首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the effect of tetanus toxin on clonal neuroblastoma X glioma hybrid cells, NG108-15, by intracellular microelectrode studies of passive membrane electrical properties and action potentials generated under various conditions. Binding of tetanus toxin to the surface of the cells was demonstrated by indirect immunofluorescent staining but no morphological alteration was observed in tetanus toxin-treated cells under a phase contrast microscope. These is no significant difference between the tetanus toxin-treated and untreated cells in their passive electrical membrane properties, i.e. resting membrane potentials, input resistances, time constants and input capacities. Cells in 120 mM Na+, 2 mM Ca2+ salt solution showed Na spikes, and cells in high Ca2+ (30 mM), Na+-free salt solution showed Ca spikes in response to depolarizing current pulses. While the Na spike was not affected by tetanus toxin, the Ca spike was blocked by the toxin. The minimum dose of tetanus toxin for maximum suppression of the peak potential level of the Ca spike was 250 ng/ml. Addition of tetraethyl ammonium (TEA) to extracellular fluid enhanced the Ca spike in untreated cells. In toxin-treated cells, TEA did not alter the effect of tetanus toxin on the Ca spike. Blockade of the Ca spike by tetanus toxin could be detected even at low extracellular Ca2+ concentration (10 mM) by adding TEA to the extracellular fluid and adjusting the membrane potential to a steady hyperpolarized level (-80 mV) to ensure optimal and uniform electrical responses. The usefulness of NG108-15 hybrid cells for in vitro investigations on the mechanism of action of tetanus toxin was discussed.  相似文献   

2.
The effect of Ba2+, TEA, 4-AP and CoCl2 on the EPSP and spike discharges recorded from single fibres of the posterior nerve in the isolated frog labyrinth has been investigated. In Ca-free solution Ba2+ preserved, at low concentration (0.3 mM), the resting activity and at higher levels (up to 6 mM) it resulted in a pronounced facilitation of the EPSP and spike discharges. Facilitation increased on increasing Ba2+ concentration up to 4-5 mM and it was more evident in those units exhibiting a low resting spike firing. The effect of Ba2+ (1 mM) was completely antagonized by 10 mM Ca2+ X CoCl2 (3 mM) suppressed the resting rate at the normal external Ca2+ concentration; the Co2+ block was partially relieved by 1.8 mM Ba2+ X TEA (20 mM) evoked a clear-cut increase in the EPSP and spike discharges which, however, was less consistent than that produced by Ba2+. By comparing the effect of TEA on the spike frequency with that obtained at different Ba2+ levels, the Ba2+ capacity to carry the Ca2+ current was dissected. Such an effect is dose-dependent and it is more evident in low-frequency units. Conversely, 4-AP did not affect the resting discharge frequency. These results indicate that either the Ca2+ or the Ba2+ current sustain the transmitter release at the cyto-neural junction. The effect of TEA suggests that the Ca2+-dependent K+ current may play an important role in supporting the neurosecretory process by controlling the membrane potential of the hair cells.  相似文献   

3.
Ca2+ treatment renders the outer membrane of Escherichia coli reversibly permeable for macromolecules. We investigated whether Ca2+-induced uptake of exogenous protein into the periplasm occurs by mechanisms similar to Ca2+-induced uptake of DNA into the cytoplasm during transformation. Protein import through the outer membrane was monitored by measuring reconstitution of maltose transport after the addition of shock fluid containing maltose-binding protein. DNA import through the outer and inner membrane was measured by determining the efficiency of transformation with plasmid DNA. Both processes were stimulated by increasing Ca2+ concentrations up to 400 mM. Plasmolysis was essential for a high efficiency; reconstitution and transformation could be stimulated 5- and 40-fold, respectively, by a high concentration of sucrose (400 mM) in cells incubated with a suboptimal Ca2+ concentration (50 mM). The same divalent cations that promote import of DNA (Ca2+, Ba2+, Sr2+, Mg2+, and Ni2+) also induced import of protein. Ca2+ alone was found to be inefficient in promoting reconstitution; successive treatment with phosphate and Ca2+ ions was essential. Transformation also was observed in the absence of phosphate, but could be stimulated by pretreatment with phosphate. The optimal phosphate concentrations were 100 mM and 1 to 10 mM for reconstitution and transformation, respectively. Heat shock, in which the cells are rapidly transferred from 0 to 42 degrees C, affected the two processes differently. Incubation of cells at 0 degrees C in Ca2+ alone allows rapid entry of protein, but not of DNA. Transformation was observed only when exogenous DNA was still present during the heat shock. Shock fluid containing maltose-binding protein inhibited transformation (with 6 microgram of DNA per ml, half-maximal inhibition occurred at around 300 microgram of shock fluid per ml). DNA inhibited reconstitution (with 5 microgram of shock fluid per ml, half-maximal inhibition occurred at around 3 mg of DNA per ml).  相似文献   

