首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geranylgeranyltransferase I (GGTase I) catalyzes the transfer of a prenyl group from geranylgeranyl diphosphate to the carboxy-terminal cysteine of proteins with a motif referred to as a CaaX box (C, cysteine; a, usually aliphatic amino acid; X, usually L). The alpha and beta subunits of GGTase I from Saccharomyces cerevisiae are encoded by RAM2 and CDC43, respectively, and each is essential for viability. We are evaluating GGTase I as a potential target for antimycotic therapy of the related yeast, Candida albicans, which is the major human pathogen for disseminated fungal infections. Recently we cloned CaCDC43, the C. albicans homolog of S. cerevisiae CDC43. To study its role in C. albicans, both alleles were sequentially disrupted in strain CAI4. Null Cacdc43 mutants were viable despite the lack of detectable GGTase I activity but were morphologically abnormal. The subcellular distribution of two GGTase I substrates, Rho1p and Cdc42p, was shifted from the membranous fraction to the cytosolic fraction in the cdc43 mutants, and levels of these two proteins were elevated compared to those in the parent strain. Two compounds that are potent GGTase I inhibitors in vitro but that have poor antifungal activity, J-109,390 and L-269,289, caused similar changes in the distribution and quantity of the substrate. The lethality of an S. cerevisiae cdc43 mutant can be suppressed by simultaneous overexpression of RHO1 and CDC42 on high-copy-number plasmids (Y. Ohya et al., Mol. Biol. Cell 4:1017, 1991; C. A. Trueblood, Y. Ohya, and J. Rine, Mol. Cell. Biol. 13:4260, 1993). Prenylation presumably occurs by farnesyltransferase (FTase). We hypothesize that Cdc42p and Rho1p of C. albicans can be prenylated by FTase when GGTase I is absent or limiting and that elevation of these two substrates enables them to compete with FTase substrates for prenylation and thus allows sustained growth.  相似文献   

2.
Protein prenylation is a post translational modification that is indispensable for Ras–Rho mediated tumorigenesis. In mammals, three enzymes namely protein farnesyltransferase (FTase), geranylgeranyl transferase1 (GGTase1), and geranylgeranyl transferase2 (GGTase2) were found to be involved in this process. Usually proteins of Ras family will be farnesylated by FTase, Rho family will be geranylgeranylated by GGTase1. GGTase2 is exclusive for geranylgeranylating Rab protein family. FTase inhibitors such as FTI- 277 are potent anti-cancer agents in vitro. In vivo, mutated Ras proteins can either improve their affinity for FTase active site or undergo geranylgeranylation which confers resistance and no activity of FTase inhibitors. This led to the development of GGTase1 inhibitors. A well-defined 3-D structure of human GGTase1 protein is lacking which impairs its in silico and rational designing of inhibitors. A 3-D structure of human GGTase1 was constructed based on primary sequence available and homology modeling to which pubchem molecules library was virtually screened through AutoDock Vina. Our studies show that natural compounds Camptothecin (-8.2 Kcal/mol), Curcumin (-7.3 Kcal/mol) have higher binding affinities to GGTase-1 than that of established peptidomimetic GGTase-1 inhibitors such as GGTI-297 (-7.5 Kcal/mol), GGTI-298 (-7.5 Kcal/mol), CHEMBL525185 (-7.2 Kcal/mol).  相似文献   

