首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Pohl  B M Dunn 《Biochemistry》1988,27(13):4827-4834
The possibility that pig pepsin has a cation binding specificity in its secondary binding subsites has been examined by the pepsin-catalyzed hydrolysis of a series of synthetic octa- to undecapeptide substrates. These chromophoric substrates are cleaved by pepsin in the phenylalanyl-p-nitrophenylalanyl (Phe-Nph) bond. Lys and Arg residues were placed into seven different positions in the substrates, and their effect on kcat and Km was examined between pH 2.8 and pH 5.8 (I = 0.1 M, 37 degrees C). Kinetic evidence indicates the existence in the enzyme binding subsites S4, S3, S2, S3', S4', and S5' of a group(s) which become(s) negatively charged at higher pH. For most substrates, the magnitude as well as the pH dependence of kcat was unaffected by the presence of Lys or Arg in these peptides. In contrast, changes up to 5 orders of magnitude were observed for Km, depending on the number of basic residues and on their positions in the sequence. Km for a group of substrates at pH greater than 5.5 was lower than 50 nM. Values for kcat/Km for some substrates exceed the level of 10(8) M-1 s-1. Therefore, the free energy derived from ionic interactions in secondary binding sites influences mostly the binding step on the reaction pathway. This result is in contrast to the previous observations that the length and the hydrophobic character of the substrate residues in some positions influence kcat with little effect on Km toward shorter substrates of pepsin [Fruton, J. (1976) Adv. Enzymol. Relat. Areas Mol. Biol. 44, 1-36].  相似文献   

2.
Three synthetic substrates H-Arg-NH-Mec, Bz-Arg-NH-Mec and H-Cit-NH-Mec (Bz, Benzoyl; NH-Mec, 4-methylcoumaryl-7-amide; Cit, citrulline) were used to characterize specificity requirements for the P1-S1 interaction of cathepsin H from rat liver. From rapid equilibrium kinetic studies it was shown that Km, kcat and the specificity constants kcat/Km are quite similar for substrates with a free alpha-amino group. In contrast, a 25-fold decrease of kcat/Km was observed for the N-terminal-blocked substrate Bz-Arg-NH-Mec. The activation energies for H-Arg-NH-Mec and Bz-Arg-NH-Mec were determined to be 37 kJ/mol and 55 kJ/mol, respectively, and the incremental binding energy delta delta Gb of the charged alpha-amino group was estimated to -8.1 kJ/mol at pH 6.8. The shown preference of cathepsin H for the unblocked substrates H-Arg-NH-Mec and H-Cit-NH-Mec was further investigated by inspection of the pH dependence of kcat/Km. The curves of the two substrates with a charged alpha-amino group showed identical bell-shaped profiles which both exhibit pKa1 and pKa2 values of 5.5 and 7.4, respectively, at 30 degrees C. The residue with a pKa1 of 5.5 in the acid limb of the activity profile of H-Arg-NH-Mec was identified by its ionization enthalpy delta Hion = 21 kJ/mol as a beta-carboxylate or gamma-carboxylate of the enzyme, whereas the residue with a pKa2 of 7.4 was assigned to the free alpha-amino group of the substrate with a delta Hion of 59 kJ/mol. Bz-Arg-NH-Mec showed a different pH-activity profile with a pKa1 of 5.4 and a pKa2 of 6.6 at 30 degrees C. Cathepsin H exhibits no preference for a basic P1 side chain as has been shown by the similar kinetics of H-Arg-NH-Mec and the uncharged, isosteric substrate H-Cit-NH-Mec. In summary, specific interactions of an anionic cathepsin H active site residue with the charged alpha-amino group of substrates caused transition state stabilization which proves the enzyme to act preferentially as an aminopeptidase.  相似文献   