4.
Action potential-driven current transients were recorded from sensory cilia and used to monitor the spike frequency generated by olfactory receptor neurons, which were maintained in their natural position in the sensory epithelium. Both basal and messenger-induced activities, as elicited with forskolin or cyclic nucleotides, were dependent on the presence of mucosal Na+. The spike rate decreased to approximately 20% when mucosal Na+ was lowered from 120 to 60 mM (replaced by N-methyl-D-glucamine+), without clear changes in amplitude and duration of the recorded action potential-driven transients. Mucosal Ca2+ and Mg2+ blocked spike discharge completely when increased from 1 to 10 mM in Ringer solution. Lowering mucosal Ca2+ below 1 mM increased the spike rate. These results can be explained by the presence of a cyclic nucleotide-dependent, Ca(2+)-sensitive cation conductance, which allows a depolarizing Na+ inward current to flow through the apical membrane of in situ receptor cells. A conductance with these properties, thought to provide the receptor current, was first described for isolated olfactory cells by Nakamura and Gold (1987. Nature (Lond.). 325:442-444). The forskolin-stimulated spike rate decreased when l-cis-diltiazem, a known blocker of the cyclic nucleotide-dependent receptor current, was added to the mucosal solution. Spike rate also decreased when the mucosal K+ concentration was lowered. Mucosal Ba2+ and 4-aminopyridine, presumably by means of cell depolarization, rapidly increased the spike rate. This suggests the presence of apical K+ channels that render the receptor cells sensitive to the K+ concentration of the olfactory mucus. With a slower time course, mucosal Ba2+ and 4-aminopyridine decreased the amplitude and caused rectification of the fast current transients (prolongation of action potentials). Abolishment of the apical Na+ current (by removal of mucosal Na+), as indicated by a strong decrease in spike rate, could be counteracted by adding 10 mM Ba2+ or 1 mM 4-aminopyridine to the mucosal solution, which re-established spiking. Similarly, blockage of the apical cation conductance with 10 mM Ca could be counteracted by adding 10 mM Ba2+ or by raising the mucosal K+ concentration. Thus mucosal concentrations of Na+, K+, and Ca2+ will jointly affect the sensitivity of odor detection.  相似文献   

5.
The membrane ionic conductances of dispersed parathyroid cells kept in primary culture were studied using the "whole-cell" and "inside-out excised patch" variants of the patch-clamp technique. The major component of the total current was a voltage-dependent outward K+ current without an appreciable inward current. The amplitude of the K+ current was markedly reduced when free internal Ca2+ was buffered by addition of 10 mM EGTA. Recordings of single-channel current in excised membrane patches revealed the presence of K+ channels with large unitary conductance (200 pS in symmetrical 130 mM K+ solutions) which were also activated by depolarization when internal Ca2+ concentration was about 10(-5)-10(-6) M. At any membrane voltage these channels were closed most of the time at internal Ca2+ concentrations lower than 10(-10) M. These results demonstrate the existence of a Ca2+- and voltage-dependent K+ permeability in parathyroid cells which may participate in the unusual membrane potential changes induced by alterations of external Ca2+ and, possibly, in the regulation of parathormone secretion.  相似文献   

6.
The effects of substrate condition and ADP beta S on the pCa2+-tension relationships were investigated, using alpha-toxin permeabilized rabbit mesenteric artery at 37 degrees C. The contraction induced by 10 microM Ca2+ solution after permeabilization was as large as that induced by 145 mM K+ PSS solution containing 10 microM NE in the intact tissue, indicating that the majority of the cells were permeabilized. The Ca2+ sensitivity was greatly affected by the substrate condition and increasing the ratio of ATP/CP induced a leftward shift of the pCa2+-tension curve. Addition of 100 microM ADP beta S had a similar effect. When the ATP/CP ratio was high, the 0.1 microM Ca2+ solution relaxed the tissue precontracted by 10 microM Ca2+ solution more slowly showing hysteresis. One mM vanadate, which is reported to relax muscle by forming actomyosin-ADP-Vi (AM-ADP-Vi), completely inhibited both contractions induced by 0.18 microM Ca2+ solution containing 2 mM MgADP and 0.3 microM Ca2+ solution containing 0.3 microM PDBu. These results indicated that the population of AM-ADP complex in the crossbridge had increased due to the accumulation of ADP inside the tissue or activation of PKC and that the inhibition of ADP release from AM-ADP complex may be playing a key role in increasing Ca2+ sensitivity of myofilaments.  相似文献   