3.
Protein geranylgeranyltransferase type I (GGTase I) is a heterodimeric zinc metalloenzyme catalyzing protein geranylgeranylation at cysteine residues present in C-terminal signature sequences referred to as CaaX (X=Leu) motifs. We have studied GGTase I as a potential antifungal target and recently reported its purification and cloning from the yeast Candida albicans (Ca GGTase I), an important human pathogen. Here, we report the high yield bacterial expression of Ca GGTase I by coexpression of maltose binding protein fusion proteins of both the alpha (Ram2p) and beta (Cdc43p) subunits. The cleaved and purified recombinant Ca GGTase I was demonstrated to be functional and structurally intact as judged by the presence of one equivalent of a tightly bound zinc atom and the near stoichiometric formation, isolation and catalytic turnover of a geranylgeranyl pyrophosphate-GGTase I complex. Kinetic analysis was performed with a native substrate protein, Candida Cdc42p, which exhibited significant pH dependent substrate inhibition, a feature not observed with other Ca GGTase I substrates. Prenyl acceptor substrate specificity was studied with a series of peptides in which both the CaaX motif, and the sequence preceding it, were varied. The prenyl acceptor K(M)s were found to vary nearly 100-fold, with biotinyl-TRERKKKKKCVIL, modeled after a presumably geranylgeranylated Candida protein, Crl1p (Rho4p), being the optimal substrate. A screen for inhibitors of Ca GGTase I identified compounds showing selectivity for the Candida versus human GGTase I. The most potent and selective compound, L-689230, had an IC(50) of 20 nM and >12,500-fold selectivity for Ca GGTase I. The lack of significant anti-Candida activity for any of these inhibitors is consistent with the recent finding that GGTase I is not required for C. albicans viability [R. Kelly et al., J. Bacteriol. 182 (2000) 704-713].  相似文献   

4.
Formins are actin filament nucleators regulated by Rho-GTPases. In budding yeast, the formins Bni1p and Bnr1p direct the assembly of actin cables, which guide polarized secretion and growth. From the six yeast Rho proteins (Cdc42p and Rho1-5p), we have determined that four participate in the regulation of formin activity. We show that the essential function of Rho3p and Rho4p is to activate the formins Bni1p and Bnr1p, and that activated alleles of either formin are able to bypass the requirement for these Rho proteins. Through a separate signaling pathway, Rho1p is necessary for formin activation at elevated temperatures, acting through protein kinase C (Pkc1p), the major effector for Rho1p signaling to the actin cytoskeleton. Although Pkc1p also activates a MAPK pathway, this pathway does not function in formin activation. Formin-dependent cable assembly does not require Cdc42p, but in the absence of Cdc42p function, cable assembly is not properly organized during initiation of bud growth. These results show that formin function is under the control of three distinct, essential Rho signaling pathways.  相似文献   

5.
Actin filaments are dynamically reorganized to accommodate ever-changing cellular needs for intracellular transport, morphogenesis, and migration. Formins, a major family of actin nucleators, are believed to function as direct effectors of Rho GTPases, such as the polarity regulator Cdc42p. However, the presence of extensive redundancy has made it difficult to assess the in vivo significance of the low-affinity Rho GTPase–formin interaction and specifically whether Cdc42p polarizes the actin cytoskeleton via direct formin binding. Here we exploit a synthetically rewired budding yeast strain to eliminate the redundancy, making regulation of the formin Bni1p by Cdc42p essential for viability. Surprisingly, we find that direct Cdc42p–Bni1p interaction is dispensable for Bni1p regulation. Alternative paths linking Cdc42p and Bni1p via “polarisome” components Spa2p and Bud6p are also collectively dispensable. We identify a novel regulatory input to Bni1p acting through the Cdc42p effector, Gic2p. This pathway is sufficient to localize Bni1p to the sites of Cdc42p action and promotes a polarized actin organization in both rewired and wild-type contexts. We suggest that an indirect mechanism linking Rho GTPases and formins via Rho effectors may provide finer spatiotemporal control for the formin-nucleated actin cytoskeleton.  相似文献   

6.
We recently designed a dominant negative (DN) farnesyltransferase (FTase)/geranyl-gerahyltransferase I (GGTase I) alpha-subunit that when expressed in vascular smooth muscle cells decreased insulin-stimulated phosphorylation of FTase, FTase activity, amounts of farnesylated p21Ras, DNA synthesis, and cell migration. Currently, we explored the inhibitory effects of DN FTase/GGTase I alpha-subunit in MCF-7 cells on IGF-1- and insulin-stimulated DNA synthesis and cell proliferation. Expression of the DN FTase/GGTase I alpha-subunit completely blocked IGF-1- and insulin-stimulated BrdU incorporation and cell count. DN FTase/GGTase I alpha-subunit inhibited insulin-stimulated phosphorylation of FTase/GGTase I alpha-subunit, FTase and GGTase I activity, and prenylation of p21Ras and RhoA. Expression of DN FTase/GGTase I alpha-subunit diminished IGF-1- and insulin-stimulated phosphorylation of ERK (extracellular signal-regulated kinase), but had no effect on IGF-1- and insulin-stimulated phosphorylation of Akt. Taken together, these data suggest that DN FTase/GGTase I alpha-subunit can assuage the mitogenic effects of IGF-1 and insulin on MCF-7 breast cancer cells.  相似文献   