3.
Kallistatin, a serpin that specifically inhibits human tissue kallikrein, was demonstrated to be cleaved at the Phe-Phe bond in its reactive site loop (RSL) by cathepsin D. Internally quenched fluorescent peptides containing the amino acid sequence of kallistatin RSL were highly susceptible to hydrolysis by cathepsin D. Surprisingly, these peptides were efficiently hydrolyzed at Phe-Phe bond, despite having Lys and Ser at P2 and P2' positions, respectively, which was reported to be very unfavorable for substrates for cathepsin D. Due to the importance of cathepsin D in several physiological and pathological processes, we took the peptide containing kallistatin RSL sequence, Abz-Ala-Ile-Lys-Phe-Phe-Ser-Arg-Gln-EDDnp, as a reference substrate for a systematic specificity study of S3 to S3' protease subsites (EDDnp=N-[2,4-dinitrophenyl]-ethylenediamine and Abz=ortho-amino benzoic acid). We present in this paper some internally quenched fluorescent peptides that were efficient substrates for cathepsin D. They essentially differ from other previously described substrates by their higher kcat/Km values due, mainly, to low Km values, such as the substrate Abz-Ala-Ile-Ala-Phe-Phe-Ser-Arg-Gln-EDDnp (Km=0.27 microM, kcat=16.25 s(-1), kcat/Km=60185 microM(-1) x s(-1)).  相似文献   

4.
The transmembrane PTPase HPTP beta differs from its related family members in having a single rather than a tandemly duplicated cytosolic catalytic domain. We have expressed the 354-amino acid, 41-kDa human PTP beta catalytic fragment in Escherichia coli, purified it, and assessed catalytic specificity with a series of pY peptides. HPTP beta shows distinctions from the related LAR PTPase and T cell CD45 PTPase domains: it recognizes phosphotyrosyl peptides of 9-11 residues from lck, src, and PLC gamma with Km values of 2, 4, and 1 microM, some 40-200-fold lower than the other two PTPases. With kcat values of 30-205 s-1, the catalytic efficiency, kcat/Km, of the HPTP beta 41-kDa catalytic domain is very high, up to 5.7 x 10(7) M-1 s-1. The peptides corresponding to PLC gamma (766-776) and EGFR (1,167-1,177) phosphorylation sites were used for structural variation to assess pY sequence context recognition by HPTP beta catalytic domain. While exchange of the alanine residue at the +2 position of the PLC gamma (Km of 1 microM) peptide to lysine or aspartic acid showed little or no effect on substrate affinity, replacement by arginine increased the Km 35-fold. Similarly, the high Km value of the EGFR pY peptide (Km of 104 microM) derives largely from the arginine residue at the +2 position of the peptide, since arginine to alanine single mutation at the -2 position of the EGFR peptide decreased the Km value 34-fold to 3 microM. Three thiophosphotyrosyl peptides have been prepared and act as substrates and competitive inhibitors of these PTPase catalytic domains.  相似文献   

