首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a tobacco cDNA clone as a probe, a genomic clone named TUQG-4, coding for a tobacco polyubiquitin protein with the five head-to-tail repeats of ubiquitin monomer was isolated. The five ubiquitin units were completely conserved except for the extra phenylalanine at the carboxy terminus of the last ubiquitin monomer. The putative open reading frame identified from the nucleotide sequence showed two possible intron sequences in the coding region for the first ubiquitin monomer. When the amino acid sequence deduced from the nucleotide sequence of TUQG-4 was compared to the amino acid sequences coded by other polyubiquitin genes of tobacco, there were three or four amino acid differences in the sequence. When the nucleotide sequences coding for the ubiquitin monomers were compared for various species origins, the degree of identity was at the highest between the ubiquitin monomers in one polyubiquitin and did not reflect the distance of the phylogenetic relationship.  相似文献   

2.
Summary Ubiquitin is ubiquitous in all eukaryotes and its amino acid sequence shows extreme conservation. Ubiquitin genes comprise direct repeats of the ubiquitin coding unit with no spacers. The nucleotide sequences coding for 13 ubiquitin genes from 11 species reported so far have been compiled and analyzed. The G+C content of codon third base reveals a positive linear correlation with the genome G+C content of the corresponding species. The slope strongly suggests that the overall G+C content of codons of polyubiquitin genes clearly reflects the genome G+C content by AT/GC substitutions at the codon third position. The G+C content of ubiquitin codon third base also shows a positive linear correlation with the overall G+C content of coding regions of compiled genes, indicating the codon choices among synonymous codons reflect the average codon usage pattern of corresponding species. On the other hand, the monoubiquitin gene, which is different from the polyubiquitin gene in gene organization, gene expression, and function of the encoding protein, shows a different codon usage pattern compared with that of the polyubiquitin gene. From comparisons of the levels of synonymous substitutions among ubiquitin repeats and the homology of the amino acid sequence of the tail of monomeric ubiquitin genes, we propose that the molecular evolution of ubiquitin genes occurred as follows: Plural primitive ubiquitin sequences were dispersed on genome in ancestral eukaryotes. Some of them situated in a particular environment fused with the tail sequence to produce monomeric ubiquitin genes that were maintained across species. After divergence of species, polyubiquitin genes were formed by duplication of the other primitive ubiquitin sequences on different chromosomes. Differences in the environments in which ubiquitin genes are embedded reflect the differences in codon choice and in gene expression pattern between poly- and monomeric ubiquitin genes.  相似文献   

3.
The Arabidopsis thaliana ecotype Columbia ubiquitin gene family consists of 14 members that can be divided into three types of ubiquitin genes; polyubiquitin genes, ubiquitin-like genes and ubiquitin extension genes. The isolation and characterization of eight ubiquitin sequences, consisting of four polyubiquitin genes and four ubiquitin-like genes, are described here, and their relationships to each other and to previously identified Arabidopsis ubiquitin genes were analyzed. The polyubiquitin genes, UBQ3, UBQ10, UBQ11 and UBQ14, contain tandem repeats of the 228-bp ubiquitin coding region. Together with a previously described polyubiquitin gene, UBQ4, they differ in synonymous substitutions, number of ubiquitin coding regions, number and nature of nonubiquitin C-terminal amino acid(s) and chromosomal location, dividing into two subtypes; the UBQ3/UBQ4 and UBQ10/UBQ11/UBQ14 subtypes. Ubiquitin-like genes, UBQ7, UBQ8, UBQ9 and UBQ12, also contain tandem repeats of the ubiquitin coding region, but at least one repeat per gene encodes a protein with amino acid substitutions. Nucleotide comparisons, K(s) value determinations and neighbor-joining analyses were employed to determine intra- and intergenic relationships. In general, the rate of synonymous substitution is too high to discern related repeats. Specific exceptions provide insight into gene relationships. The observed nucleotide relationships are consistent with previously described models involving gene duplications followed by both unequal crossing-over and gene conversion events.  相似文献   

