首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Fc region has two highly conserved methionine residues, Met 33 (C(H)3 domain) and Met 209 (C(H)3 domain), which are important for the Fc's structure and biological function. To understand the effect of methionine oxidation on the structure and stability of the human IgG1 Fc expressed in Escherichia coli, we have characterized the fully oxidized Fc using biophysical (DSC, CD, and NMR) and bioanalytical (SEC and RP-HPLC-MS) methods. Methionine oxidation resulted in a detectable secondary and tertiary structural alteration measured by circular dichroism. This is further supported by the NMR data. The HSQC spectral changes indicate the structures of both C(H)2 and C(H)3 domains are affected by methionine oxidation. The melting temperature (Tm) of the C(H)2 domain of the human IgG1 Fc was significantly reduced upon methionine oxidation, while the melting temperature of the C(H)3 domain was only affected slightly. The change in the C(H)2 domain T m depended on the extent of oxidation of both Met 33 and Met 209. This was confirmed by DSC analysis of methionine-oxidized samples of two site specific methionine mutants. When incubated at 45 degrees C, the oxidized Fc exhibited an increased aggregation rate. In addition, the oxidized Fc displayed an increased deamidation (at pH 7.4) rate at the Asn 67 and Asn 96 sites, both located on the C(H)2 domain, while the deamidation rates of the other residues were not affected. The methionine oxidation resulted in changes in the structure and stability of the Fc, which are primarily localized to the C(H)2 domain. These changes can impact the Fc's physical and covalent stability and potentially its biological functions; therefore, it is critical to monitor and control methionine oxidation during manufacturing and storage of protein therapeutics.  相似文献   

2.
The pyruvate kinase (PK) from a moderate thermophile, Geobacillus stearothermophilus, is an allosteric enzyme activated by AMP and ribose 5-phosphate but not fructose 1, 6-bisphosphate (FBP), which is a common activator of PKs. It has an extra C-terminal sequence (ECTS), which contains a highly conserved phosphoenolpyruvate (PEP) binding motif, but its function and structure remain unclear. To elucidate the structural characteristics of the effector-binding site and the ECTS, the crystal structure of the C9S/C268S mutant of the enzyme was determined at 2.4 A resolution. The crystal belonged to space group P6(2)22, with unit cell parameters a, b = 145.97 A, c = 118.03 A. The enzyme was a homotetramer and its overall domain structure was similar to the previously solved structures except that the ECTS formed a new domain (C' domain). The structure of the C' domain closely resembled that of the PEP binding domain of maize pyruvate phosphate dikinase. A sulphate ion was found in a pocket in the effector-binding C domain. This site corresponds to the 6-phosphate group-binding site in yeast PK bound FBP and seems to be the effector-binding site. Through comparison of the structure of the putative effector-binding site to that of the FBP binding site of the yeast enzyme, the structural basis of the effector specificity of the G. stearothermophilus PK is discussed.  相似文献   

3.
为了对人硫氧还蛋白hTRX功能及其在休克治疗前景进行评价 ,将PCR扩增的hTRX基因连入pKPL 4载体 ,转化大肠杆菌pop2 136 .通过两步离子交换柱分离得到纯化的蛋白 ,进一步观察其稳定性及在体外对NFS 6 0和MCF 7细胞的促增殖活性 .结果发现 ,TRX蛋白可明显促进去细胞因子诱导的NFS 6 0细胞增殖和撤血清后MCF 7细胞的增殖 ,并发现外源性TRX可明显对小鼠内毒素血症起保护作用 .  相似文献   