5.
Kinetic constants for the hydrolysis by porcine tissue beta-kallikrein B and by bovine trypsin of a number of peptides related to the sequence of kininogen (also one containing a P2 glycine residue instead of phenylalanine) and of a series of corresponding arginyl peptide esters with various apolar P2 residues have been determined under strictly comparative conditions. kcat and kcat/Km values for the hydrolysis of the Arg-Ser bonds of the peptides by trypsin are conspicuously high. kcat for the best of the peptide substrates, Ac-Phe-Arg-Ser-Val-NH2, even reaches kcat for the corresponding methyl ester, indicating rate-limiting deacylation also in the hydrolysis of a peptide bond by this enzyme. kcat/Km for the hydrolysis of the peptide esters with different nonpolar L-amino acids in P2 is remarkably constant (range 1.7), as it is for the pair of the above pentapeptides with P2 glycine or phenylalanine. kcat for the ester substrates varies fivefold, however, being greatest for the P2 glycine compounds. Obviously, an increased potential of a P2 residue for interactions with the enzyme lowers the rate of deacylation. In contrast to results obtained with chymotrypsin and pancreatic elastase, trypsin is well able to tolerate a P3 proline residue. In the hydrolysis of peptide esters, tissue kallikrein is definitely superior to trypsin. Conversely, peptide bonds are hydrolyzed less efficiently by tissue kallikrein and the acylation reaction is rate-limiting. The influence of the length of peptide substrates is similar in both enzymes and indicates an extension of the substrate recognition site from subsite S3 to at least S'3 of tissue kallikrein and the importance of a hydrogen bond between the P3 carbonyl group and Gly-216 of the enzymes. Tissue kallikrein also tolerates a P3 proline residue well. In sharp contrast to the behaviour of trypsin is the very strong influence of the P2 residue in tissue-kallikrein-catalyzed reactions. kcat/Km varies 75-fold in the series of the dipeptide esters with nonpolar L-amino acid residues in P2, a P2 glycine residue furnishing the worst and phenylalanine the best substrate, whereas this exchange in the pentapeptides changes kcat/Km as much as 730-fold. This behaviour, together with the high value of kcat/Km for Ac-Phe-Arg-OMe of 3.75 X 10(7) M-1 s-1, suggests rate-limiting binding (k1) in the hydrolysis of the best ester substrates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The effect of secondary-subsite interactions on the catalytic efficiency of horse urinary kallikrein was studied using as substrates oligopeptides and peptidyl-4-nitroanilides with L-Arg at P1. The known secondary specificity of tissue kallikreins for hydrophobic residues at P2 was also demonstrated for horse urinary kallikrein and a higher preference of this enzyme for L-Phe over L-Leu at P2 was evident. Interaction of subsites S3 with D-Pro and D-Phe enhanced the catalytic efficiency but tripeptidyl-4-nitroanilides with acetyl-D-Pro, L-Pro and acetyl-L-Pro at P3 were no better substrates than acetyl-dipeptidyl-4-nitroanilides. The importance of the leaving group for the catalysis was proved by higher kcat/Km values for the peptides in relation to peptidyl-4-nitroanilides containing a common acyl-chain. The low kcat value for the peptide with L-Pro at P'2 stresses the importance of a hydrogen bond between P'2 amide and the carbonyl group at S'2. One L-arginine residue at the leaving group, specially at the P'2 position, decreases the value of the apparent Km. This effect resulting of side-chain interactions with S'2, is impaired by a second L-Arg at P'1.  相似文献   

7.
Substrate specificity of the Escherichia coli outer membrane protease OmpT   总被引:1,自引:0,他引:1  
OmpT is a surface protease of gram-negative bacteria that has been shown to cleave antimicrobial peptides, activate human plasminogen, and degrade some recombinant heterologous proteins. We have analyzed the substrate specificity of OmpT by two complementary substrate filamentous phage display methods: (i) in situ cleavage of phage that display protease-susceptible peptides by Escherichia coli expressing OmpT and (ii) in vitro cleavage of phage-displayed peptides using purified enzyme. Consistent with previous reports, OmpT was found to exhibit a virtual requirement for Arg in the P1 position and a slightly less stringent preference for this residue in the P1' position (P1 and P1' are the residues immediately prior to and following the scissile bond). Lys, Gly, and Val were also found in the P1' position. The most common residues in the P2' position were Val or Ala, and the P3 and P4 positions exhibited a preference for Trp or Arg. Synthetic peptides based upon sequences selected by bacteriophage display were cleaved very efficiently, with kcat/Km values up to 7.3 x 10(6) M(-1) s(-1). In contrast, a peptide corresponding to the cleavage site of human plasminogen was hydrolyzed with a kcat/Km almost 10(6)-fold lower. Overall, the results presented in this work indicate that in addition to the P1 and P1' positions, additional amino acids within a six-residue window (between P4 and P2') contribute to the binding of substrate polypeptides to the OmpT binding site.  相似文献   