4.
《Gene》1998,215(2):445-452
Four polyubiquitin genes, PUB1, PUB2, PUB3 and PUB4, were isolated from a pea (Pisum sativum L. cv Alaska) genomic library and completely sequenced. They represent all of the four polyubiquitin genes of the ubiquitin gene family in pea. The coding regions of the genes contain five or six coding units arranged as tandem repeats. The different coding repeats of the four genes share homologies between 75 and 97%, encoding the same protein of 76 amino acids identical to those from other higher plants. The open reading frames of PUB1, PUB2 and PUB4 terminate in the additional amino acid, phenylalanine (F), and PUB3 terminates in isoleucine (I). The polyubiquitin genes all contain intron sequences ranging from 584 to 1114 bp immediately 5′ to the ATG initiation codon of the first coding sequence. Of the four genes, three are associated with long AT-rich (85.4–89.4% A+T) sequences ranging from about 331 to 478 bp at their 5′ or 3′ ends. The PUB4 gene was found to be linked to a moderate to highly repetitive DNA at its 5′ flanking sequence. The greater sequence homology between different genes than among individual repeating units of a gene suggests that the polyubiquitin genes may have arisen by gene duplication of a single gene sequence.  相似文献   

5.
Molecular amplification and sequencing of genomic DNA that encodes camel polyubiquitin (PUBC1) was performed by a polymerase chain reaction (PCR) using various sets of primers. The amplification generated a number of DNA fragments, which were sequenced and compared with the polyubiquitin coding sequences of various species. One DNA fragment that conformed to 325 bp was found to be 95 and 88% homologous to the sequences of human polyubiquitin B and C, respectively. The DNA translated into 108 amino acids that corresponded to two fused units of ubiquitin with no intervening sequence, which indicates that it is a polyubiquitin and contains at least two units of ubiquitin. Although, variations were found in the nucleotide sequence when compared to those of other species, the amino acid sequence was 100% homologous to the polyubiquitin sequences of humans, mice, and rats. This is the first report of the polyubiquitin DNA coding sequence and its corresponding amino acid sequence from camels, amplified using direct genomic DNA preparations.  相似文献   

6.
7.
Ubiquitin, a highly conserved 76 amino acid protein, plays a role in targeting intracellular proteins for degradation. Ubiquitin expression was examined during the developmentally programmed atrophy and degeneration of the intersegmental muscles (ISMs) in the hawk-moth, Manduca sexta. A clone containing nine repeats of the ubiquitin coding sequence was isolated from an ISM cDNA library and was used as a probe to examine polyubiquitin expression during development. When the ISMs became committed to degenerate, polyubiquitin gene expression increased dramatically. Injection of 20-hydroxyecdysone, which delays degeneration in this system, prevented the increase in polyubiquitin mRNA. The expression of polyubiquitin occurred without apparent activation of the cell's heat shock response. These data suggest that ubiquitin plays a role in programmed cell death.  相似文献   

8.
9.
10.
Expression Enhancement of a Rice Polyubiquitin Gene Promoter   总被引:11,自引:0,他引:11  
An 808 bp promoter from a rice polyubiquitin gene, rubi3, has been isolated. The rubi3 gene contained an open reading frame of 1140 bp encoding a pentameric polyubiquitin arranged as five tandem, head-to-tail repeats of 76 aa. The 1140 bp 5′ UTR intron of the gene enhanced its promoter activity in transient expression assays by 20-fold. Translational fusion of the GUS reporter gene to the coding sequence of the ubiquitin monomer enhanced GUS enzyme activity in transient expression assays by 4.3-fold over the construct containing the original rubi3 promoter (including the 5′ UTR intron) construct. The enhancing effect residing in the ubiquitin monomer coding sequence has been narrowed down to the first 9 nt coding for the first three amino acid residues of the ubiquitin protein. Mutagenesis at the third nucleotide of this 9 nt sequence still maintains the enhancing effect, but leads to translation of the native GUS protein rather than a fusion protein. The resultant 5′ regulatory sequence, consisting of the rubi3 promoter, 5′ UTR exon and intron, and the mutated first 9 nt coding sequence, has an activity nearly 90-fold greater than the rubi3 promoter only (without the 5′ UTR intron), and 2.2-fold greater than the maize Ubi1 gene promoter (including its 5′ UTR intron). The newly created expression vector is expected to enhance transgene expression in monocot plants. Considering the high conservation of the polyubiquitin gene structure in higher plants, the observed enhancement in gene expression may apply to 5′ regulatory sequences of other plant polyubiquitin genes.  相似文献   