4.
The X-ray crystal structure of human soluble epoxide hydrolase (sEH) has been determined at 2.6 A resolution, revealing a domain-swapped quaternary structure identical to that observed for the murine enzyme [Argiriadi, M. A., Morisseau, C., Hammock, B. D., and Christianson, D. W. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 10637-10642]. As with the murine enzyme, the epoxide hydrolytic mechanism of the human enzyme proceeds through an alkyl-enzyme intermediate with Asp-333 in the C-terminal domain. The structure of the human sEH complex with N-cyclohexyl-N'-(iodophenyl)urea (CIU) has been determined at 2.35 A resolution. Tyr-381 and Tyr-465 donate hydrogen bonds to the alkylurea carbonyl group of CIU, consistent with the proposed roles of these residues as proton donors in the first step of catalysis. The N-terminal domain of mammalian sEH contains a 15 A deep cleft, but its biological function is unclear. Recent experiments demonstrate that the N-terminal domain of human sEH catalyzes the metal-dependent hydrolysis of phosphate esters [Cronin, A., Mowbray, S., Dürk, H., Homburg, S., Fleming, I., Fisslthaler, B., Oesch, F., and Arand, M. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 1552-1557; Newman, J. W., Morisseau, C., Harris, T. R., and Hammock, B. D. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 1558-1563]. The binding of Mg(2+)-HPO4(2-) to the N-terminal domain of human sEH in its CIU complex reveals structural features relevant to those of the enzyme-substrate complex in the phosphatase reaction.  相似文献   

5.
Recombinant human monoclonal antibodies have become important protein-based therapeutics for the treatment of various diseases. The antibody structure is complex, consisting of beta-sheet rich domains stabilized by multiple disulfide bridges. The dimerization of the C(H)3 domain in the constant region of the heavy chain plays a pivotal role in the assembly of an antibody. This domain contains a single buried, highly conserved disulfide bond. This disulfide bond was not required for dimerization, since a recombinant human C(H)3 domain, even in the reduced state, existed as a dimer. Spectroscopic analyses showed that the secondary and tertiary structures of reduced and oxidized C(H)3 dimer were similar, but differences were observed. The reduced C(H)3 dimer was less stable than the oxidized form to denaturation by guanidinium chloride (GdmCl), pH, or heat. Equilibrium sedimentation revealed that the reduced dimer dissociated at lower GdmCl concentration than the oxidized form. This implies that the disulfide bond shifts the monomer-dimer equilibrium. Interestingly, the dimer-monomer dissociation transition occurred at lower GdmCl concentration than the unfolding transition. Thus, disulfide bond formation in the human C(H)3 domain is important for stability and dimerization. Here we show the importance of the role played by the disulfide bond and how it affects the stability and monomer-dimer equilibrium of the human C(H)3 domain. Hence, these results may have implications for the stability of the intact antibody.  相似文献   

6.
The adult T cell leukemia-derived factor (ADF), or human thioredoxin (hTRX), has a radical scavenging effect similar to that of N-acetyl cysteine (NAC). We have recently shown that ADF/hTRX protects the lung and the heart from ischemia-reperfusion induced injury. To elucidate mechanisms of the protective effect, a hypoxia-reoxygenation (H-R) injury model was developed using a murine endothelial cell line, cultured in a thiol-free medium. In this condition, cells became much more vulnerable to H-R injury. The viability of cells decreased significantly after 1 h of hypoxic incubation followed by 1 h of reoxygenation. The injury was reduced by ADF/hTRX (100 microM) or NAC (10 mM). These two agents also demonstrated an additive protective effect. When cells were cultured in thiol-free medium for 2 h in a normoxic condition, intracellular hydrogen peroxide production was increased, which was associated with a decrease in glutathione level. NAC (10 mM) attenuated these changes whereas ADF/hTRX (100 microM) did not. These results suggest that although both ADF/hTRX and NAC protected cells from H-R injury, the underlying mechanisms are different. Because the cytoprotective effect of ADF/hTRX occurs in the thiol-free condition, it must be mediated via a novel mechanism other than enhancing thiol uptake. The additive cytoprotective effect between ADF/hTRX and NAC suggests that we should combine these two agents clinically.  相似文献   

7.
Translation of hepatitis C viral proteins requires an internal ribosome entry site (IRES) located in the 5' untranslated region of the viral mRNA. The core domain of the hepatitis C virus (HCV) IRES contains a four-way helical junction that is integrated within a predicted pseudoknot. This domain is required for positioning the mRNA start codon correctly on?the 40S ribosomal subunit during translation initiation. Here, we present the crystal structure of this RNA, revealing a complex double-pseudoknot fold?that establishes the alignment of two helical elements on either side of the four-helix junction. The conformation of this core domain constrains the open reading frame's orientation for positioning on the 40S ribosomal subunit. This structure, representing the last major domain of HCV-like IRESs to be determined at near-atomic resolution, provides the basis for a comprehensive cryoelectron microscopy-guided model of the intact HCV IRES and its interaction with 40S ribosomal subunits.  相似文献   