7.
Small monomeric GTPases act as molecular switches, regulating many biological functions via activation of membrane localized signaling cascades. Activation of their switch function is controlled by GTP binding and hydrolysis. Two Rho GTPases, Cdc42p and Rho1p, are localized to the yeast vacuole where they regulate membrane fusion. Here, we define a method to directly examine vacuole membrane Cdc42p and Rho1p activation based on their affinity to probes derived from effectors. Cdc42p and Rho1p showed unique temporal activation which aligned with distinct subreactions of in vitro vacuole fusion. Cdc42p was rapidly activated in an ATP-independent manner while Rho1p activation was kinetically slower and required ATP. Inhibitors that are known to block vacuole membrane fusion were examined for their effect on Cdc42p and Rho1p activation. Rdi1p, which inhibits the dissociation of GDP from Rho proteins, blocked both Cdc42p and Rho1p activation. Ligands of PI(4,5)P2 specifically inhibited Rho1p activation while pre-incubation with U73122, which targets Plc1p function, increased Rho1p activation. These results define unique activation mechanisms for Cdc42p and Rho1p, which may be linked to the vacuole membrane fusion mechanism.  相似文献   

8.
Cdc42p, a Rho family GTPase of the Ras superfamily, is a key regulator of cell polarity and morphogenesis in eukaryotes. Using 37 site-directed cdc42 mutants, we explored the functions and interactions of Cdc42p in the budding yeast Saccharomyces cerevisiae. Cytological and genetic analyses of these cdc42 mutants revealed novel and diverse phenotypes, showing that Cdc42p possesses at least two distinct essential functions and acts as a nodal point of cell polarity regulation in vivo. In addition, mapping the functional data for each cdc42 mutation onto a structural model of the protein revealed as functionally important a surface of Cdc42p that is distinct from the canonical protein-interacting domains (switch I, switch II, and the C terminus) identified previously in members of the Ras superfamily. This region overlaps with a region (alpha5-helix) recently predicted by structural models to be a specificity determinant for Cdc42p-protein interactions.  相似文献   

9.
Phosphonoacetamido(oxy) groups have proven to be good mimics of the diphosphate portion in geranylgeranyl protein transferase I (GGTase I) inhibitors. The introduction of small alkyl groups (Me, Et) into the diphosphate mimic moiety caused a further decrease in collateral farnesyl protein transferase (FTase) inhibitory activity, thereby improving GGTase I over FTase selectivity.  相似文献   

10.
Protein prenylation is a posttranslational modification that is indispensable for translocation of membrane GTPases like Ras, Rho, Ras etc. Proteins of Ras family undergo farnesylation by FTase while Rho family goes through geranylgeranylation by GGTase1. There is only an infinitesimal difference in signal recognition between FTase and GGTase1. FTase inhibitors mostly end up selecting the cells with mutated Ras proteins that have acquired affinity towards GGTase1 in cancer microcosms. Therefore, it is of interest to identify GGTase1 and FTase dual inhibitors using the docking tool AutoDock Vina. Docking data show that curcumin (from turmeric) has higher binding affinity to GGTase1 than that of established peptidomimetic GGTase1 inhibitors (GGTI) such as GGTI-297, GGTI-298, CHEMBL525185. Curcumin also interacts with FTase with binding energy comparable to co-crystalized compound 2-[3-(3-ethyl-1-methyl-2-oxo-azepan-3-yl)-phenoxy]-4-[1-amino-1-(1-methyl-1h-imidizol-5-yl)-ethyl]-benzonitrile (BNE). The docked complex was further simulated for 10 ns using molecular dynamics simulation for stability. Thus, the molecular basis for curcumin binding to GGTase1 and FTase is reported.  相似文献   