11.
Ubiquitin is a multifunctional 76-amino-acid protein which plays critical roles in many aspects of cellular metabolism. In Caenorhabditis elegans, the major source of ubiquitin RNA is the polyubiquitin locus, UbiA. UbiA is transcribed as a polycistronic mRNA which contains 11 tandem repeats of ubiquitin sequence and possesses a 2-amino-acid carboxy-terminal extension on the final repeat. The UbiA locus possesses several unusual features not seen in the ubiquitin genes of other organisms studied to date. Mature UbiA mRNA acquires a 22-nucleotide leader sequence via a trans-splicing reaction involving a 100-nucleotide splice leader RNA derived from a different chromosome. UbiA is also unique among known polyubiquitin genes in containing four cis-spliced introns within its coding sequence. Thus, UbiA is one of a small class of genes found in higher eucaryotes whose heterogeneous nuclear RNA undergoes both cis and trans splicing. The putative promoter region of UbiA contains a number of potential regulatory elements: (i) a cytosine-rich block, (ii) two sequences resembling the heat shock regulatory element, and (iii) a palindromic sequence with homology to the DNA-binding site of the mammalian steroid hormone receptor. The expression of the UbiA gene has been studied under various heat shock conditions and has been monitored during larval moulting and throughout the major stages of development. These studies indicate that the expression of the UbiA gene is not inducible by acute or chronic heat shock and does not appear to be under nutritional or developmental regulation in C. elegans.  相似文献   

12.
We isolated and characterized two related ubiquitin genes from Drosophila melanogaster, polyubiquitin and UB3-D. The polyubiquitin gene contained 18 repeats of the 228-base-pair monomeric ubiquitin-encoding unit arranged in tandem. This gene was localized to a minor heat shock puff site, 63F, and it encoded a constitutively expressed 4.4-kilobase polyubiquitin-encoding mRNA, whose level was induced threefold by heat shock. To investigate the pattern of expression of the polyubiquitin gene in developing animals, a polyubiquitin-lacZ fusion gene was introduced into the Drosophila genome by germ line transformation. The fusion gene was expressed at high levels in a tissue-general manner at all life stages assayed. The ubiquitin-encoding gene, UB3-D, consisted of one ubiquitin-encoding unit directly fused, in frame, to a nonhomologous tail sequence. The amino acid sequence of the tail portion of the protein had 65% positional identity with that of yeast UBI3 protein, including a region that contained a potential nucleic acid-binding motif. The Drosophila UB3-D gene hybridized to a 0.9-kilobase mRNA that was constitutively expressed, and in contrast to the polyubiquitin gene, it was not inducible by heat shock.  相似文献   

13.
From a V79 Chinese hamster genomic library, we isolated a clone containing a polyubiquitin gene (designated as CHUB1), and determined its nucleotide sequence. The coding region of the CHUB1 gene consisted of five direct repeats of the ubiquitin unit with no spacer, followed by a single tyrosine residue. Northern hybridization analysis with a synthesized probe specific to the 3' non-translated region of the CHUB1 gene revealed that it codes for a 1.8 kb mRNA. An evident homology to the human polyubiquitin gene UbB and the chicken UbI gene was observed in the region corresponding to the full extent of the mature mRNA sequence, suggesting that these three genes belong to a common polyubiquitin gene subfamily, and that the sequence in the 3' non-translated region of the CHUB1 gene is unique to this subfamily.  相似文献   

