首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-deoxy-D-glucose (2-DG), the unmetabolizable analogue of glucose induces a series of metabolic, hormonal and behavioral responses, causing cellular glucoprivation. According to in vitro studies, 2-DG inhibits phosphofructokinase in cultured human cells. The present investigations deal with changes in the cytosolic glucose-6-phosphate dehydrogenase activity following in vivo 2-DG administration. A single dose of 2-DG (600 mg/kg) has no influence on the activity of glucose-6-phosphate dehydrogenase in the cytosol of liver, heart and skeletal muscle of the rat. The concomitant increase in serum glucose, lactate and FFA concentrations observed in the study indicates indirectly a stimulation of adrenergic system. After three days of successive administration of 2-DG to rats, dehydrogenase activity decreased in the liver by approx 57% and in the skeletal muscle by approx 82% in comparison with control animals. Moreover the in vivo effect of 2-DG was found to be fully reversible, probably when the total amount of the inhibitor was excreted.  相似文献   

2.
2-Deoxy-D-glucose (2-DG) is a nonmetabolizable analogue of glucose that, by competitive inhibition of glucose utilization, produces a central neuroglucopenia and a peripheral hyperglycemia. This glucopenic agent was used to gain more insight into the combined effects of central glucopenia and exercise on plasma catecholamine response. This was carried out by comparing one group of exercising (26 m/min, 0% grade) rats injected with 2-DG (2-DG-EX; 250 mg/kg iv) with two control groups: one group of exercising rats injected with a saline solution (SAL-EX) and one group of resting rats injected with 2-DG (2-DG-RE). Significant (P less than 0.05) increases in blood glucose levels were observed 10 min after administration of 2-DG (7.2-13.8 and 7.3-12.4 mmol/l in 2-DG-EX and 2-DG-RE groups, respectively). These elevated blood glucose levels were maintained throughout the experiment in the 2-DG-RE condition but decreased in 2-DG-EX rats to levels observed in the SAL-EX group after 45 min of running (13.8-8.0 mmol/l). The combination of 2-DG-induced neuroglucopenia and exercise resulted in an additive response of norepinephrine (0.59 vs. 0.34 and 0.34 ng/ml; t = 12 min) and an amplified epinephrine response (1.4 vs. 0.37 and 0.31 ng/ml; t = 12 min) compared with the responses to each stimulus alone (2-DG-EX vs. 2-DG-RE and SAL-EX, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
2-脱氧葡萄糖诱导大鼠内质网应激预处理模型的最佳剂量   总被引:1,自引:0,他引:1  
目的探讨2-脱氧葡萄糖(2-deoxy-glucose,2-DG)诱导大鼠内质网应激模型的最佳剂量。方法选择Wistar雄性大鼠108只,体质量240~260 g,采用不同剂量2-DG建立大鼠内质网应激的模型,随机分为6组:2-DG 50、100、150、200 mg/kg组,假手术组,缺血再灌注组。2-DG组按工作浓度为50 mg/mL溶于双蒸水腹腔注射7d,假手术组和缺血再灌注组腹腔注射双蒸水7 d,于脑缺血再灌注后12 h处死,对各组大鼠进行神经行为学评分,采用HE染色观察脑组织的病理形态,免疫组化法和Westernblot法测定GRP78蛋白的表达,用PCR法检测GRP78mRNA的表达。结果与脑缺血再灌注组相比,2-DG各剂量组大鼠的神经行为学评分明显减低(P<0.01),而以100 mg/kg组评分减低最为明显(P<0.05);2-DG各剂量组能不同程度的改善大鼠脑海马CA1区神经细胞的核深染、核固缩程度,减少细胞及间质的水肿,使胞膜趋于清楚、形态接近正常、核仁清晰可见的神经细胞数目增多,而以2-DG100 mg/kg组的效果最为明显。2-DG各剂量组GRP78蛋白表达明显增加,与脑缺血再灌注组比较,差异有显著性(P<0.01),而以100 mg/kg剂量组的GRP78蛋白表达最高,与其他2-DG剂量组比较差异有显著性(P<0.05)。结论 2-DG对脑缺血再灌注所致的神经细胞损伤具有保护作用,其最佳剂量为100 mg/kg。2-DG具有诱导大鼠内质网应激的作用,其最佳剂量是100 mg/kg。  相似文献   