11.
In this study, we synthesized some natural and semisynthetic prenyloxyphenylpropanoids (e.g., coumarins and cinnamic acid derivatives) and we assessed their in vitro inhibitory activity against farnesyl transferase (FTase) and geranylgeranyl transferase I (GGTase I). No compound was an effective inhibitor of FTase, while farnesyloxycinnamic acids were shown to selectively inhibit GGTase I with IC(50) values ranging from 28 to 39 microM.  相似文献   

12.
In budding yeast, the Rho-type GTPase Cdc42p is essential for cell division and regulates pseudohyphal development and invasive growth. Here, we isolated novel Cdc42p mutant proteins with single-amino-acid substitutions that are sufficient to uncouple functions of Cdc42p essential for cell division from regulatory functions required for pseudohyphal development and invasive growth. In haploid cells, Cdc42p is able to regulate invasive growth dependent on and independent of FLO11 gene expression. In diploid cells, Cdc42p regulates pseudohyphal development by controlling pseudohyphal cell (PH cell) morphogenesis and invasive growth. Several of the Cdc42p mutants isolated here block PH cell morphogenesis in response to nitrogen starvation without affecting morphology or polarity of yeast form cells in nutrient-rich conditions, indicating that these proteins are impaired for certain signaling functions. Interaction studies between development-specific Cdc42p mutants and known effector proteins indicate that in addition to the p21-activated (PAK)-like protein kinase Ste20p, the Cdc42p/Rac-interactive-binding domain containing Gic1p and Gic2p proteins and the PAK-like protein kinase Skm1p might be further effectors of Cdc42p that regulate pseudohyphal and invasive growth.  相似文献   

13.
Rho-family GTPases Cdc42p and Rho1p play critical roles in the budding process of the yeast Saccharomyces cerevisiae. However, it is not clear how the functions of these GTPases are coordinated temporally and spatially during this process. Based on its ability to suppress cdc42-Ts mutants when overexpressed, a novel gene PXL1 was identified. Pxl1p resembles mammalian paxillin, which is involved in integrating various signaling events at focal adhesion. Both proteins share amino acid sequence homology and structural organization. When expressed in yeast, chicken paxillin localizes to the sites of polarized growth as Pxl1p does. In addition, the LIM domains in both proteins are the primary determinant for targeting the proteins to the cortical sites in their native cells. These data strongly suggest that Pxl1p is the "ancient paxillin" in yeast. Deletion of PXL1 does not produce any obvious phenotype. However, Pxl1p directly binds to Rho1p-GDP in vitro, and inhibits the growth of rho1-2 and rho1-3 mutants in a dosage-dependent manner. The opposite effects of overexpressed Pxl1p on cdc42 and rho1 mutants suggest that the functions of Cdc42p and Rho1p may be coordinately regulated during budding and that Pxl1p may be involved in this coordination.  相似文献   

14.
Rho GTPases, which control polarized cell growth through cytoskeletal reorganization, have recently been implicated in the control of endo- and exocytosis. We now report that both Rho1p and Cdc42p have a direct role in mediating the docking stage of homotypic vacuole fusion. Vacuoles prepared from strains with temperature-sensitive alleles of either Rho1p or Cdc42p are thermolabile for fusion. RhoGDI (Rdi1p), which extracts Rho1p and Cdc42p from the vacuole membrane, blocks vacuole fusion. The Rho GTPases can not fulfill their function as long as priming and Ypt7p-dependent tethering are inhibited. However, reactions that are reversibly blocked after docking by the calcium chelator BAPTA have passed the point of sensitivity to Rdi1p. Extraction and removal of Ypt7p, Rho1p and Cdc42p from docked vacuoles (by Gdi1p, Gyp7p and Rdi1p) does not impede subsequent membrane fusion, which is still sensitive to GTPgammaS. Thus, multiple GTPases act in a defined sequence to regulate the docking steps of vacuole fusion.  相似文献   

