首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two types of empty capsid particles that differed with respect to the presence of the two outer shell proteins were isolated from MA-104 cells infected with bovine rotavirus V1005. Three previously uncharacterized polypeptides, I, II, and III, migrating between VP2 and VP6, were detected in empty capsids but not in single- and double-shelled rotavirus particles. Peptide mapping revealed that all three proteins were related to VP2. Polypeptides I, II, and III could be generated by in vitro trypsin digestion of empty capsids not exposed to trypsin in the infection medium. Labeled polypeptides appeared in empty capsids before they were detected in intracellular single- or double-shelled rotavirus particles. Empty capsids were also observed in MA-104 cells infected with bovine rotaviruses UK and NCDV, simian rotavirus SA11, and human rotavirus KU. VP7-containing empty capsid is the minimal subunit vaccine for cows; we failed to induce a substantial neutralizing antibody increase with VP7 purified under denaturating or nondenaturating conditions or with synthetic peptides corresponding to two regions of VP7.  相似文献   

2.
D R Thomsen  L L Roof    F L Homa 《Journal of virology》1994,68(4):2442-2457
The capsid of herpes simplex virus type 1 (HSV-1) is composed of seven proteins, VP5, VP19C, VP21, VP22a, VP23, VP24, and VP26, which are the products of six HSV-1 genes. Recombinant baculoviruses were used to express the six capsid genes (UL18, UL19, UL26, UL26.5, UL35, and UL38) in insect cells. All constructs expressed the appropriate-size HSV proteins, and insect cells infected with a mixture of the six recombinant baculoviruses contained large numbers of HSV-like capsids. Capsids were purified by sucrose gradient centrifugation, and electron microscopy showed that the capsids made in Sf9 cells had the same size and appearance as authentic HSV B capsids. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated that the protein composition of these capsids was nearly identical to that of B capsids isolated from HSV-infected Vero cells. Electron microscopy of thin sections clearly demonstrated that the capsids made in insect cells contained the inner electron-translucent core associated with HSV B capsids. In infections in which single capsid genes were left out, it was found that the UL18 (VP23), UL19 (VP5), UL38 (VP19C), and either the UL26 (VP21 and VP24) or the UL26.5 (VP22a) genes were required for assembly of 100-nm capsids. VP22a was shown to form the inner core of the B capsid, since in infections in which the UL26.5 gene was omitted the 100-nm capsids that formed lacked the inner core. The UL35 (VP26) gene was not required for assembly of 100-nm capsids, although assembly of B capsids was more efficient when it was present. These and other observations indicate that (i) the products of the UL18, UL19, UL35, and UL38 genes self-assemble into structures that form the outer surface (icosahedral shell) of the capsid, (ii) the products of the UL26 and/or UL26.5 genes are required (as scaffolds) for assembly of 100-nm capsids, and (iii) the interaction of the outer surface of the capsid with the scaffolding proteins requires the product of the UL18 gene (VP23).  相似文献   

3.
The crystal structure of the P1/Mahoney poliovirus empty capsid has been determined at 2.9 A resolution. The empty capsids differ from mature virions in that they lack the viral RNA and have yet to undergo a stabilizing maturation cleavage of VP0 to yield the mature capsid proteins VP4 and VP2. The outer surface and the bulk of the protein shell are very similar to those of the mature virion. The major differences between the 2 structures are focused in a network formed by the N-terminal extensions of the capsid proteins on the inner surface of the shell. In the empty capsids, the entire N-terminal extension of VP1, as well as portions corresponding to VP4 and the N-terminal extension of VP2, are disordered, and many stabilizing interactions that are present in the mature virion are missing. In the empty capsid, the VP0 scissile bond is located some 20 A away from the positions in the mature virion of the termini generated by VP0 cleavage. The scissile bond is located on the rim of a trefoil-shaped depression in the inner surface of the shell that is highly reminiscent of an RNA binding site in bean pod mottle virus. The structure suggests plausible (and ultimately testable) models for the initiation of encapsidation, for the RNA-dependent autocatalytic cleavage of VP0, and for the role of the cleavage in establishing the ordered N-terminal network and in generating stable virions.  相似文献   