8.
C1r is the serine protease (SP) that mediates autoactivation of C1, the complex that triggers the classical complement pathway. We have determined the crystal structure of two fragments from the human C1r catalytic domain, each encompassing the second complement control protein (CCP2) module and the SP domain. The wild-type species has an active structure, whereas the S637A mutant is a zymogen. The structures reveal a restricted hinge flexibility of the CCP2-SP interface, and both are characterized by the unique alpha-helical conformation of loop E. The zymogen activation domain exhibits high mobility, and the active structure shows a restricted access to most substrate binding subsites. Further implications relevant to the C1r self-activation process are derived from protein-protein interactions in the crystals.  相似文献   

9.
NADPH-cytochrome P450 reductase (CPR), a diflavin reductase, plays a key role in the mammalian P450 mono-oxygenase system. In its crystal structure, the two flavins are close together, positioned for interflavin electron transfer but not for electron transfer to cytochrome P450. A number of lines of evidence suggest that domain motion is important in the action of the enzyme. We report NMR and small-angle x-ray scattering experiments addressing directly the question of domain organization in human CPR. Comparison of the 1H-15N heteronuclear single quantum correlation spectrum of CPR with that of the isolated FMN domain permitted identification of residues in the FMN domain whose environment differs in the two situations. These include several residues that are solvent-exposed in the CPR crystal structure, indicating the existence of a second conformation in which the FMN domain is involved in a different interdomain interface. Small-angle x-ray scattering experiments showed that oxidized and NADPH-reduced CPRs have different overall shapes. The scattering curve of the reduced enzyme can be adequately explained by the crystal structure, whereas analysis of the data for the oxidized enzyme indicates that it exists as a mixture of approximately equal amounts of two conformations, one consistent with the crystal structure and one a more extended structure consistent with that inferred from the NMR data. The correlation between the effects of adenosine 2′,5′-bisphosphate and NADPH on the scattering curve and their effects on the rate of interflavin electron transfer suggests that this conformational equilibrium is physiologically relevant.  相似文献   

10.
During the early postimplantation period, rodent embryos survive in a relatively anaerobic environment in utero and are vulnerable to a high oxygen pressure. They become resistant to oxygen stress when they are exposed to a higher oxygen pressure after the uteroplacental circulation is established. However, it is unknown how embryos acquire such resistance against oxidative stress. This study was undertaken to examine whether an antioxidant protein thioredoxin (TRX) plays a significant role in the embryonic acquisition of the tolerance to oxidative stress. E7.5 embryos of C57BL/6 wild-type (WT) and human TRX (hTRX) inserted-transgenic (Tg) embryos were cultured under 10 or 25% O 2 and their growth and morphological differentiation were evaluated. The TRX expression and the products of oxidative stress (8-hydroxy-2'-deoxy-guanosine and carbonylated proteins) in their tissues were also examined. When WT embryos were cultivated in vitro under 25% O 2 , their growth was significantly disturbed and various developmental abnormalities were induced, which did not occur in embryos grown under 10% O 2 . However, such embryotoxic effects of oxygen were significantly attenuated in the hTRX Tg embryos that continuously express hTRX. Accumulation of the products of oxidative stress was significantly reduced in hTRX Tg embryos as compared with that in WT embryos. The TRX transgene appears to provide the embryo with the resistance against oxidative stress and may play a crucial role in the redox regulation in embryos.  相似文献   