7.
Histamine, released from mast cells, can modulate the activity of intrinsic neurons in the guinea pig cardiac plexus. The present study examined the ionic mechanisms underlying the histamine-induced responses in these cells. Histamine evokes a small membrane depolarization and an increase in neuronal excitability. Using intracellular voltage recording from individual intracardiac neurons, we were able to demonstrate that removal of extracellular sodium reduced the membrane depolarization, whereas inhibition of K+ channels by 1 mM Ba2+, 2 mM Cs+, or 5 mM tetraethylammonium had no effect. The depolarization was also not inhibited by either 10 microM Gd3+ or a reduced Cl- solution. The histamine-induced increase in excitability was unaffected by K+ channel inhibitors; however, it was reduced by either blockage of voltage-gated Ca2+ channels with 200 microM Cd2+ or replacement of extracellular Ca2+ with Mg2+. Conversely, alterations in intracellular calcium with thapsigargin or caffeine did not inhibit the histamine-induced effects. However, in cells treated with both thapsigargin and caffeine to deplete internal calcium stores, the histamine-induced increase in excitability was decreased. Treatment with the phospholipase C inhibitor U73122 also prevented both the depolarization and the increase in excitability. From these data, we conclude that histamine, via activation of H1 receptors, activates phospholipase C, which results in 1) the opening of a nonspecific cation channel, such as a transient receptor potential channel 4 or 5; and 2) in combination with either the influx of Ca2+ through voltage-gated channels or the release of internal calcium stores leads to an increase in excitability.  相似文献   

8.
1. Formation of inositol phosphates (InsPs) was measured in cross-chopped slices or dispersed cells, isolated by collagenase treatment, of guinea-pig ileum longitudinal smooth muscle pre-labelled with [3H]inositol. 2. Elevation of the extracellular K+ concentration by equimolar replacement of Na+ induced accumulation of InsPs in the dispersed cells and in the tissue slices. These effects were blocked by neither tetrodotoxin (1 microM) nor atropine (10 microM), and were approximately additive with carbachol-induced accumulation. 3. In the tissue slices, the response to K+ was partially inhibited by nifedipine (10 microM) and by CdCl2 (0.3 mM), but the carbachol-induced response was not altered. 4. Accumulation of InsPs induced by KCl-excess solution (high-K+ solution without Na+ replacement) was suppressed strongly by nifedipine and completely by CdCl2. The response to KCl excess was approx. 40% of that to high K+ with Na+ replacement. 5. Low-NaCl solution (replacement of NaCl with equimolar sucrose) also produced InsPs, and this was not blocked by either nifedipine (10 microM) or CdCl2 (0.3 mM). 6. The formation of InsPs by a maximally effective concentration of carbachol (1 mM) in the presence of KCl excess or low NaCl was greater than the additive effect of the two stimuli on their own. Enhancement of the carbachol-induced response by KCl excess disappeared in the presence of CdCl2 (0.3 mM). 7. These data suggest that formation of InsPs induced by high-K+ solution with equimolar replacement of Na+ consists of two components, i.e. high-K+-induced inositol-phospholipid hydrolysis by Ca2+ entry through voltage-sensitive channels, and low-Na+-induced formation of InsPs, insensitive to Ca2+ antagonists, but that both of them do not contribute significantly to the activation of phospholipase C by muscarinic stimuli.  相似文献   