4.
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is a double-stranded RNA virus. The IBDV capsid is formed by two major structural proteins, VP2 and VP3, which assemble to form a T=13 markedly nonspherical capsid. During viral infection, VP2 is initially synthesized as a precursor, called VPX, whose C end is proteolytically processed to the mature form during capsid assembly. We have computed three-dimensional maps of IBDV capsid and virus-like particles built up by VP2 alone by using electron cryomicroscopy and image-processing techniques. The IBDV single-shelled capsid is characterized by the presence of 260 protruding trimers on the outer surface. Five classes of trimers can be distinguished according to their different local environments. When VP2 is expressed alone in insect cells, dodecahedral particles form spontaneously; these may be assembled into larger, fragile icosahedral capsids built up by 12 dodecahedral capsids. Each dodecahedral capsid is an empty T=1 shell composed of 20 trimeric clusters of VP2. Structural comparison between IBDV capsids and capsids consisting of VP2 alone allowed the determination of the major capsid protein locations and the interactions between them. Whereas VP2 forms the outer protruding trimers, VP3 is found as trimers on the inner surface and may be responsible for stabilizing functions. Since elimination of the C-terminal region of VPX is correlated with the assembly of T=1 capsids, this domain might be involved (either alone or in cooperation with VP3) in the induction of different conformations of VP2 during capsid morphogenesis.  相似文献   

5.
The three-dimensional structure of the rotavirus spike haemagglutinin viral protein 4 (VP4) has been determined to a resolution of 26 A by cryo-electron microscopy and difference analysis of intact virions and smooth (spikeless) particles. Native and spikeless virions were mixed prior to cryo-preservation so that both structures could be determined from the same micrograph, thereby minimizing systematic errors. This mixing strategy was crucial for difference map analysis since VP4 only accounts for approximately 1% of the virion mass. The VP4 spike is multi-domained and has a radial length of approximately 200 A with approximately 110 A projecting from the surface of the virus. Interactions between VP4 and cell surface receptors are facilitated by the bi-lobed head, which allows multi-site interactions, as well as the uniform distribution of the VP4 heads at maximum radius. The bi-lobed head is attached to a square-shaped body formed by two rods that have a slight left-handed helical twist. These rods merge with an angled, rod-like domain connected to a globular base approximately 85 A in diameter. The anchoring base displays pseudo 6-fold symmetry. This surprising finding may represent a novel folding motif in which a single polypeptide of VP4 contributes similar but non-equivalent domains to form the arms of the hexameric base. The VP4 spike penetrates the virion surface approximately 90 A and interacts with both outer (VP7) and inner (VP6) capsid proteins. The extensive VP4-VP7 and VP4-VP6 interactions imply a scaffolding function in which VP4 may participate in maintaining precise geometric register between the inner and outer capsids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Adult diarrhea rotavirus (ADRV) is a newly identified strain of noncultivable human group B rotavirus that has been epidemic in the People's Republic of China since 1982. We have used sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western (immuno-) blot analysis to examine the viral proteins present in the outer and inner capsids of ADRV and compared these with the proteins of a group A rotavirus, SA11. EDTA treatment of double-shelled virions removed the outer capsid and resulted in the loss of three polypeptides of 64, 61, and 41, kilodaltons (kDa). Endo-beta-N-acetylglucosaminidase H digestion of double-shelled virions identified the 41-kDa polypeptide as a glycoprotein. CaCl2 treatment of single-shelled particles removed the inner capsid and resulted in the loss of one polypeptide with a molecular mass of 47 kDa. The remaining core particle had two major structural proteins of 136 and 113 kDa. All of the proteins visualized on sodium dodecyl sulfate-polyacrylamide gel electrophoresis were antigenic by Western blot analysis when probed with convalescent-phase human and animal antisera. A 47-kDa polypeptide was most abundant and was strongly immunoreactive with human sera, animal sera raised against ADRV and against other group B animal rotaviruses (infectious diarrhea of infant rat virus, bovine and porcine group B rotavirus, and bovine enteric syncytial virus) and a monoclonal antibody prepared against infectious diarrhea of infant rat virus. This 47-kDa inner capsid polypeptide contains a common group B antigen and is similar to the VP6 of the group A rotaviruses. Human convalescent-phase sera also responded to a 41-kDa polypeptide of the outer capsid that seems similar to the VP7 of group A rotavirus. Other polypeptides have been given tentative designations on the basis of similarities to the control preparation of SA11, including a 136-kDa polypeptide designated VP1, a 113-kDa polypeptide designated VP2, 64- and 61-kDa polypeptides designated VP5 and VP5a, and several proteins in the 110- to 72-kDa range that may be VP3, VP4, or related proteins. The lack of cross-reactivity on Western blots between antisera to group A versus group B rotaviruses confirmed that these viruses are antigenically quite distinct.  相似文献   