8.
To clarify the substrate-recognition mechanism of carboxypeptidase Y, Fmoc-(Glu)n Ala-OH (n = 1 to 6), Fmoc-(Glu)n Ala-NH2 (1 to 5), and Fmoc-Lys(Glu)3Ala-NH2 were synthesized, and kinetic parameters for these substrates were measured. Km for Fmoc-peptides significantly decreased as peptide length increased from n = 1 to n = 5 with only slight changes in kcat. Km for Fmoc-(Glu)(5,6)Ala-OH were almost the same as one for protein substrates described previously (Nakase et al., Bull. Chem. Soc. Jpn., 73, 2587-2590). These results show that the enzyme has six subsites (S1' and S1-S5). Each subsite affinity calculated from the Km revealed subsite properties, and from the differences of subsite affinity between pH 6.5 and 5.0, the residues in each subsite were predicted. For Fmoc-peptide amide substrates, the priorities of amidase and carboxamide peptidase activities were dependent on the substrate. It is likely that the interactions between side chains of peptide and subsites compensate for the lack of P1'-S1' interaction, so the amidase activity prevailed for Fmoc-(Glu)(3,5)Ala-NH2. These results suggest that these subsites contribute extensively to substrate recognition rather than a hydrogen bond network.  相似文献   

9.
The inhibitory constants of a series of synthetic N-carboxymethyl peptide inhibitors and the kinetic parameters (Km, kcat, and kcat/Km) of a series of model synthetic substrates were determined for the membrane-bound kidney metalloendopeptidase isolated from rabbit kidney and compared with those of bacterial thermolysin. The two enzymes show striking similarities with respect to structural requirements for substrate binding to the hydrophobic pocket at the S1' subsite of the active site. Both enzymes showed the highest reaction rates with substrates having leucine residues in this position while phenylalanine residues gave the lowest Km. The two enzymes were also inhibited by the same N-carboxymethyl peptide inhibitors. Although the mammalian enzyme was more susceptible to inhibition than its bacterial counterpart, structural variations in the inhibitor molecules affected the inhibitory constants for both enzymes in a similar manner. The two enzymes differed significantly, however, with respect to the effect of structural changes in the P1 and P2' positions of the substrate on the kinetic parameters of the reaction. The mammalian enzyme showed the highest reaction rates and specificity constants with substrates having the sequence -Phe-Gly-Phe- or -Phe-Ala-Phe- in positions P2, P1, and P1', respectively, while the sequence -Ala-Phe-Phe- was the most favored by the bacterial enzyme. The sequence -Gly-Gly-Phe- as found in enkephalins was not favored by either of the enzymes. Of the substrates having an aminobenzoate group in the P2' position, the mammalian enzyme favored those with the carboxyl group in the meta position while the bacterial enzyme favored those with the carboxyl group in the para position.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The cleavage specificity of protease C1, isolated from soybean (Glycine max (L.) Merrill) seedling cotyledons, was examined using oligopeptide substrates in an HPLC based assay. A series of peptides based on the sequence Ac-KVEKEESEEGE-NH2 was used, mimicking a natural cleavage site of protease C1 in the alpha subunit of the storage protein beta-conglycinin. A study of substrate peptides truncated from either the N- or C-terminus indicates that the minimal requirements for cleavage by protease C2 are three residues N-terminal to the cleaved bond, and two residues C-terminal (i.e. P3-P2'). The maximal rate of cleavage is reached with substrates containing four to five residues N-terminal to the cleaved bond and four residues C-terminal (i.e. P4 or P5 to P4'). The importance of Glu residues at the P1, P1', and P4 positions was examined using a series of substituted nonapeptides (P5-P4') with a base sequence of Ac-KVEKEESEE-NH2. At the P1 position, the relative ranking, based on kcat/Km, was E>Q>K>A>D>F>S. Substitutions at the P1' position yield the ranking E congruent withQ>A>S>D>K>F, while those at P4' had less effect on kcat/Km, yielding the ranking F congruent with S congruent with E congruent withD>K>A congruent withQ. These data show that protease C1 prefers to cleave at Glu-Glu and Glu-Gln bonds, and that the nature of the P4' position is less important. The fact that there is specificity in the cleavage of the oligopeptides suggests that the more limited specific cleavage of the alpha and alpha' subunits of beta-conglycinin by protease C1 is due to a combination of the sequence cleavage specificity of the protease and the accessibility of appropriate scissile peptide bonds on the surface of the substrate protein.  相似文献   