9.
Apical membrane H+ extrusion in the renal outer medullary collecting duct, inner stripe, is mediated by a Na(+)-independent H+ pump. To examine the regulation of this transporter, cell pH and cell Ca2+ were measured microfluorometrically in in vitro perfused tubules using 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein and fura-2, respectively. Apical membrane H+ pump activity, assayed as cell pH recovery from a series of acid loads (NH3/NH+4 prepulse) in the total absence of ambient Na+, initially occurred at a slow rate (0.06 +/- 0.02 pH units/min), which was not sufficient to account for physiologic rates of H+ extrusion. Over 15-20 min after the initial acid load, the rate of Na(+)-independent cell pH recovery increased to 0.63 +/- 0.09 pH units/min, associated with a steady-state cell pH greater than the initial pre-acid load cell pH. This pattern suggested an initial suppression followed by a delayed activation of the apical membrane H+ pump. Replacement of peritubular Na+ with choline or N-methyl-D-glucosamine resulted in an initial spike increase in cell Ca2+ followed by a sustained increase in cell Ca2+. The initial rate of Na(+)-independent cell pH recovery could be increased by elimination of the Na+ removal-induced sustained cell Ca2+ elevation by: (a) performing studies in the presence of 135 mM peritubular Na+ (1 mM peritubular amiloride used to inhibit basolateral membrane Na+/H+ antiport); (b) clamping cell Ca2+ low with dimethyl-BAPTA, an intracellular Ca2+ chelating agent; or (c) removal of extracellular Ca2+. Cell acidification induced a spike increase in cell Ca2+. The late acceleration of Na(+)-independent cell pH recovery was independent of Na+ removal and of the method used to acidify the cell, but was eliminated by prevention of the cell Ca2+ spike and markedly delayed by the microfilament-disrupting agent, cytochalasin B. This study demonstrates that peritubular Na+ removal results in a sustained elevation in cell Ca2+, which inhibits the apical membrane H+ pump. In addition, rapid cell acidification associated with a spike increase in cell Ca2+ leads to a delayed activation of the H+ pump. Thus, cell Ca2+ per se, or a Ca(2+)-activated pathway, can modulate H+ pump activity.  相似文献   

10.
Ca2+-induced down-regulation of Na+ channels in toad bladder epithelium   总被引:1,自引:0,他引:1  
Regulation of epithelial Na+ channels was investigated by measuring the amiloride-blockable 22Na+ fluxes in apical membrane vesicles, derived from cells exposed to various treatments. Maximal amiloride-blockable 22Na+ uptake into vesicles was obtained if the cells were preincubated at 25 degrees C in a Ca2+-free [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) solution. Including 10(-5) M Ca2+ in the cell incubating medium blocked nearly all of the amiloride-sensitive flux in vesicles, even though the Ca2+ was removed before homogenization of the cells. This Ca2+-dependent inhibition of Na+ channels could be induced in whole cells only; incubating cell homogenates with Ca2+ had no effect on the transport in vesicles. The dose-response relationships of this effect were measured by equilibrating cell aliquots with various Ca2+-EGTA buffers, preparing membrane vesicles (in the absence of Ca2+ ions), and assaying them for amiloride-sensitive Na+ permeability. It was found that the Ca2+ blockage is highly cooperative (Hill coefficient of nearly 4) and is characterized by an inhibition constant which varies between 6.4 X 10(-8) to 8.15 X 10(-6)M Ca2+. Thus, it is likely that the above process is involved in the physiological control of Na+ transport. The Ca2+-dependent transport changes were not affected by the calmodulin inhibitor trifluoperasine, vanadate (VO3-), phorbol ester, colchicine, cytochalasin B, 3-deazaadenosine, and 8-bromo-cAMP. Vanadyl (VO2+) ions, on the other hand, produced a "Ca2+-like" inhibition of transport.  相似文献   