4.
The present studies were undertaken to further assess the role of plasma beta-endorphin (beta-EP) in the hyperphagia induced by the glucose antimetabolite, 2-deoxy-D-glucose (2-DG). Plasma concentrations of immunoreactive beta-EP (ir-beta-EP) were measured at the end of the first hour of feeding in all animals treated with 400 mg/kg 2-DG. Previous studies had shown a consistent, positive association between 2-DG hyperphagia and plasma ir-beta-EP concentrations, but the present data revealed dissociations between hyperphagia and plasma ir-beta-EP. Dexamethasone administration blocked the 2-DG-induced rise in plasma ir-beta-EP, but had no effect on the 2-DG hyperphagia measured at 1 hour. Forced drinking of a 2% NaCl solution decreased 2-DG hyperphagia, but not the 2-DG induced rise in plasma ir-beta-EP. Thus, elevations in plasma ir-beta-EP are not necessary for the full expression of 2-DG-induced hyperphagia in dexamethasone-treated rats. Furthermore, decreased feeding responses to 2-DG could coexist with increased levels of plasma ir-beta-EP in NaCl-treated normal rats. Elevations in plasma ir-beta-EP do not appear to be the critical opiate link in 2-DG induced hyperphagia.  相似文献   

5.
Changes in parameters of systemic and regional hemodynamic, elicited by intraarterial administration of 250 or 500 mg/kg of 2-deoxy-D-glucose (2-DG) were studied in the awake Wistar rats with microsphere technique. Measurements were performed before, 15-and 40-min after 2-DG administration. Significant decrease in the heart rate as well as increase in stroke volume were observed 15 min after 2-DG. It was a tendency to increase in cardiac output. Blood flow in skin and skeletal muscles were decreased whereas in the brain, heart, adrenal glands and small intestine there were significant increases in the blood flow. We conclude that hemodynamic responses to 2-DG reflect the effects of humoral (adrenaline) and central sympathetic factors.  相似文献   

6.
3-Deoxyglucosone (3-DG) is a metabolite of glucose that is thought to lead to the production of advanced glycation end products in diabetes. The previous assay for 3-DG in serum was based on a multi-step protocol, including derivatization, extraction, HPLC separation, and detection. In the current studies, we established a monoclonal antibody that recognizes the 3-DG-derivative, which is generated by the reaction of 3-DG and a 2,3-diamino-benzene derivative. Attachment of a biotin moiety to the 2,3-diamino-benzene ring via a linker allowed development of a highly sensitive chemiluminescent enzyme immunoassay for 3-DG equivalents. Unlike the previous assay, this method does not require extraction of 3-DG derivatives from serum. Treatment of 3-DG in serum with the DAB-link-biotin produced a quinoxaline derivative, which was specifically recognized by the monoclonal antibody. Using this assay, we found that serum 3-DG was higher in streptozotocin-induced diabetic rats than in normal control rats (25+/-5.6 vs. 9.8+/-1.1 microg/L). This simple assay may allow the monitoring of conditions leading to the accumulation of advanced glycation end products and evaluation of the risk of complications in diabetic patients.  相似文献   

7.
The effects of functional cytoglucopenia provoked by 2-deoxy-D-glucose (2-DG) were studied in adult Brycon cephalus, an omnivorous fish from the Amazon Basin in Brazil. Glycogen content in liver and muscle as well as plasmatic glucose, free fatty acids (FFA), insulin, and glucagon were measured. After 48 h fasting, an intraperitoneal saline injection (NaCl 0.6 g/100 ml) was administered to control fish, whereas the experimental group received 2-DG, dissolved in saline, in the dosage of 80 mg/kg (0.487 mmol/kg) or 150 mg/kg (0.914 mmol/kg) body weight; injection volume was 5 ml in all treatments. Blood and tissue samples were taken immediately before, and 2, 8, 10, and 24 h after administration of the drug or saline. Fish injected with both doses of 2-DG showed a marked increase in glycemia levels. Liver and muscle glycogen decreased after 2-DG administration and reached their lowest values 10–24 h after injection, while in control animals no significant changes were observed. Elevation in plasma glucagon was observed only in response to the maximum dosage of 2-DG administered, especially 10 h and 24 h post-injection. Plasma insulin levels were lower in animals treated with the glucose analogue but only statistically significant 24 h after drug administration. In conclusion, the administration of the non-metabolizable glucose analogue 2-DG in B. cephalus is a stimulus to generate responses towards an increase in the glucose available to tissues, which is a characteristic of a fasting situation. All the above data support the interest of 2-DG administration as a model to study carbohydrate metabolism adjustment mechanisms in fish.Abbreviations 2-DG 2-deoxy-D-glucose - FFA free fatty acids Communicated by G. Heldmaier  相似文献   