11.
Cathepsin G has both trypsin- and chymotrypsin-like activity, but studies on its enzymatic properties have been limited by a lack of sensitive synthetic substrates. Cathepsin G activity is physiologically controlled by the fast acting serpin inhibitors alpha1-antichymotrypsin and alpha1-proteinase inhibitor, in which the reactive site loops are cleaved during interaction with their target enzymes. We therefore synthesized a series of intramolecularly quenched fluorogenic peptides based on the sequence of various serpin loops. Those peptides were assayed as substrates for cathepsin G and other chymotrypsin-like enzymes including chymotrypsin and chymase. Peptide substrates derived from the alpha1-antichymotrypsin loop were the most sensitive for cathepsin G with kcat/Km values of 5-20 mM-1 s-1. Substitutions were introduced at positions P1 and P2 in alpha1-antichymotrypsin-derived substrates to tentatively improve their sensitivity. Replacement of Leu-Leu in ortho-aminobenzoyl (Abz)-Thr-Leu-Leu-Ser-Ala-Leu-Gln-N-(2, 4-dinitrophenyl)ethylenediamine (EDDnp) by Pro-Phe in Abz-Thr-Pro-Phe-Ser-Ala-Leu-Gln-EDDnp produced the most sensitive substrate of cathepsin G ever reported. It was cleaved with a specificity constant kcat/Km of 150 mM-1 s-1. Analysis by molecular modeling of a peptide substrate bound into the cathepsin G active site revealed that, in addition to the protease S1 subsite, subsites S1' and S2' significantly contribute to the definition of the substrate specificity of cathepsin G.  相似文献   

12.
Human aldose reductase and aldehyde reductase are members of the aldo-keto reductase superfamily that share three domains of homology and a nonhomologous COOH-terminal region. The two enzymes catalyze the NADPH-dependent reduction of a wide variety of carbonyl compounds. To probe the function of the domains and investigate the basis for substrate specificity, we interchanged cDNA fragments encoding the NH2-terminal domains of aldose and aldehyde reductase. A chimeric enzyme (CH1, 317 residues) was constructed in which the first 71 residues of aldose reductase were replaced with first 73 residues of aldehyde reductase. Catalytic effectiveness (kcat/Km) of CH1 for the reduction of various substrates remained virtually identical to wild-type aldose reductase, changing a maximal 4-fold. Deletion of the 13-residue COOH-terminal end of aldose reductase, yielded a mutant enzyme (AR delta 303-315) with markedly decreased catalytic effectiveness for uncharged substrates ranging from 80- to more than 600-fold (average 300-fold). The KmNADPH of CH1 and AR delta 303-315 were nearly identical to that of the wild-type enzyme indicating that cofactor binding is unaffected. The truncated AR delta 303-315 displayed a NADPH/D isotope effect in kcat and an increased D(kcat/Km) value for DL-glyceraldehyde, suggesting that hydride transfer has become partially rate-limiting for the overall reaction. We conclude that the COOH-terminal domain of aldose reductase is crucial to the proper orientation of substrates in the active site.  相似文献   