11.
Ward SM  Kenyon JL 《Cell calcium》2000,28(4):233-246
In order to learn about the endogenous Ca2+-buffering in the cytoplasm of chick dorsal root ganglion (DRG) neurons and the distance separating the ryanodine receptor Ca2+ release channels (RyRs) from the plasma membrane, we monitored the amplitude and time course of Ca2+-activated Cl- currents (I(ClCa)) in protocols that manipulated Ca2+-buffering. I(ClCa)was activated by Ca2+ influx via voltage-gated Ca2+ channels or by Ca2+ release via RyRs activated by 10 mM caffeine. I(ClCa)was measured in neurons at 20 degrees C and 35 degrees C using the amphotericin perforated patch technique that preserves endogenous Ca2+-buffering, or at 20 degrees C in neurons dialyzed with pipette solutions designed to replace the endogenous Ca2+ buffers. The amplitude of I(ClCa)activated by Ca2+ influx or Ca2+ at 20 degrees C was similar in the amphotericin neurons and neurons dialyzed with an 'unbuffered' pipette solution containing 10 mM citrate and 3 mM ATP as the only Ca2+ binding molecules. Thus, endogenous mobile Ca2+ buffers are relatively unimportant in chick DRG neurons. Warming the neurons from 20 degrees C to 35 degrees C increased the amplitude and the rate of deactivation of I(ClCa)consistent with an increased rate of Ca2+ buffering by fixed endogenous Ca2+-buffers. Dialysis with 2 mM EGTA/0.1 microM free Ca2+ reduced the amplitude and increased the rate of deactivation of I(ClCa)activated by Ca2+ influx and abolished I(ClCa)activated by Ca2+ release. Dialysis with 2 mM BAPTA/0.1 microM free Ca2+ abolished I(ClCa)activated by Ca2+ influx or release. Dialysis with 42 mM HEEDTA/0.5 microM free Ca2+ caused the persistent activation of I(ClCa). Calculations using a Ca2+-diffusion model suggest that the voltage-gated Ca2+ channels and the Ca2+-activated Cl- channels are separated by 50-400 nm and that the RyRs are more than 600 nm from the plasma membrane.  相似文献   

12.
In reconstituted human red blood cells a difference was found in (Ca2+ + Mg2+)-ATPase activity and in Ca2+ efflux at 37 degrees C, depending on the side of the membrane at which the monovalent cations K+ and Na+ were placed. Under the conditions used, (Ca2+ + Mg2+)-ATPase activity and Ca2+ efflux was highest when K+ (35 +/- 0.5 mM (+/- S.E.), mean of four experiments) was at the inside and Na+ (130 mM) at the outside of the ghost membrane.  相似文献   

13.
Mechanisms underlying action potential generation in the newt olfactory receptor cell were investigated by using the whole-cell version of the patch-clamp technique. Isolated olfactory cells had a resting membrane potential of -70 +/- 9 mV. Injection of a depolarizing current step triggered action potentials under current clamp condition. The amplitude of the action potential was reduced by lowering external Na+ concentration. After a complete removal of Na+, however, cells still showed action potentials which was abolished either by Ca2+ removal or by an application of Ca2+ channel blocker (Co2+ or Ni2+), indicating an involvement of Ca2+ current in spike generation of newt olfactory receptor cells. Under the voltage clamp condition, depolarization of the cell to -40 mV from the holding voltage of -100 mV induced a fast transient inward current, which consisted of Na+ (INa) and T-type Ca2+ (ICa.T) currents. The amplitude of ICa,T was about one fourth of that of INa. Depolarization to more positive voltages also induced L-type Ca2+ current (ICa,L). ICa,L was as small as a few pA in normal Ringer solution. The activating voltage of ICa,T was approximately 10 mV more negative than that of INa. Under current clamp, action potentials generated by a least effective depolarization was almost completely blocked by 0.1 mM Ni2+ (a specific T-type Ca2+ channel blocker) even in the presence of Na+. These results suggest that ICa,T contributes to action potential in the newt olfactory receptor cell and lowers the threshold of spike generation.  相似文献   

14.
Agonist-specific cytosolic Ca2+ oscillation patterns can be observed in individual cells and these have been explained by the co-existence of separate oscillatory mechanisms. In pancreatic acinar cells activation of muscarinic receptors typically evokes sinusoidal oscillations whereas stimulation of cholecystokinin (CCK) receptors evokes transient oscillations consisting of Ca2+ waves with long intervals between them. We have monitored changes in the cytosolic Ca2+ concentration ([Ca2+]i) by measuring Ca2(+)-activated Cl- currents in single internally perfused mouse pancreatic acinar cells. With minimal intracellular Ca2+ buffering we found that low concentrations of both ACh (50 nM) and CCK (10 pM) evoked repetitive short-lasting Ca2+ spikes of the same duration and frequency, but the probability of a spike being followed by a longer and larger Ca2+ wave was low for ACh and high for CCK. The probability that the receptor-evoked shortlasting Ca2+ spikes would initiate more substantial Ca2+ waves was dramatically increased by intracellular perfusion with solutions containing high concentrations of the mobile low affinity Ca2+ buffers citrate (10-40 mM) or ATP (10-20 mM). The different Ca2+ oscillation patterns normally induced by ACh and CCK would therefore appear not to be caused by separate mechanisms. We propose that specific receptor-controlled modulation of Ca2+ signal spreading, either by regulation of Ca2+ uptake into organelles and/or cellular Ca2+ extrusion, or by changing the sensitivity of the Ca2(+)-induced Ca2+ release mechanism, can be mimicked experimentally by different degrees of cytosolic Ca2+ buffering and can account for the various cytosolic Ca2+ spike patterns.  相似文献   