8.
T W Gong  B A Horwitz  J S Stern 《Life sciences》1990,46(14):1037-1044
Central administration of 2-deoxy-D-glucose (2-DG) decreases brown fat thermogenesis. This effect is suggested to be mediated via a central control mechanism. Our study was designed to determine the importance of the sympathetic nervous system in the response of brown fat to intraperitoneal (i.p.) injection of 2-DG. Unilateral denervation of interscapular brown adipose tissue (IBAT) was performed on male Sprague-Dawley rats (300 g body weight). Nine days after surgery, rats were injected i.p. with either saline vehicle (0.9% sodium chloride) or 2-DG (360 mg/kg wt) and then killed one hour later. Sympathetic denervation resulted in 50% decreases in total IBAT protein and in mitochondrial protein recovered. In the denervated lobes, mitochondrial GDP binding (expressed as nmol/mg mitochondrial protein and as total activity recovered) was decreased to 36% and 18%, respectively. Injection of 2-DG did not change mitochondrial protein content in either the innervated or denervated IBAT. In the innervated lobes, 2-DG significantly lowered GDP binding to 55% of that in saline-treated animals, whether expressed per mg mitochondrial protein or as total recovered activity. In contrast, 2-DG did not further decrease GDP binding in the denervated lobes. In conclusion, the effects of i.p. injection of 2-DG on brown fat thermogenesis (as evidenced by GDP binding) appear to be primarily mediated via the sympathetic nervous system.  相似文献   

9.
Role of 2-Deoxy-D-glucose (2-DG) in reversing the Indian red scorpion (Mesobuthus tamulus concanesis Pocock, MBT) venom-induced toxicity was examined. Femoral arterial pressure, ECG and respiratory movements were recorded in urethane anesthetized rats. Plasma glucose and serum insulin levels were also estimated. Intravenous injection of 5 mg/kg MBT venom produced immediate decrease in mean arterial pressure, heart rate and respiratory frequency followed by an increase and subsequent progressive decrease. ECG pattern exhibited ischaemic changes. There was hyperinsulinemia after venom without corresponding decrease in plasma glucose. The animals died within 37 +/- 9 min and demonstrated significant increase in pulmonary water content. 2-DG pretreatment (0.5 g/kg, iv) improved the cardiopulmonary abnormalities induced by venom and the animals survived for nearly 120 min. There was no hyperinsulinemia and increased pulmonary water content in these animals. In insulin (2 IU/kg) treated rats, the MBT venom-induced cardiopulmonary abnormalities were attenuated and ECG abnormalities were reversed. The pulmonary water content in these animals exhibited a decreasing trend and the animals survived for 120 min. Repaglinide (10 microg/kg, iv) pretreatment failed to reverse the venom-induced cardiopulmonary changes including the increased pulmonary water content. The survival time was similar to venom only group. The present results reveal that 2-DG reverses the venom-induced cardiopulmonary toxicity probably by restoring insulin sensitivity.  相似文献   