13.
M R Sierks  K Bock  S Refn  B Svensson 《Biochemistry》1992,31(37):8972-8977
The specificity constants, kcat/KM, were determined for glucose oxidase and glucose dehydrogenase using deoxy-D-glucose derivatives and for glucoamylase using deoxy-D-maltose derivatives as substrates. Transition-state interactions between the substrate intermediates and the enzymes were characterized by the observed kcat/Km values and found to be very similar. The binding energy contributions of individual sugar hydroxyl groups in the enzyme/substrate complexes were calculated using the relationship delta(delta G) = -RT ln [(kcat/KM)deoxy/(kcat/KM)hydroxyl] for the series of analogues. The activity of all three enzymes was found to depend heavily on the 4- and 6-OH groups (4'- and 6'-OH in maltose), where changes in binding energies from 10 to 18 kJ/mol suggested strong hydrogen bonds between the enzymes and these substrate OH groups. The 3-OH (3'-OH in maltose) was involved in weaker interactions, while the 2-OH (2'-OH in maltose) had a very small if any role in transition-state binding. The three enzyme-substrate transition-state interactions were compared using linear free energy relationships (Withers, S. G., & Rupitz, K. (1990) Biochemistry 29, 6405-6409) in which the set of kcat/KM values obtained with substrate analogues for one enzyme is plotted against the corresponding values for a second enzyme. The high linear correlation coefficients (rho) obtained, 0.916, 0.958, and 0.981, indicate significant similarity in transition-state interactions, although the three enzymes lack overall sequence homology.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Endopeptidase-24.11 (EC 3.4.24.11), purified to homogeneity from pig kidney, was shown to hydrolyse a wide range of neuropeptides, including enkephalins, tachykinins, bradykinin, neurotensin, luliberin and cholecystokinin. The sites of hydrolysis of peptides were identified, indicating that the primary specificity is consistent with hydrolysis occurring at bonds involving the amino group of hydrophobic amino acid residues. Of the substrates tested, the amidated peptide substance P is hydrolysed the most efficiently (Km = 31.9 microM; kcat. = 5062 min-1). A free alpha-carboxy group at the C-terminus of a peptide substrate is therefore not essential for efficient hydrolysis by the endopeptidase. A large variation in kcat./Km values was observed among the peptide substrates studied, a finding that reflects a significant influence of amino acid residues, remote from the scissile bond, on the efficiency of hydrolysis. These subsite interactions between peptide substrate and enzyme thus confer some degree of functional specificity on the endopeptidase. The inhibition of endopeptidase-24.11 by several compounds was compared with that of pig kidney peptidyldipeptidase A (EC 3.4.15.1). Of the inhibitors examined, only N-[1(R,S)-carboxy-2-phenylethyl]-Phe-p-aminobenzoate inhibited endopeptidase-24.11 but not peptidyldipeptidase. Captopril (D-3-mercapto-2-methylpropanoyl-L-proline), Teprotide (pGlu-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro) and MK422 [N-[(S)-1-carboxy-3-phenylpropyl]-L-Ala-L-Pro] were highly selective as inhibitors of peptidyldipeptidase. Although not wholly specific, phosphoramidon was a more potent inhibitor of endopeptidase-24.11 than were any of the synthetic compounds tested.  相似文献   

15.
Flap endonuclease-1 (FEN-1) possessing 5'-flap endonuclease and 5'-->3' exonuclease activity plays important roles in DNA replication and repair. In this study, the kinetic parameters of mutants at highly conserved aromatic residues, Tyr33, Phe35, Phe79, and Phe278-Phe279, in the vicinity of the catalytic centers of FEN-1 were examined. The substitution of these aromatic residues with alanine led to a large reduction in kcat values, although these mutants retained Km values similar to that of the wild-type enzyme. Notably, the kcat of Y33A and F79A decreased 333-fold and 71-fold, respectively, compared with that of the wild-type enzyme. The aromatic residues Tyr33 and Phe79, and the aromatic cluster Phe278-Phe279 mainly contributed to the recognition of the substrates without the 3' projection of the upstream strand (the nick, 5'-recess-end, single-flap, and pseudo-Y substrates) for the both exo- and endo-activities, but played minor roles in recognizing the substrates with the 3' projection (the double flap substrate and the nick substrate with the 3' projection). The replacement of Tyr33, Phe79, and Phe278-Phe279, with non-charged aromatic residues, but not with aliphatic hydrophobic residues, recovered the kcat values almost fully for the substrates without the 3' projection of the upstream strand, suggesting that the aromatic groups of Tyr33, Phe79, and Phe278-Phe279 might be involved in the catalytic reaction, probably via multiple stacking interactions with nucleotide bases. The stacking interactions of Tyr33 and Phe79 might play important roles in fixing the template strand and the downstream strand, respectively, in close proximity to the active center to achieve the productive transient state leading to the hydrolysis.  相似文献   