15.
An acid-stable phosphoprotein was formed in a microsomal membrane fraction isolated from bovine aortic smooth muscle in the presence of Mg2+ + ATP and Ca2+. The microsomes also showed Ca2+ uptake activity. The Ca2+ dependence of phosphoprotein formation and of Ca2+ uptake occurred over the same range of Ca2+ concentration (1-10 microM), and resembled similar findings from rabbit skeletal microsomes. The molecular weight of the phosphorylated protein, estimated by SDS-gel electrophoresis, was approximately 105,000. The phosphoprotein was labile at alkaline pH, and its decomposition was accelerated by hydroxylamine. Half-maximum incorporation of 32P in the presence of 10 microM Ca2+ occurred at 60 nM ATP. The calcium-dependent phosphoprotein formation was not affected by 5 mM NaN3, but was inhibited in a dose-dependent fashion by ADP with a 50% inhibition occurring at 180 microM. Fifty mM MgCl2 was required for the maximal phosphorylation. The rate of phosphoprotein decomposition after adding 2 mM EGTA was accelerated by varying the Mg2+ concentration from 10 microM to 3 mM. Alkaline pH (9.0) slowed the rate of phosphoprotein decay. Optimal Ca2+-dependent phosphoprotein occurred at 15 degrees C over a broad pH range (6.4 to 9.0). The activation energy of EGTA-induced phosphoprotein decomposition was 25.6 kcal/mol between 0 and 16 degrees C and 14.6 kcal/mol between 16 and 30 degrees C. The phosphoprotein formed by aortic microsomes was thus quite similar to the acid-stable phosphorylated intermediate of the Ca2+-transport ATPase of sarcoplasmic reticulum from skeletal and cardiac muscle. These data suggest that the Ca2+-dependent phosphoprotein is a reaction intermediate of the Ca2+,Mg2+-ATPase of the aortic microsomes.  相似文献   

16.
Oxytocin-induced Ca2+ responses in human myometrial cells   总被引:1,自引:0,他引:1  
Complex spatiotemporal changes in intracellular Ca2+ were monitored in an immortalized human myometrial cell line (PHM1-41) and first-passage human myometrial cells after oxytocin stimulation (1. 0-1000 nM). Laser cytometry revealed intracellular Ca2+ oscillations in both culture systems starting at 1.0 nM, which were followed by repetitive Ca2+ transients by 10-15 min that lasted for at least 90 min. The amplitude of the initial Ca2+ spike was dose dependent, while the frequency of Ca2+ oscillations identified by Fast Fourier Transform (FFT) tended to increase with dose. Removal of oxytocin resulted in termination of oscillations. Analysis of the sources of the Ca2+ involved in oscillations indicated that the major contribution to oscillation frequencies of 相似文献   

17.
The effect of Bay K 8644 on the electrical activity of the smooth muscle cells in the main pulmonary artery of the rabbit was examined. In normal physiological solution, the resting membrane potential was -56 +/- 0.6 mV, and the cells were electrically quiescent. Tetraethylammonium (5 mM) depolarized the membrane to about -45 mV, and electrical stimulation elicited action potentials. To suppress contractile responses and thereby facilitate sustained impalements, the muscle strips were bathed with a hypertonic solution containing sucrose. The mean amplitude of the tetraethylammonium-induced action potentials in the hypertonic solution was 35 +/- 0.9 mV. The action potentials were dependent upon the extracellular Ca2+ concentration and were abolished by diltiazem (10(-6) M). Spontaneous action potentials were occasionally generated in the presence of tetraethylammonium alone and could be induced by the further addition of Ba2+ (0.5 mM). The Ca2+ agonist Bay K 8644 (10(-8) to 10(-6) M) had no effect on the resting membrane potential or excitability in normal solution. However, in the hypertonic solution containing tetraethylammonium, Bay K 8644 caused a further depolarization and oscillatory potential changes, which were not prevented by tetrodotoxin. The oscillations were suppressed or abolished by diltiazem or nilvadipine. Thus, active responses can occur in the normally quiescent smooth muscle cells of the rabbit pulmonary artery when the outward K+ current(s) are suppressed.  相似文献   