10.
Summary In order to verify the formation of endogenous 3-deoxyglucosone (3-DG), an intermediate compound in the Maillard reaction, we tried to detect 3-deoxyfructose (3-DF) which is main metabolite of 3-DG. Endogenous 3-DF was detected in the urine of normal and diabetic rats by the oral administration of 3-DG-free feed. Metabolizing activities of crude extracts prepared from porcine organs were examined using methylglyoxal (MG) and 3-DG as substrates. NAD- or NADP-dependent 2-oxoaldehyde dehydrogenase activity was detected in liver, kidney, small intestine and lung. On the other hand, NADH- or NADPH-dependent 2-oxoaldehyde reductase activity was detected in all porcine organs in which liver and kidney contained higher activity of NADPH-dependent enzyme than the other organs. The reductase which catalyzes the reduction of 3-DG to 3-DF and MG to acetol, was purified and characterized from porcine kidney. The enzyme was the same to NADPH-dependent-2-oxoaldehyde reductase from porcine liver, which is speculated to prevent the advanced stage of the Maillard reaction as a self-defense enzyme.  相似文献   

11.
The present report indicates that 2-deoxy-D-glucose (2-DG) at a single dose causing reduction of Tre has no influence on liver and skeletal muscle content of ATP, ADP and AMP, the ATP/ADP ratio, energy charge potential (ECP) and total adenine nucleotides (TAN). After administration of 2-DG for 3) successive days, the level of ATP, ATP/ADP ratio, the values of ECP and TAN are decreased both in the liver and skeletal muscle. However, 72 hours after the last injection of 2-DG adenine nucleotide contents returned to the values observed in control group, indicating that the in vivo effect of this glucose analogue is fully reversible.  相似文献   

12.
We have used the anorexia shown by rats given hypertonic saline to drink to investigate central mechanisms that can inhibit feeding. Rats dehydrated in this manner for 3 or 5 days showed a severe attenuation of the compensatory feeding observed after an overnight fast compared with control euhydrated rats or rats whose food was restricted to match the intake of anorexic rats. Food intake after injections of 2-deoxy-d-glucose (2-DG) was also significantly decreased in dehydrated animals compared with that after a 2-DG injection given before dehydration. However, all the dehydrated animals demonstrated a robust eating response after water was returned whether they had received injection of 2-DG or vehicle. Despite a profound reduction in 2-DG-induced feeding, other glucoregulatory responses to 2-DG remained intact in dehydrated animals. After 2-DG injection, corticosterone secretion and blood glucose were significantly elevated from preinjection values whether or not animals were dehydrated. Thus the mechanisms responsible for anorexia in dehydrated animals specifically target stimulatory feeding pathways but leave intact other counterregulatory glucometabolic motor events.  相似文献   

13.
The effects of norepinephrine (NE) infusion and surgical denervation or electrical stimulation of the sympathetic nerves on 2-deoxyglucose (2-DG) uptake in interscapular brown adipose tissue (BAT) were investigated in vivo in rats to obtain direct evidence for sympathetic control of glucose utilization in this tissue. 2-DG uptake was rather low in fasted rats, but after refeeding it increased in the BAT as well as the heart, skeletal muscle, and white adipose tissue, in parallel with an increase in plasma insulin level. Cold exposure also enhanced 2-DG uptake in the BAT without the increase in plasma insulin level, while it had no appreciable effect on 2-DG uptake in other tissues. Sympathetic denervation greatly attenuated the stimulatory effect of cold exposure on 2-DG uptake in BAT, but it did not affect the increased 2-DG uptake after refeeding. Electrical stimulation of the sympathetic nerves entering BAT or NE infusion produced a marked increase in 2-DG uptake in BAT without noticeable effects in other tissues. beta-Adrenergic blockade, but not alpha-blockade, abolished the increased 2-DG uptake in BAT. It was concluded that glucose utilization in BAT is activated directly, independently of the action of insulin, by sympathetic nerves via the beta-adrenergic pathway.  相似文献   