16.
Peptide substrates of the general structure acetyl-Alan (n = 2-5), acetyl-Pro-Ala-Pro-Phe-Alan-NH2 (n = 0-3), and acetyl-Pro-Ala-Pro-Phe-AA-NH2 (AA = various amino acids) were synthesized and used to investigate the enzyme-substrate interactions of the microbial serine proteases thermitase, subtilisin BPN', and proteinase K on the C-terminal side of the scissile bond. The elongation of the substrate peptide chain up to the second amino acid on the C-terminal side (P'2) enhances the hydrolysis rate of thermitase and subtilisin BPN', whereas for proteinase K an additional interaction with the third amino acid (P'3) is possible. The enzyme subsite S'1 specificity of the proteases investigated is very similar. With respect to kcat/Km values small amino acid residues such as Ala and Gly are favored in this position. Bulky residues such as Phe and Leu were hydrolyzed to a lower extent. Proline in P'1 abolishes the hydrolysis of the substrates. Enzyme-substrate interactions on the C-terminal side of the scissile bond appear to affect kcat more than Km for all three enzymes.  相似文献   

17.
The extracellular signal-regulated protein kinase 2 (ERK2) plays a central role in cellular proliferation and differentiation. Full activation of ERK2 requires dual phosphorylation of Thr183 and Tyr185 in the activation loop. Tyr185 dephosphorylation by the hematopoietic protein-tyrosine phosphatase (HePTP) represents an important mechanism for down-regulating ERK2 activity. The bisphosphorylated ERK2 is a highly efficient substrate for HePTP with a kcat/Km of 2.6 x 10(6) m(-1) s(-1). In contrast, the kcat/Km values for the HePTP-catalyzed hydrolysis of Tyr(P) peptides are 3 orders of magnitude lower. To gain insight into the molecular basis for HePTP substrate specificity, we analyzed the effects of altering structural features unique to HePTP on the HePTP-catalyzed hydrolysis of p-nitrophenyl phosphate, Tyr(P) peptides, and its physiological substrate ERK2. Our results suggest that substrate specificity is conferred upon HePTP by both negative and positive selections. To avoid nonspecific tyrosine dephosphorylation, HePTP employs Thr106 in the substrate recognition loop as a key negative determinant to restrain its protein-tyrosine phosphatase activity. The extremely high efficiency and fidelity of ERK2 dephosphorylation by HePTP is achieved by a bipartite protein-protein interaction mechanism, in which docking interactions between the kinase interaction motif in HePTP and the common docking site in ERK2 promote the HePTP-catalyzed ERK2 dephosphorylation (approximately 20-fold increase in kcat/Km) by increasing the local substrate concentration, and second site interactions between the HePTP catalytic site and the ERK2 substrate-binding region enhance catalysis (approximately 20-fold increase in kcat/Km) by organizing the catalytic residues with respect to Tyr(P)185 for optimal phosphoryl transfer.  相似文献   