7.
C R Wobbe  S Mitra  V Ramakrishnan 《Biochemistry》1984,23(26):6565-6569
The structure of empty capsids of Kilham rat virus, an autonomous parvovirus with icosahedral symmetry, was investigated by small-angle neutron scattering. From the forward scatter, the molecular weight was determined to be 4.0 X 10(6), and from the Guinier region, the radius of gyration was found to be 105 A in D2O and 104 A in H2O. On the basis of the capsid molecular weight and the molecular weights and relative abundances of the capsid proteins, we propose that the capsid has a triangulation number of 1. Extended scattering curves and mathematical modeling revealed that the capsid consists of two shells of protein, the inner shell extending from 58 to 91 A in D2O and from 50 to 91 A in H2O and containing 11% of the capsid scattering mass, and the outer shell extending to 121 A in H2O and D2O. The inner shell appears to have a higher content of basic amino acids than the outer shell, based on its lower scattering density in D2O than in H2O. We propose that all three capsid proteins contribute to the inner shell and that this basic region serves DNA binding and partial charge neutralization functions.  相似文献   

8.
The structures of bovine papillomavirus type 1 (BPV-1) and human papillomavirus type 1 (HPV-1) were determined at 2.5 nm resolution by cryoelectron microscopy and three dimensional image reconstruction techniques. As expected, the reconstructions showed that both viruses consist of a T = 7 icosahedral capsid (approximately 60 nm in diameter) which surrounds a nucleohistone core. The capsid morphologies of the two viruses are nearly indistinguishable. Each capsid consists of a shell layer (approximately 2 nm thick) of nearly continuous density from which capsomers project radially to a maximum height of approximately 5.8 nm. The five-coordinate (pentavalent) and six-coordinate (hexavalent) capsomers both exhibit distinct five-fold axial symmetry as was observed for SV40 and polyoma viruses. Thus, both genera (papilloma and polyoma) of the papovavirus family have now been shown to have the characteristic "all-pentamer" capsid construction. BPV-1 and HPV-1 capsomers consist of a thick (8.6 nm diameter) trunk that broadens distally to form a regular five-pointed, star-shaped head, and proximally to create the shell layer where capsomers associate. A cylindrical channel (approximately 2.8 nm diameter) extends along the axis of each capsomer from the interior of the virus to a point approximately half way to the capsomer surface. Computationally sectioned views of individual capsomers displayed at decreasing radii show that each of the five capsomer subunits (in both pentavalent and hexavalent capsomers) makes a pronounced (30 degrees) left-handed twist just above the outer surface of the capsid shell. Similar views of the reconstructions also clarify the morphology of intercapsomer contacts. For example, they show how hexavalent capsomers coordinate six neighboring capsomers despite the fact that they contain only five subunits. The system of intercapsomer contacts is indistinguishable in BPV-1 and HPV-1, but quite different from that reported for polyoma virus capsids assembled in vitro from the major capsid protein, VP1 (D. M. Salunke, D. L. D. Caspar, and R. L. Garcea. 1989. Biophys. J. 56:887-900). Thus, because both polyoma and papilloma viruses have all-pentamer capsids, it appears that intracapsomer subunit-subunit interactions which stabilize pentameric capsomers are better preserved evolutionarily than those involved in capsomer-capsomer contacts.  相似文献   