14.
Stressful situations are a major problem in aquaculture because they affect the immune system. 2-Deoxy-d-glucose (2-DG) is a derivative of a glucose analogue that reduces the availability of energy, thereby inhibiting cell metabolism so that it is unable to enter the glycolysis pathway. In this paper, 2-DG has been administered in order to study if the immune function is compromised during metabolic stress. Blood glucose level was measured as an indicator of the inhibition of glycolysis, and the effects of intraperitoneal administration of 2-DG on the main parameters of the humoral (complement, IgM levels and peroxidase activity in blood plasma) and cellular (respiratory burst, intracellular peroxidase level and phagocytosis activity) immune parameters of gilthead seabream (Sparus aurata, L) were evaluated. Furthermore, the expression levels of immune-associated genes (CSF-1R, NCCRP-1, Hep, TCR-β, IgMH, MHC-IIα, C3 and IL-1β) were analyzed by real-time PCR in head-kidney. A total of 5 intraperitoneal injections were performed at 48 h intervals. Three experimental groups were established: a control group injected with phosphate buffer saline, group 2-DG 500 and group 2-DG 750 injected with 500 mg kg?1 and 750 mg kg?1 2-DG, respectively (N = 15). After the third and fourth injection, some specimens of both DG-treated groups died. Following the first and third injection, the blood glucose levels of both 2-DG treated groups increased to a statistically significant extent with respect to the control group. While the humoral immune parameters were not significantly affected as a consequence of 2-DG administration, the cellular activities of leucocytes were. The injection of 500 mg kg?1 2-DG provoked up- or down-regulation of the immune-relevant genes analyzed, while the injection of 750 mg kg?1 always caused down-regulation of these genes. The results suggest that 2-DG provokes metabolic stress, which reduces the activities carried out by immune cells (leucocytes) and induces down-regulation of the immune-relevant genes analyzed when the energy available to the cell decreases.  相似文献   

15.
We have studied the effects of different odor exposure durationson the functional activity of the rat olfactory bulb by usingthe 2-deoxyglucose (2-DG) method. This technique brings outodor-specific patterns of labeling in the glomerular layer ofthe bulb. In a first set of experiments, rats designated ascontrols were submitted to two stimulation conditions with cyclohexanonefor 40 min following 2-DG injection: group C-5—alternatestimulation (5 min odor–5 mm pure air); group C-20—continuousstimulation (20 mm odor-20 min pure air). In a second set ofexperiments, rats designated as ‘adapted’ were exposedfor 3 h to cyclohexanone before the 2-DG injection; then, threeconditions of stimulation were tested with the same odor duringthe post-injection period; group Adap-5—alternate stimulation;group Adap-20—continuous stimulation; group Adap-0—stimulationwith pure air only. In the two control groups, the total numbersof labeled glomerular foci were similar; however, group C-20showed a significant increase in the number of ‘heavily’labeled foci. This result suggests that under conditions of20 min continuous odor exposure, receptor cells do not adaptrapidly and totally. Results from the adapted groups showedthat only the group Adap-20 presented significant changes infunctional bulbar activity. An important decrease in the totalnumber of labeled glomerular foci and an absence of ‘heavily’labeled foci were noted in all rats of this group; their patternsof 2-DG uptake were greatly reduced in both complexity and contrast.These results highlight the importance of olfactory receptoradaptation under conditions of long-duration odor exposure.Fast recovery of receptor sensitivity when the stimulation isinterrupted is also suggested.  相似文献   

16.
Dietary restriction and physical exercise can enhance stress resistance and reduce the risk of cardiovascular disease. We investigated the effects of dietary supplementation with 2-deoxy-d-glucose (2-DG), a glucose analog that limits glucose availability at the cellular level, on cardiovascular and neuroendocrine responses to stress in rats. Young adult male Sprague-Dawley rats were implanted with telemetry probes to monitor blood pressure (BP), heart rate, body temperature, and body movements. These variables were measured at designated times during a 6-mo period in rats fed control and 2-DG-supplemented (0.4% 2-DG, fed ad libitum on a schedule of 2 days on the diet and 1 day off the diet) diets during unperturbed conditions and during and after immobilization stress or cold-water swim stress. Rats fed the 2-DG diet exhibited significant reductions in resting BP, attenuated BP responses during stress, and accelerated recovery to baseline after stress. Plasma concentrations of ACTH and corticosterone were elevated under nonstress conditions in rats fed the 2-DG diet and exhibited differential responses to single (enhanced response) and multiple (reduced response) stress sessions compared with rats fed control rat chow ad libitum. The 2-DG diet improved glucose metabolism, as indicated by decreased concentrations of blood glucose and insulin under nonstress conditions, but glucose and insulin responses to stress were maintained. We conclude that improvements in some cardiovascular risk factors and stress adaptation in rats maintained on a 2-DG-supplemented diet are associated with reduced neuroendocrine responses to the stressors.  相似文献   