14.
Ubiquitin is a 76-amino-acid protein with a remarkably high degree of conservation between all known sequences. Ubiquitin genes are almost always multicopy in eukaryotes, and often are found as polyubiquitin genes—fused tandem repeats which are coexpressed. Seventeen ubiquitin sequences from the amitochondrial protist Trichomonas vaginalis have been examined here, including an 11-repeat fragment of a polyubiquitin gene. These sequences reveal a number of interesting features that are not seen in other eukaryotes. The predicted amino acid sequences lack several universally conserved residues, and individual units do not always encode identical peptides as is usually the case. On the nucleotide level, these repeats are in general highly variable, but one region in the polyubiquitin is extremely homogeneous, with seven repeats absolutely identical. Such extended stretches of homogeneity have never been observed in ubiquitin genes and since substitutions are common in other coding units, it is likely that these repeats are the product of a very recent homogenization or amplification. Correspondence to: P.J. Keeling  相似文献   

15.
巴西橡胶树43 kD橡胶粒子膜蛋白基因的cDNA克隆及表达   总被引:8,自引:1,他引:8  
对43 kD的橡胶粒子膜蛋白进行了分离纯化和其N端氨基酸序列分析,根据N端氨基酸序列,设计一简并引物,通过3'RACE(Rapid Amplification ofcDNA Ends)的方法,获得了43 kD的橡胶粒子膜蛋白的cDNA.该cDNA含有1 385个核苷酸,含有完整的阅读框架,编码381个氨基酸.在终止密码子下游,包含有一个239bp的3'非编码区.该cDNA由5个首尾相连的重复单元组成,每个单元编码76个氨基酸组成的泛素(ubiquitin)单体.编码43 kD橡胶粒子蛋白的基因具有多个拷贝,在胶乳、叶片和树皮都表达.  相似文献   

16.
Ubiquitin coding sequences were isolated from a human genomic library and two cDNA libraries. One human ubiquitin gene consists of 2055 nucleotides and codes for a polyprotein consisting of 685 amino acid residues. The polyprotein contains nine direct repeats of the ubiquitin amino acid sequence and the last ubiquitin sequence is extended with an additional valyl residue at the C-terminal end. No spacer sequences separate the ubiquitin repeats and the coding regions are not interrupted by intervening sequences. This particular gene is transcribed since cDNAs corresponding to the genomic sequence have been isolated. At least two more types of ubiquitin genes are encoded in the human genome, one coding for an ubiquitin monomer while another presumably codes for three or four direct repeats of the ubiquitin sequence. Human DNA contains many copies of the ubiquitin sequence. Ubiquitin is therefore encoded in the human genome as a multigene family.  相似文献   

17.
德国小蠊泛素基因的克隆及序列分析   总被引:7,自引:2,他引:7  
设计一对简并引物,从德国小蠊Blattellager manica细胞中克隆了泛素基因的编码区,GenBank登录号为AY501003。序列分析表明,该编码区的长度为228 bp,编码的多肽由76个氨基酸残基组成,相对分子质量为8.47 Kd ,其等电点为5.73。同源性比较发现,德国小蠊泛素基因与其他真核生物泛素基因在氨基酸水平上具有94%以上的相似性。  相似文献   