15.
Rho GTPases are molecular switches that modulate a variety of cellular processes, most notably those involving actin dynamics. We have previously shown that yeast vacuolar membrane fusion requires re-organization of actin filaments mediated by two Rho GTPases, Rho1p and Cdc42p. Cdc42p initiates actin polymerization to facilitate membrane tethering; Rho1p has a role in the late stages of vacuolar fusion, but its mode of action is unknown. Here, we identified eEF1A as a vacuolar Rho1p-interacting protein. eEF1A (encoded by the TEF1 and TEF2 genes in yeast) is an aminoacyl-tRNA transferase needed during protein translation. eEF1A also has a second function that is independent of translation; it binds and organizes actin filaments into ordered cable structures. Here, we report that eEF1A interacts with Rho1p via a C-terminal subdomain. This interaction occurs predominantly when both proteins are in the GDP-bound state. Therefore, eEF1A is an atypical downstream effector of Rho1p. eEF1A does not promote vacuolar fusion; however, overexpression of the Rho1p-interacting subdomain affects vacuolar morphology. Vacuoles were destabilized and prone to leakage when treated with the eEF1A inhibitor narciclasine. We propose a model whereby eEF1A binds to Rho1p-GDP on the vacuolar membrane; it is released upon Rho1p activation and then bundles actin filaments to stabilize fused vacuoles. Therefore, the Rho1p-eEF1A complex acts to spatially localize a pool of eEF1A to vacuoles where it can readily organize F-actin.  相似文献   

16.
Farnesyl-protein transferase (FTase) purified from rat or bovine brain is an alpha/beta heterodimer, comprised of subunits having relative molecular masses of approximately 47 (alpha) and 45 kDa (beta). In the yeast Saccharomyces cerevisiae, two unlinked genes, RAM1/DPR1 (RAM1) and RAM2, are required for FTase activity. To explore the relationship between the mammalian and yeast enzymes, we initiated cloning and immunological analyses. cDNA clones encoding the 329-amino acid COOH-terminal domain of bovine FTase alpha-subunit were isolated. Comparison of the amino acid sequences deduced from the alpha-subunit cDNA and the RAM2 gene revealed 30% identity and 58% similarity, suggesting that the RAM2 gene product encodes a subunit for the yeast FTase analogous to the bovine FTase alpha-subunit. Antisera raised against the RAM1 gene product reacted specifically with the beta-subunit of bovine FTase, suggesting that the RAM1 gene product is analogous to the bovine FTase beta-subunit. Whereas a ram1 mutation specifically inhibits FTase, mutations in the CDC43 and BET2 genes, both of which are homologous to RAM1, specifically inhibit geranylgeranyl-protein transferase (GGTase) type I and GGTase-II, respectively. In contrast, a ram2 mutation impairs both FTase and GGTase-I, but has little effect on GGTase-II. Antisera that specifically recognized the bovine FTase alpha-subunit precipitated both bovine FTase and GGTase-I activity, but not GGTase-II activity. Together, these results indicate that for both yeast and mammalian cells, FTase, GGTase-I, and GGTase-II are comprised of different but homologous beta-subunits and that the alpha-subunits of FTase and GGTase-I share common features not shared by GGTase-II.  相似文献   

17.
Protein farnesyltransferase (FTase) is a key enzyme responsible for the lipid modification of a large and important number of proteins including Ras. Recent demonstrations that inhibitors of this enzyme block the growth of a variety of human tumors point to the importance of this enzyme in human tumor formation. In this paper, we report that a mutant form of human FTase, Y361L, exhibits increased resistance to farnesyltransferase inhibitors, particularly a tricyclic compound, SCH56582, which is a competitive inhibitor of FTase with respect to the CAAX (where C is cysteine, A is an aliphatic amino acid, and X is the C-terminal residue that is preferentially serine, cysteine, methionine, glutamine or alanine) substrates. The Y361L mutant maintains FTase activity toward substrates ending with CIIS. However, the mutant also exhibits an increased affinity for peptides terminating with CIIL, a motif that is recognized by geranylgeranyltransferase I (GGTase I). The Y361L mutant also demonstrates activity with Ha-Ras and Cdc42Hs proteins, substrates of FTase and GGTase I, respectively. In addition, the Y361L mutant shows a marked sensitivity to a zinc chelator HPH-5 suggesting that the mutant has altered zinc coordination. These results demonstrate that a single amino acid change at a residue at the active site can lead to the generation of a mutant resistant to FTase inhibitors. Such a mutant may be valuable for the study of the effects of FTase inhibitors on tumor cells.  相似文献   