11.
The Escherichia coli chaperone Hsp33 contains a C-terminal zinc-binding domain that modulates activity by a so-called "redox switch". The oxidized form in the absence of zinc is active, while the reduced form in the presence of zinc is inactive. X-ray crystal structures of Hsp33 invariably omit details of the C-terminal domain, which is truncated in protein constructs that are capable of forming crystals. We report the solution structure of a recombinant 61-residue protein containing the zinc-binding domain (residues 227-287) of Hsp33, in the presence of stoichiometric amounts of Zn2+. The zinc-bound protein is well folded, and forms a novel structure unlike other published zinc-binding domains. The structure consists of two helices at right-angles to each other, a two-stranded B-hairpin and a third helix at the C terminus. The zinc site comprises the side-chains of the conserved cysteine residues 232, 234, 262 and 265, and connects a short sequence before the first helix with the tight turn in the middle of the B-hairpin. The structure of the C-terminal zinc-binding domain suggests a mechanism for the operation of the redox switch: loss of the bound zinc ion disrupts the folded structure, allowing the ligand cysteine residues to be oxidized, probably to disulfide bonds. The observation that the C-terminal domain is poorly structured in the active oxidized form suggests that the loss of zinc and unfolding of the domain precedes the oxidation of the thiolate groups of the cysteine residues, since the formation of disulfides between distant parts of the domain sequence would presumably promote the formation of stable three-dimensional structure in the oxidized form.Hsp33 provides an example of a redox signaling system that utilizes protein folding and unfolding together with chemical modification for transduction of external stimuli, in this case oxidative stress, to activate the machinery of the cell that is designed to deal with that stress.  相似文献   

12.
As a human pathogen, Staphylococcus aureus must cope with oxidative stress generated by the human immune system. Here, we report that CymR utilizes its sole Cys-25 to sense oxidative stress. Oxidation followed by thiolation of this cysteine residue leads to dissociation of CymR from its cognate promoter DNA. In contrast, the DNA binding of the CymRC25S mutant was insensitive to oxidation and thiolation, suggesting that CymR senses oxidative stress through oxidation of its sole cysteine to form a mixed disulfide with low molecular weight thiols. The determined crystal structures of the reduced and oxidized forms of CymR revealed that Cys-25 is oxidized to Cys-25-SOH in the presence of H(2)O(2). Deletion of cymR reduced the resistance of S. aureus to oxidative stresses, and the resistance was restored by expressing a C25S mutant copy of cymR. In a C25S substitution mutant, the expression of two genes, tcyP and mccB, was constitutively repressed and did not respond to hydrogen peroxide stress, whereas the expression of the genes were highly induced under oxidative stress in a wild-type strain, indicating the critical role of Cys-25 in redox signaling in vivo. Thus, CymR is another master regulator that senses oxidative stress and connects stress responses to virulence regulation in S. aureus.  相似文献   

13.
The crystal structure of reduced tryparedoxin peroxidase shows Cys47 close to Gln82 and Trp137 and helix formation of residues 87 to 97 whereas the NMR structure of the reduced C76S mutant adopts a different conformation similar to the oxidized protein. Circular dichroism (CD), fluorescence and NMR spectroscopy reveal that the fully active C76S mutant differs from the wildtype (WT) enzyme mainly in its reduced form both in secondary structure content and Trp137 environment. This implies that Cys76 plays a critical role for the reduced enzyme assuming different conformational states and that the catalytic triad may only be necessary as short-lived intermediate during catalysis.  相似文献   

14.
C1r is the modular serine protease (SP) that mediates autolytic activation of C1, the macromolecular complex that triggers the classical pathway of complement. The crystal structure of a mutated, proenzyme form of the catalytic domain of human C1r, comprising the first and second complement control protein modules (CCP1, CCP2) and the SP domain has been solved and refined to 2.9 A resolution. The domain associates as a homodimer with an elongated head-to-tail structure featuring a central opening and involving interactions between the CCP1 module of one monomer and the SP domain of its counterpart. Consequently, the catalytic site of one monomer and the cleavage site of the other are located at opposite ends of the dimer. The structure reveals unusual features in the SP domain and provides strong support for the hypothesis that C1r activation in C1 is triggered by a mechanical stress caused by target recognition that disrupts the CCP1-SP interfaces and allows formation of transient states involving important conformational changes.  相似文献   