9.
Cryoelectron microscopy and three-dimensional computer reconstruction techniques have been used to compare the structures of two types of DNA-free capsids of equine herpesvirus 1 at a resolution of 4.5 nm. "Light" capsids are abortive, whereas "intermediate" capsids are related to maturable intracellular precursors. Their T = 16 icosahedral outer shells, approximately 125 nm in diameter, are indistinguishable and may be described in terms of three layers of density, totalling 15 nm in thickness. The outermost layer consists of protruding portions of both the hexon and the penton capsomers, rising approximately 5 nm above a midlayer of density. The innermost layer, or "floor," is a 4-nm-thick sheet of virtually continuous density except for the orifices of the channels that traverse each capsomer. Hexon protrusions are distinctly hexagonal in shape, and penton protrusions are pentagonal. The structures of the three kinds of hexons (distinguished according to their positions on the surface lattice) are closely similar but differ somewhat in their respective orientations and in the shapes of their channels. The most prominent features of the midlayer are threefold nodules ("triplexes") at the trigonal lattice points. By analogy with other viral capsids, the triplexes may represent trimers of another capsid protein, possibly VP23 (36 kilodaltons [kDa]) or VP26 (12 kDa). Intermediate capsids differ from light capsids, which are empty, in having one or more internal components. In individual images from which the shell structure has been filtered away, these components are seen to have dimensions of 20 to 30 nm but to lack a visible substructure. This material--which is smeared out in the reconstruction, implying that its distribution is not icosahedrally symmetric or necessarily consistent from particle to particle--consists of aggregates of VP22 (46 kDa). From several lines of evidence, we conclude that this protein is located entirely within the capsid shell. These aggregates may be the remnants of morphogenetic cores retained in capsids interrupted in the process of DNA packaging.  相似文献   

10.
Adeno-associated virus type 2 empty capsids are composed of three proteins, VP1, VP2 and VP3, which have relative molecular masses of 87, 72 and 62 kDa, respectively, and differ in their N-terminal amino acid sequences. They have a likely molar ratio of 1:1:8 and occupy symmetrical equivalent positions in an icosahedrally arranged protein shell. We have investigated empty capsids of adeno-associated virus type 2 by electron cryo-microscopy and icosahedral image reconstruction. The three-dimensional map at 1.05 nm resolution showed sets of three elongated spikes surrounding the three-fold symmetry axes and narrow empty channels at the five-fold axes. The inside of the capsid superimposed with the previously determined structure of the canine parvovirus (Q. Xie and M.S. Chapman, 1996, J. Mol. Biol., 264, 497–520), whereas the outer surface showed clear discrepancies. Globular structures at the inner surface of the capsid at the two-fold symmetry axes were identified as possible positions for the N-terminal extensions of VP1 and VP2.  相似文献   

11.
The complex infection process of parvoviruses is not well understood so far. An important role has been attributed to a phospholipase A2 domain which is located within the unique N terminus of the capsid protein VP1. Based on the structural difference between adeno-associated virus type 2 wild-type capsids and capsids lacking VP1 or VP2, we show via electron cryomicroscopy that the N termini of VP1 and VP2 are involved in forming globules inside the capsids of empty and full particles. Upon limited heat shock, VP1 and possibly VP2 become exposed on the outsides of full but not empty capsids, which is correlated with the disappearance of the globules in the inner surfaces of the capsids. Using molecular modeling, we discuss the constraints on the release of the globularly organized VP1-unique N termini through the channels at the fivefold symmetry axes outside of the capsid.  相似文献   