18.
Fission yeast Cdc42p, a small GTPase of the Rho family, is essential for cell proliferation and maintenance of the rod-like cell morphology. Scd1/Ral1p is a GDP-GTP exchange factor (GEF) for Cdc42p. This study and a parallel study by others establish that Gef1p is another GEF for Cdc42p. Deletions of gef1 and scd1 are synthetically lethal, generating round dead cells, and hence mimic the phenotype of cdc42 deletion. Gef1p is localized mainly to the cell division site. Scd1p is also there, but it is also detectable in other parts of the cell, including the nucleus, growing ends, and the tips of conjugation tubes. Gef1p and Scd1p form a ring structure at the cell division site, which shrinks during cytokinesis following the contraction of the actomyosin ring. Formation of the Gef1p/Scd1p ring apparently depends on the integrity of the actomyosin ring. In turn, recruitment of Cdc42p to the cell division site follows the shrinking Gef1p/Scd1p ring; the Cdc42p accumulates like a closing iris. These observations suggest that Gef1p and Scd1p may have a role in mediating between contraction of the actomyosin ring and formation of the septum, by recruiting active Cdc42p to the septation site.  相似文献   

19.
Sec14p is an essential phosphatidylcholine/phosphatidylinositol transfer protein with a well-described role in the regulation of Golgi apparatus-derived vesicular transport in yeast. Inactivation of the CDP-choline pathway for phosphatidylcholine synthesis allows cells to survive in the absence of Sec14p function through restoration of Golgi vesicular transport capability. In this study, Saccharomyces cerevisiae cells containing a SEC14 temperature-sensitive allele along with an inactivated CDP-choline pathway were transformed with a high-copy-number yeast genomic library. Genes whose increased expression inhibited cell growth in the absence of Sec14p function were identified. Increasing levels of the Rho GTPase Cdc42p and its direct effector kinases Cla4p and Ste20p prevented the growth of cells lacking Sec14p and CDP-choline pathway function. Growth suppression was accompanied by an increase in large and multiply budded cells. This effect on polarized cell growth did not appear to be due to an inability to establish cell polarity, since both the actin cytoskeleton and localization of the septin Cdc12p were unaffected by increased expression of Cdc42p, Cla4p, or Ste20p. Nuclei were present in both the mother cell and the emerging bud, consistent with Sec14p regulation of the cell cycle subsequent to anaphase but prior to cytokinesis/septum breakdown. Increased expression of phosphatidylinositol 4-kinases and phosphatidylinositol 4-phosphate 5-kinase prevented growth arrest by CDC42, CLA4, or STE20 upon inactivation of Sec14p function. Sec14p regulation of phosphoinositide levels affects cytokinesis at the level of the Cdc42p/Cla4p/Ste20p signaling cascade.  相似文献   

20.
The Rho-type GTPase Cdc42p is required for cell polarization and bud emergence in Saccharomyces cerevisiae. To identify genes whose functions are linked to CDC42, we screened for (i) multicopy suppressors of a Ts- cdc42 mutant, (ii) mutants that require multiple copies of CDC42 for survival, and (iii) mutations that display synthetic lethality with a partial-loss-of-function allele of CDC24, which encodes a guanine nucleotide exchange factor for Cdc42p. In all three screens, we identified a new gene, BEM4. Cells from which BEM4 was deleted were inviable at 37 degrees C. These cells became unbudded, large, and round, consistent with a model in which Bem4p acts together with Cdc42p in polarity establishment and bud emergence. In some strains, the ability of CDC42 to serve as a multicopy suppressor of the Ts- growth defect of deltabem4 cells required co-overexpression of Rho1p, which is an essential Rho-type GTPase necessary for cell wall integrity. This finding suggests that Bem4p also affects Rho1p function. Bem4p displayed two-hybrid interactions with Cdc42p, Rho1p, and two of the three other known yeast Rho-type GTPases, suggesting that Bem4p can interact with multiple Rho-type GTPases. Models for the role of Bem4p include that it serves as a chaperone or modulates the interaction of these GTPases with one or more of their targets or regulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号