15.
Pseudouridine synthases catalyze the isomerization of uridine to pseudouridine (Psi) in rRNA and tRNA. The pseudouridine synthase RluF from Escherichia coli (E.C. 4.2.1.70) modifies U2604 in 23S rRNA, and belongs to a large family of pseudouridine synthases present in all kingdoms of life. Here we report the domain architecture and crystal structure of the catalytic domain of E.coli RluF at 2.6A resolution. Limited proteolysis, mass spectrometry and N-terminal sequencing indicate that RluF has a distinct domain architecture, with the catalytic domain flanked at the N and C termini by additional domains connected to it by flexible linkers. The structure of the catalytic domain of RluF is similar to those of RsuA and TruB. RluF is a member of the RsuA sequence family of Psi-synthases, along with RluB and RluE. Structural comparison of RluF with its closest structural homologues, RsuA and TruB, suggests possible functional roles for the N-terminal and C-terminal domains of RluF.  相似文献   

16.
Human electron transfer flavoprotein (ETF) is a soluble mitochondrial heterodimeric flavoprotein that links fatty acid β-oxidation to the main respiratory chain. The crystal structure of human ETF bound to medium chain acyl-CoA dehydrogenase indicates that the flavin adenine dinucleotide (FAD) domain (αII) is mobile, which permits more rapid electron transfer with donors and acceptors by providing closer access to the flavin and allows ETF to accept electrons from at least 10 different flavoprotein dehydrogenases. Sequence homology is high and low-angle X-ray scattering is identical for Paracoccus denitrificans (P. denitrificans) and human ETF. To characterize the orientations of the αII domain of P. denitrificans ETF, distances between enzymatically reduced FAD and spin labels in the three structural domains were measured by double electron-electron resonance (DEER) at X- and Q-bands. An FAD to spin label distance of 2.8 ± 0.15 nm for the label in the FAD-containing αII domain (A210C) agreed with estimates from the crystal structure (3.0 nm), molecular dynamics simulations (2.7 nm), and rotamer library analysis (2.8 nm). Distances between the reduced FAD and labels in αI (A43C) were between 4.0 and 4.5 ± 0.35 nm and for βIII (A111C) the distance was 4.3 ± 0.15 nm. These values were intermediate between estimates from the crystal structure of P. denitrificans ETF and a homology model based on substrate-bound human ETF. These distances suggest that the αII domain adopts orientations in solution that are intermediate between those which are observed in the crystal structures of free ETF (closed) and ETF bound to a dehydrogenase (open).  相似文献   

17.
The disulfide relay system in the mitochondrial intermembrane space drives the import of proteins with twin CX9C or twin CX3C motifs by an oxidative folding mechanism. This process requires disulfide bond transfer from oxidized Mia40 to a substrate protein. Reduced Mia40 is reoxidized/regenerated by the FAD-linked sulfhydryl oxidase Erv1 (EC 1.8.3.2). Full-length Erv1 consists of a flexible N-terminal shuttle domain (NTD) and a conserved C-terminal core domain (CTD). Here, we present crystal structures at 2.0 Å resolution of the CTD and at 3.0 Å resolution of a C30S/C133S double mutant of full-length Erv1 (Erv1FL). Similar to previous homologous structures, the CTD exists as a homodimer, with each subunit consisting of a conserved four-helix bundle that accommodates the isoalloxazine ring of FAD and an additional single-turn helix. The structure of Erv1FL enabled us to identify, for the first time, the three-dimensional structure of the Erv1NTD, which is an amphipathic helix flanked by two flexible loops. This structure also represents an intermediate state of electron transfer from the NTD to the CTD of another subunit. Comparative structural analysis revealed that the four-helix bundle of the CTD forms a wide platform for the electron donor NTD. Moreover, computational simulation combined with multiple-sequence alignment suggested that the amphipathic helix close to the shuttle redox enter is critical for the recognition of Mia40, the upstream electron donor. These findings provide structural insights into electron transfer from Mia40 via the shuttle domain of one subunit of Erv1 to the CTD of another Erv1 subunit.  相似文献   