12.
The dimensions of bacteriophage T7 and T7 capsids have been investigated by small-angle x-ray scattering. Phage T7 behaves like a sphere of uniform density with an outer radius of 301 +/- 2 A (excluding the phage tail) and a calculated volume for protein plus nucleic acid of 1.14 +/- 0.05 x 10(-16) ml. The outer radius determined for T7 phage in solution is approximately 30% greater than the radius measured from electron micrographs, which indicates that considerable shrinkage occurs during preparation for electron microscopy. Capsids that have a phagelike envelope and do not contain DNA were obtained from lysates of T7-infected Escherichia coli (capsid II) and by separating the capsid component of T7 phage from the phage DNA by means of temperature shock (capsid IV). In both cases the peak protein density is at a radius of 275 A; the outer radius is 286 +/- 4 A, approximately 5% smaller than the envelope of T7 phage. The thickness of the envelope of capsid II is 22 +/- 4 A, consistent with the thickness of protein estimated to be 23 +/- 5 A in whole T7 phage, as seen on electron micrographs in which the internal DNA is positively stained. The volume in T7 phage available to package DNA is estimated to be 9.2 +/- 0.4 x 10(-17) ml. The packaged DNA adopts a regular packing with 23.6 A interplanar spacing between, DNA strands. The angular width of the 23.6 A reflection shows that the mean DNA-DNA spacing throughout the phage head is 27.5 +/- less than 2.2 A. A T7 precursor capsid (capsid I) expands when pelleted for x-ray scattering in the ultracentrifuge to essentially the same outer dimensions as for capsids II and IV. This expansion of capsid I can be prevented by fixing with glutaraldehyde; fixed capsid I has peak density at a radius of 247 A, 10% less than capsid II or IV.  相似文献   

13.
Three-dimensional structure of rotavirus   总被引:40,自引:0,他引:40  
  相似文献   

14.
Infectious bursal disease virus (IBDV), a member of the Birnaviridae group, is a commercially important pathogen of chickens. From electron micrographs of frozen, hydrated, unstained specimens, we have computed a three-dimensional map of IBDV at about 2 nm resolution. The map shows that the structure of the virus is based on a T=13 lattice and that the subunits are predominantly trimer clustered. The subunits close to the fivefold symmetry axes are at a larger radius than those close to the two- or threefold axes, giving the capsid a markedly nonspherical shape. The trimer units on the outer surface protrude from a continuous shell of density. On the inner surface, the trimers appear as Y-shaped units, but the set of units surrounding the fivefold axes appears to be missing. It is likely that the outer trimers correspond to the protein VP2, carrying the dominant neutralizing epitope, and the inner trimers correspond to protein VP3, which has a basic carboxy-terminal tail expected to interact with the packaged RNA.  相似文献   

15.
VP26 is the smallest capsid protein and decorates the outer surface of the capsid shell of herpes simplex virus. It is located on the hexons at equimolar amounts with VP5. Its small size (112 amino acids) and high copy number make it an attractive molecule to use as a probe to investigate the complex pattern of capsid protein interactions. An in vitro capsid binding assay and a green fluorescent protein (GFP) localization assay were used to identify VP26 residues important for its interaction with capsids. To test for regions of VP26 that may be essential for binding to capsids, three small in-frame deletion mutations were generated in VP26, Delta18-25, Delta54-60, and Delta93-100. Their designations refer to the amino acids deleted by the mutation. The mutation at the C terminus of the molecule, which encompasses a region of highly conserved residues, abolished binding to the capsid and the localization of GFP to the nucleus in characteristic large puncta. Additional mutations revealed that a region of VP26 spanning from residue 50 to 112 was sufficient for the localization of the fused protein (VP26-GFP) to the nucleus and for it to bind to capsids. Using site-directed mutagenesis of conserved residues in VP26, two key residues for protein-protein interaction, F79 and G93, were identified as judged by the localization of GFP to nuclear puncta. When these mutations were analyzed in the capsid binding assay, they were also found to eliminate binding of VP26 to the capsid structure. Surprisingly, additional mutations that affected the ability of VP26 to bind to capsids in vitro were uncovered. Mutations at residues A58 and L64 resulted in a reduced ability of VP26 to bind to capsids. Mutation of the hydrophobic residues M78 and A80, which are adjacent to the hydrophobic residue F79, abolished VP26 capsid binding. In addition, the block of conserved amino acids in the carboxy end of the molecule had the most profound effect on the ability of VP26 to interact with capsids. Mutation of amino acid G93, L94, R95, R96, or T97 resulted in a greatly diminished ability of VP26 to bind capsids. Yet, all of these residues other than G93 were able to efficiently translocate or concentrate GFP into the nucleus, giving rise to the punctate fluorescence. Thus, the interaction of VP26 with the capsid appears to occur through at least two separate mechanisms. The initial interaction of VP26 and VP5 may occur in the cytoplasm or when VP5 is localized in the nucleus. Residues F79 and G93 are important for this bi-molecular interaction, resulting in the accumulation of VP26 in the nucleus in concentrated foci. Subsequent to this association, additional amino acids of VP26, including those in the C-terminal conserved domain, are important for interaction of VP26 with the three-dimensional capsid structure.  相似文献   