17.
Forced imbibition of increasing concentrations of sodium chloride (NaCl) in rats reduced daytime 2-deoxy-D-glucose (2-DG) induced feeding in a concentration dependent manner. Pituitary neurointermediate lobe (NIL) levels of immunoreactive (ir)-dynorphin-A 1-17 and 1-8 were also decreased by the NaCl regimen in a concentration dependent manner. However, there was no significant association between the reduction of NIL dynorphin levels and the suppression of 2-DG induced feeding on a within-animal basis. NaCl imbibition did not affect levels of either ir-dynorphin-A 1-17 or 1-8 in the hypothalamus, cerebral cortex, hippocampus, medulla/pons or anterior pituitary. Neither the acute changes following 2-DG administration, nor the comparison of ir-dynorphin-A 1-8/1-17 ratios appeared useful for the assessment of dynorphin-A turnover. Thus, the present results did not support the hypothesis that anorexia of NaCl treated animals results from the depletion of dynorphin-A.  相似文献   

18.
Brain stimulation or activation of certain reflexes can result in differential activation of the two populations of adrenal medullary chromaffin cells: those secreting either epinephrine or norepinephrine, suggesting that they are controlled by different central sympathetic networks. In urethan-chloralose-anesthetized rats, we found that antidromically identified adrenal sympathetic preganglionic neurons (SPNs) were excited by stimulation of the rostral ventrolateral medulla (RVLM) with either a short (mean: 29 ms) or a long (mean: 129 ms) latency. The latter group of adrenal SPNs were remarkably insensitive to baroreceptor reflex activation but strongly activated by the glucopenic agent 2-deoxyglucose (2-DG), indicating their role in regulation of adrenal epinephrine release. In contrast, adrenal SPNs activated by RVLM stimulation at a short latency were completely inhibited by increases in arterial pressure or stimulation of the aortic depressor nerve, were unaffected by 2-DG administration, and are presumed to govern the discharge of adrenal norepinephrine-secreting chromaffin cells. These findings of a functionally distinct preganglionic innervation of epinephrine- and norepinephrine-releasing adrenal chromaffin cells provide a foundation for identifying the different sympathetic networks underlying the differential regulation of epinephrine and norepinephrine secretion from the adrenal medulla in response to physiological challenges and experimental stimuli.  相似文献   

19.
Using pregnant rats fed equicaloric liquid diets (AF, and libitum-fed controls; PF, pair-fed controls; EF, ethanol-fed), we have previously shown that maternal alcoholism produces a specific and significant decrease of glucose in the fetal brain, which is accompanied by growth retardation. To further define the mechanisms of ethanol-induced perturbations in fetal fuel supply, we have examined (i) the uptake of 2-deoxyglucose (2-DG) by dissociated brain cells from fetal rats that were exposed to ethanol in utero and (ii) the steady-state levels of the glucose transporter-1 (GT-1) mRNA. A 9% decrease in brain weight (P less than 0.001) and a 54.8% reduction in 2-DG uptake into brain cells (P less than 0.02) were found in offspring of EF mothers compared to the AF group. Brain weight correlated with the rate of 2-DG uptake (P less than 0.05). Northern blot analysis showed a 50% reduction of GT-1 mRNA in EF brain relative to that in the AF and PF groups. We conclude that glucose transport into the brain is an important parameter altered by maternal ethanol ingestion.  相似文献   

20.
The effects of administration of (pyro)Glu-His-Gly-OH and its analogs on food consumption and 2-Deoxy-D-Glucose (2-DG)-induced gastric acid secretion were examined in rats. (Pyro)Glu-His-Gly-OH and (pyro)Glu-His-EA significantly reduced food consumption, but not gastric acid secretion as compared with controls. The tripeptides: (pyro)Glu-3Me-His-Gly-OH, (pyro)Glu-His-D-Ala-OH, and (pyro)Glu-Phe-Gly-OH were found to significantly inhibit 2-DG-induced gastric acid secretion. Our results indicate that some analogs of (pyro)Glu-His-Gly-OH cause a greater inhibition of food consumption or gastric acid secretion in rats than the original tripeptide, in analogy to findings obtained in dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号