18.
Fms1 is a rate-limiting enzyme for the biosynthesis of pantothenic acid in yeast. Fms1 has polyamine oxidase (PAO) activity, which converts spermine into spermidine and 3-aminopropanal. The 3-aminopropanal is further oxidized to produce beta-alanine, which is necessary for the biosynthesis of pantothenic acid. The crystal structures of Fms1 and its complex with the substrate spermine have been determined using the single-wavelength anomalous diffraction (SAD) phasing method. Fms1 consists of an FAD-binding domain, with Rossmann fold topology, and a substrate-binding domain. The active site is a tunnel located at the interface of the two domains. The substrate spermine binds to the active site mainly via hydrogen bonds and hydrophobic interactions. In the complex, C11 but not C9 of spermine is close enough to the catalytic site (N5 of FAD) to be oxidized. Therefore, the products are spermidine and 3-aminopropanal, rather than 3-(aminopropyl) 4-aminobutyraldehyde and 1,3-diaminoprone.  相似文献   

19.
Tetraloops are very abundant structural elements of RNA that are formed by four nucleotides in a hairpin loop which is closed by a double stranded helical stem with some Watson-Crick base pairs. A tetraloop r(GCGAAGGC) was identified from the crystal structure of the central domain of 16S rRNA (727-730) in the Thermus thermophilus 30S ribosomal complex. The crystal structure of the 30S complex includes a total of 104 nucleotides from the central domain of the 16S rRNA and three ribosomal proteins S6, S15 and S18. Independent biochemical experiments have demonstrated that protein S15 plays the role in initiating the formation of the central domain of this complex. In the crystal, the tetraloop interacts with the protein S15 at two sites: one of them is associated with hydrogen bond interactions between residue His50 and nucleotide G730, and the other is associated with the occurrence of residue Arg53 beside A728. This paper uses molecular dynamics (MD) simulations to investigate the protein-dependent structural stability of the tetraloop and demonstrates the folding pathway of this tetraloop via melting denaturation and its subsequent refolding. Three important results are derived from these simulations: (i) The stability of nucleotide A728 appears to be protein dependent. Without the interaction with S15, A728 flips away from stacking with A729. (ii) The melting temperature demonstrated by the simulations is analogous to the results of thermodynamic experiments. In addition, the simulated folding of the tetraloop is stepwise: the native shape of the backbone is formed first; this is then followed by the formation of the Watson- Crick base pairs in the stem; and finally the hydrogen bonds and base stacking in the loop are formed. (iii) The tetraloop structure is similar to the crystal structure at salt concentrations of 0.1 M and 1.0 M used for the simulations, but the refolded structure at 0.1 M salt is more comparable to the crystal structure than at 1.0 M. The results from the simulations using both the Generalized Born continuum model and explicit solvent model (Particle Mesh Ewald) generate a similar pathway for unfolding/refolding of the tetraloop.  相似文献   

20.
Yang KY  Swenson RP 《Biochemistry》2007,46(9):2298-2305
Nonresonance Raman spectroscopy has been used to investigate the protein-flavin interactions of the oxidized and anionic semiquinone states of the electron-transfer flavoprotein from the methylotrophic bacteria W3A1 (wETF) in solution. Several unique features of oxidized wETF were revealed from the Raman data. The unusually high frequency of the Raman band for the C(4)=O of the flavin suggests that hydrogen-bonding interactions with the C(4)O are very weak or nonexistent in wETF. In contrast, hydrogen bonding with the C(2)=O is one of the strongest among the flavoproteins investigated thus far. According to the crystal structure, the side-chain hydroxyl group of alphaSer254 serves as a hydrogen bond donor to the N(5) atom in the oxidized flavin cofactor in wETF. The replacement of alphaSer254 by cysteine by site-directed mutagenesis resulted in shifts in N(5)-relevant Raman bands in both the oxidized and anionic semiquinone states of the protein. These results confirm the presence of the hydrogen-bonding interaction at N(5) that is evident in the crystal structure of the oxidized protein and that it persists in the one-electron reduced state. The data suggest that these bands can serve as useful Raman markers for the N(5) interactions in both oxidation states of flavoproteins. The wETF displays unusually low frequencies of flavin ring I (o-xylene ring) relevant bands, which suggests a ring I microenvironment different from most of the other flavoproteins. As indicated by Raman data, the alphaS254C mutation changed the environment of ring I, perhaps as the consequence of changes in the mobility of the FAD domain of wETF. These unusual flavin-protein interactions may be associated with the unique redox properties of wETF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号