16.
17.
The structural protein VP6 of rotavirus, an important pathogen responsible for severe gastroenteritis in children, forms the middle layer in the triple-layered viral capsid. Here we present the crystal structure of VP6 determined to 2 A resolution and describe its interactions with other capsid proteins by fitting the atomic model into electron cryomicroscopic reconstructions of viral particles. VP6, which forms a tight trimer, has two distinct domains: a distal beta-barrel domain and a proximal alpha-helical domain, which interact with the outer and inner layer of the virion, respectively. The overall fold is similar to that of protein VP7 from bluetongue virus, with the subunits wrapping about a central 3-fold axis. A distinguishing feature of the VP6 trimer is a central Zn(2+) ion located on the 3-fold molecular axis. The crude atomic model of the middle layer derived from the fit shows that quasi-equivalence is only partially obeyed by VP6 in the T = 13 middle layer and suggests a model for the assembly of the 260 VP6 trimers onto the T = 1 viral inner layer.  相似文献   

18.
Group A rotavirus is one of the most common causes of severe diarrhea in human infants and newborn animals. Rotavirus virions are triple-layered particles. The outer capsid proteins VP4 and VP7 are highly variable and represent the major neutralizing antigens. The inner capsid protein VP6 is conserved among group A rotaviruses, is highly immunogenic, and is the target antigen of most immunodiagnosis tests. Llama-derived single-chain antibody fragments (VHH) are the smallest molecules with antigen-binding capacity and can therefore be expected to have properties different from conventional antibodies. In this study a library containing the VHH genes of a llama immunized with recombinant inner capsid protein VP6 was generated. Binders directed to VP6, in its native conformation within the viral particle, were selected and characterized. Four selected VHH directed to conformational epitopes of VP6 recognized all human and animal rotavirus strains tested and could be engineered for their use in immunodiagnostic tests for group A rotavirus detection. Three of the four VHH neutralized rotavirus in vivo independently of the strain serotype. Furthermore, this result was confirmed by in vivo partial protection against rotavirus challenge in a neonatal mouse model. The present study demonstrates for the first time a broad neutralization activity of VP6 specific VHH in vitro and in vivo. Neutralizing VHH directed to VP6 promise to become an essential tool for the prevention and treatment of rotavirus diarrhea.  相似文献   

19.
The herpes simplex virus type 1 (HSV-1) UL35 open reading frame (ORF) encodes a 12-kDa capsid protein designated VP26. VP26 is located on the outer surface of the capsid specifically on the tips of the hexons that constitute the capsid shell. The bioluminescent jellyfish (Aequorea victoria) green fluorescent protein (GFP) was fused in frame with the UL35 ORF to generate a VP26-GFP fusion protein. This fusion protein was fluorescent and localized to distinct regions within the nuclei of transfected cells following infection with wild-type virus. The VP26-GFP marker was introduced into the HSV-1 (KOS) genome resulting in recombinant plaques that were fluorescent. A virus, designated K26GFP, was isolated and purified and was shown to grow as well as the wild-type virus in cell culture. An analysis of the intranuclear capsids formed in K26GFP-infected cells revealed that the fusion protein was incorporated into A, B, and C capsids. Furthermore, the fusion protein incorporated into the virion particle was fluorescent as judged by fluorescence-activated cell sorter (FACS) analysis of infected cells in the absence of de novo protein synthesis. Cells infected with K26GFP exhibited a punctate nuclear fluorescence at early times in the replication cycle. At later times during infection a generalized cytoplasmic and nuclear fluorescence, including fluorescence at the cell membranes, was observed, confirming visually that the fusion protein was incorporated into intranuclear capsids and mature virions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号