18.
Ca2+-activated Na+ fluxes in human red cells. Amiloride sensitivity   总被引:4,自引:0,他引:4  
The effect of Ca2+ on the ouabain- and bumetanide-resistant Na+ fluxes in intact red cells was studied at relatively constant internal Ca2+, membrane potential, and cell volume. The red cell calcium concentration was modified using the ionophore A23187. In fresh red cells, the Na+ influx and efflux (1.2 +/- 0.13 and 0.26 +/- 0.07 mmol/liter cells x h, respectively) were not affected by amiloride (1 mM). When external Ca2+ was raised from 0 to 150 microM, in the presence of A23187, both the Na+ influx and efflux were stimulated (about 3.5-fold). The Ca2+-activated Na+ efflux and influx had an apparent Km for activation by Ca2+o of about 25 microM. The Ca2+-dependent Na+ transport was inhibited 30-60% by amiloride (ID50 = 17.3 +/- 8 microM). Amiloride, however, had no effect on the Ca2+-dependent K+ influx. The amiloride-sensitive (AS) transport pathway was a linear function of the Na+o concentration in the range from 0 to 75 mM. The Ca2+i activation seems to depend on the metabolic integrity of red cells. 1) It does not take place in ATP-depleted red cells; 2) ATP-repletion of ATP-depleted red cells fully restored AS Na influx; and 3) ATP-enrichment (ATP-red cells) enhanced the AS Na influx by about 100%. The Ca2+-activated AS Na+ influx was not affected by either DIDS or trifluoperazine. The present results indicate that in human erythrocytes an increase in internal Ca2+ activates on otherwise silent AS Na+-transport system, which is dependent on the metabolic integrity of the red cells.  相似文献   

19.
Bradykinin-induced K+ currents, membrane hyperpolarization, as well as rises in cytoplasmic Ca2+ and cGMP levels were studied in endothelial cells cultured from pig aorta. Exposure of endothelial cells to 1 microM bradykinin induced a whole-cell K+ current and activated a small-conductance (approximately 9 pS) K+ channel in on-cell patches. This K+ channel lacked voltage sensitivity, was activated by increasing the Ca2+ concentration at the cytoplasmic face of inside-out patches and blocked by extracellular tetrabutylammonium (TBA). Bradykinin concomitantly increased membrane potential and cytoplasmic Ca2+ of endothelial cells. In high (140 mM) extracellular K+ solution, as well as in the presence of the K(+)-channel blocker TBA (10 mM), bradykinin-induced membrane hyperpolarization was abolished and increases in cytoplasmic Ca2+ were reduced to a slight transient response. Bradykinin-induced rises in intracellular cGMP levels which reflect Ca(2+)-dependent formation of EDRF(NO) were clearly attenuated in the presence of TBA (10 mM). Our results suggest that bradykinin hyperpolarizes pig aortic endothelial cells by activation of small-conductance Ca(2+)-activated K+ channels. Opening of these K+ channels results in membrane hyperpolarization which promotes Ca2+ entry, and consequently, NO synthesis.  相似文献   

20.
Patch-clamp whole-cell and single-channel current recordings were made from pig pancreatic acinar cells to test the effects of quinine, quinidine, Ba2+ and Ca2+. Voltage-clamp current recordings from single isolated cells showed that high external concentrations of Ba2+ or Ca2+ (88 mM) abolished the outward K+ currents normally associated with depolarizing voltage steps. Lower concentrations of Ca2+ only had small inhibitory effects whereas 11 mM Ba2+ almost blocked the K+ current. 5.5 mM Ba2+ reduced the outward K+ current to less than 30% of the control value. Both external quinine and quinidine (200-500 microM) markedly reduced whole-cell outward K+ currents. In single-channel current studies it was shown that external Ba2+ (1-5 mM) markedly reduced the probability of opening of high-conductance Ca2+ and voltage-activated K+ channels whereas internal Ba2+ (6 X 10(-6) to 3 X 10(-5) M) caused activation at negative membrane potentials and inhibition at positive potentials. Quinidine (200-400 microM) evoked rapid chopping of single K+ channel openings acting both from the outside and inside of the membrane and in this way markedly reduced the total current passing through the channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号