18.
The complete cDNA sequence of bovine coagulation factor V.   总被引:5,自引:0,他引:5  
Lack of availability of a primary structure for bovine factor V has hindered detailed analysis of a vast majority of structure-function correlations on this molecule. To determine the primary structure of bovine factor V, we used liver mRNA as a template for the synthesis of three cDNA libraries. The sequences of seven overlapping cDNA clones infer two bovine factor V variants. Variant 1 results in a 6910-basepair (bp) cDNA including 103 bp of 5'-untranslated sequence, 6633 bp of coding sequence and 171 bp of 3'-untranslated sequence with a putative polyadenylation site. Variant 2 differs only in the size of the coding sequence (6618 bp). The open reading frame translates to factor V consisting of 2211 (or 2206) amino acids including a 28-amino acid signal peptide. Comparison of the amino acid sequences with human factor Va reveals 84% identity for the heavy and 86% for the light chains. In contrast, the B domain (connecting region) exhibits only 59% identity relative to the human molecule. The bovine B domain contains two repeats of a 14-amino acid structure that is contained only once in the human sequence. Bovine factor V lacks one of the nine amino acid repeats and one of the 17 amino acid repeats present in the human B domain. Factor V has little homology to the factor VIII molecule in the B domain. The 17-amino acid repeat missing in bovine factor V allows identification of an 18-amino acid sequence that is homologous to the B domain of human factor VIII. These 18 amino acids may either constitute the unique vestige of a divergent evolution between the B domains of factors V and VIII or reveal the convergent evolution toward a critical epitope involved in the activation of both procofactors.  相似文献   

19.
从广西产眼镜王蛇(Ophiophagus hannah)毒腺中抽提总RNA,经mRNA纯化后构建眼镜王蛇毒腺cDNA文库。从所构建的cDNA文库中,随机筛选200个克隆测序,得到两个在进化上高度保守的基因:泛素融合蛋白基因(GenBank登录号为AF297036)和核糖体蛋白L30基因(GenBank登录号是AF297033)。前者cDNA的开放阅读框为387bp,后者为348bp。前者编码128个氨基酸残基组成的泛素融合蛋白前体;后者编码115个氨基酸残基组成的核糖体蛋白L30前体。由cDNA序列推导出的氨基酸序列分析表明,泛素融合蛋白前体包括N-末端的泛素结构域(76个氨基酸残基)和C-末端的核糖体蛋白L40结构域(52个氨基酸残基)。该蛋白为一高碱性蛋白,C末端含有一个“锌指”模式结构。与16个物种比较的结果表明,眼镜王蛇与脊椎动物的泛素融合蛋白氨基酸序列相似度较高,具有高度的保守性。  相似文献   

20.
The yeast ubiquitin genes: a family of natural gene fusions.   总被引:49,自引:8,他引:41       下载免费PDF全文
Ubiquitin is a 76-residue protein highly conserved among eukaryotes. Conjugation of ubiquitin to intracellular proteins mediates their selective degradation in vivo. We describe a family of four ubiquitin-coding loci in the yeast Saccharomyces cerevisiae. UB11, UB12 and UB13 encode hybrid proteins in which ubiquitin is fused to unrelated ('tail') amino acid sequences. The ubiquitin coding elements of UB11 and UB12 are interrupted at identical positions by non-homologous introns. UB11 and UB12 encode identical 52-residue tails, whereas UB13 encodes a different 76-residue tail. The tail amino acid sequences are highly conserved between yeast and mammals. Each tail contains a putative metal-binding, nucleic acid-binding domain of the form Cys-X2-4-Cys-X2-15-Cys-X2-4-Cys, suggesting that these proteins may function by binding to DNA. The fourth gene, UB14, encodes a polyubiquitin precursor protein containing five ubiquitin repeats in a head-to-tail, spacerless arrangement. All four ubiquitin genes are expressed in exponentially growing cells, while in stationary-phase cells the expression of UB11 and UB12 is repressed. The UB14 gene, which is strongly inducible by starvation, high temperatures and other stresses, contains in its upstream region strong homologies to the consensus 'heat shock box' nucleotide sequence. Elsewhere we show that the essential function of the UB14 gene is to provide ubiquitin to cells under stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号