18.
Efficient cAMP-dependent protein kinase substrates typically contain an arginine dyad one amino acid removed from the residue which undergoes phosphorylation (ie. Arg-Arg-X-Ser). However, several naturally occurring protein kinase inhibitors and substrates possess additional basic residues that are proximal to the arginine dyad, implying the presence of either an extended or an additional acidic subsite on the enzyme. In this study, we investigated the substrate efficacy of several multiple arginine-bearing peptides. The most efficient substrate studied, Arg-Arg-Leu-Arg-Arg-Ala-Ser-Leu-Gly, exhibits a nearly eleven-fold increase in kcat/Km relative to Leu-Arg-Arg-Ala-Ser-Leu-Gly. The enhanced kcat/Km is primarily a consequence of a reduced Km. These results suggest that a double arginine dyad, separated by a single amino acid, represents the optimal sequence for basic residues on cAMP-dependent protein kinase substrates.  相似文献   

19.
The NS3 (dengue virus non-structural protein 3) serine protease of dengue virus is an essential component for virus maturation, thus representing an attractive target for the development of antiviral drugs directed at the inhibition of polyprotein processing. In the present study, we have investigated determinants of substrate specificity of the dengue virus NS3 protease by using internally quenched fluorogenic peptides containing Abz (o-aminobenzoic acid; synonymous to anthranilic acid) and 3-nitrotyrosine (nY) representing both native and chimaeric polyprotein cleavage site sequences. By using this combinatorial approach, we were able to describe the substrate preferences and determinants of specificity for the dengue virus NS2B(H)-NS3pro protease. Kinetic parameters (kcat/K(m)) for the hydrolysis of peptide substrates with systematic truncations at the prime and non-prime side revealed a length preference for peptides spanning the P4-P3' residues, and the peptide Abz-RRRRSAGnY-amide based on the dengue virus capsid protein processing site was discovered as a novel and efficient substrate of the NS3 protease (kcat/K(m)=11087 M(-1) x s(-1)). Thus, while having confirmed the exclusive preference of the NS3 protease for basic residues at the P1 and P2 positions, we have also shown that the presence of basic amino acids at the P3 and P4 positions is a major specificity-determining feature of the dengue virus NS3 protease. Investigation of the substrate peptide Abz-KKQRAGVLnY-amide based on the NS2B/NS3 polyprotein cleavage site demonstrated an unexpected high degree of cleavage efficiency. Chimaeric peptides with combinations of prime and non-prime sequences spanning the P4-P4' positions of all five native polyprotein cleavage sites revealed a preponderant effect of non-prime side residues on the K(m) values, whereas variations at the prime side sequences had higher impact on kcat.  相似文献   

20.
Dipeptidyl peptidase-IV is a cell surface protease which plays an important role in glucose homeostasis through proteolytic inactivation of incretin hormones, primarily glucagon like peptide-1 (GLP-1). Substrate N-terminal amino acid (S2-S1) specificity is rather clearly defined, while no substantial information is available on the significance of amino acid interactions towards the C-terminus after the scissile bond (so called prime S1'-S4' or distant S5'-S28' sites). In the present study the increasing length of the peptide towards prime sites (S1'-S4') resulted in approximately 7-fold decrease in Km. Moreover, the Km for GLP-1 cleavage was comparable to that of an S2-S4' peptide, suggesting that few, if any, important enzyme-substrate interactions occur beyond the active site. Effect of substrate length on kcat was less obvious, but kcat/Km showed an increasing trend when His-Ala-pNA (representing the natural two N-terminal residues) was compared to GLP-1. To probe the impact of increasing substrate length on the free energy of activation (as has been suggested for elastase and chymotrypsin) we performed temperature studies. To adequately interpret thermodynamic data we sought to understand what steps limit the kcat expression. Steady-state parameters of the reactions catalyzed by serine proteases are composed of microscopic constants describing binding, acylation, and deacylation steps. Viscosity and pre-steady-state studies suggested that His-Ala-pNA cleavage is limited in the deacylation half-reaction, most likely the product release step. Thus, the free energy of activation, as calculated from the Eyring equation, is underestimated (at least for His-Ala-pNA) and the effect of substrate length on the acylation step (and transition-state stabilization) could not be unambiguously assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号