoxifen and its metabolites. The drug LE was 30–55%. TEM showed significant changes in the carrier morphology upon drug encapsulation. Modeling also showed that drug is located in the surface and in the internal cavities of PAMAM with DOX forming more stable polymer conjugates.  相似文献   

20.
Recombinant coagulation factor VIII (r-VIII SQ) was chemically modified with monomethoxy poly(ethylene glycol) (mPEG). Three mPEG derivatives were used for coupling to the r-VIII SQ lysines, a mixed anhydride of monomethoxy poly(ethylene glycol) succinic acid (mPEG-SAH), monomethoxy poly(ethylene glycol) succinimidyl succinate (mPEG-SS), and monomethoxy poly(ethylene glycol) tresylate (mPEG-TRES). A consequence of the modification with all derivatives was a substantial reduction in coagulant activity, even at very low degrees of modification. A method was developed with the purpose of avoiding conjugation at certain important biological sites on the factor VIII and thereby producing conjugates with better retained activity. This was achieved by immobilizing the protein onto a solid matrix during the modification reaction. Characterization of conjugates by SDS-PAGE, western blots, interaction with von Willebrand factor (vWf), and thrombin activation/inactivation analyses was undertaken. The SDS-PAGE and western blots revealed coupling heterogeneity regarding degree of modification. The amount of factor VIII able to bind to vWf decreased with the conjugation. Thrombin activated the modified factor VIII to essentially the same extent as the reference preparation of r-VIII SQ. Inactivation of the modified factor VIII was, however, slower than inactivation of the unmodified protein. Finally, an in vitro study was performed to evaluate the influence of the mPEG modification on the protein stability in extract of porcine tissue. Despite that conjugates with low degrees of modification were included in the study, the coagulant activity was preserved to a significantly higher extent in all incubation mixtures containing conjugates compared to that with unmodified protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号